JPH0411149A - Roof tile - Google Patents
Roof tileInfo
- Publication number
- JPH0411149A JPH0411149A JP11303990A JP11303990A JPH0411149A JP H0411149 A JPH0411149 A JP H0411149A JP 11303990 A JP11303990 A JP 11303990A JP 11303990 A JP11303990 A JP 11303990A JP H0411149 A JPH0411149 A JP H0411149A
- Authority
- JP
- Japan
- Prior art keywords
- reinforcing ribs
- tile
- roof tile
- hollow
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 85
- 239000000463 material Substances 0.000 abstract description 11
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 5
- 239000011147 inorganic material Substances 0.000 abstract description 5
- 239000004568 cement Substances 0.000 abstract description 3
- 229910052918 calcium silicate Inorganic materials 0.000 abstract description 2
- 239000000378 calcium silicate Substances 0.000 abstract description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 abstract description 2
- 239000004570 mortar (masonry) Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000018044 dehydration Effects 0.000 description 12
- 238000006297 dehydration reaction Methods 0.000 description 12
- 238000003825 pressing Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 101100334009 Caenorhabditis elegans rib-2 gene Proteins 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- 229920002978 Vinylon Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Press-Shaping Or Shaping Using Conveyers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、瓦に関し、特に、裏面側に補強リブが設けら
れた構造を有する瓦の改良に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a tile, and particularly to an improvement of a tile having a structure in which reinforcing ribs are provided on the back side.
従来より、水硬性無機質成形物よりなる瓦が広く用いら
れており、形状的には、山部と谷部とが均一な厚みに形
成された波型の瓦や、全体が均一な厚みを有する平板状
の瓦等が存在する。Hitherto, tiles made of hydraulic inorganic moldings have been widely used, and their shapes include wave-shaped tiles with peaks and valleys of uniform thickness, and tiles with uniform thickness throughout. There are flat roof tiles, etc.
ところで、瓦には、運搬時並びに施工時に上方から荷重
が加えられることが多いため、耐荷重強度の大きいこと
が要求される。By the way, since loads are often applied from above to tiles during transportation and construction, they are required to have high load-bearing strength.
平板状の瓦に、のり荷重が加えられた場合、瓦の裏向に
引張り応力が発生し、この引張り応力か荷重点直下に集
中することが理論的に知られている。水硬性無機質成形
物は、圧縮荷重には強いが、引張り荷重には弱い性質を
有する。従って、上記引張り応力に対する強度を高める
には、瓦の厚みを大きくする必要がある。It is theoretically known that when a glue load is applied to a flat tile, tensile stress is generated on the back side of the tile, and this tensile stress is concentrated directly below the load point. Hydraulic inorganic molded products have a property of being strong against compressive loads but weak against tensile loads. Therefore, in order to increase the strength against the above-mentioned tensile stress, it is necessary to increase the thickness of the tile.
しかしながら、瓦の厚みを大きくした場合には、コスト
の増大及び施工作業性の低下を招く。のみならず、瓦が
脱水プレス法により作られる場合には、そのプレス法王
の問題から瓦の裏面は緻密な構造を有することができな
い層に覆われるため、特に上記引張り応力に対して弱い
ものとならざるを得なかった。However, increasing the thickness of the roof tile increases costs and reduces construction workability. In addition, when tiles are made by the dehydration pressing method, the back side of the tiles is covered with a layer that cannot have a dense structure due to problems with the press, making it particularly vulnerable to the above-mentioned tensile stress. I had no choice but to do it.
他方、波型に形成された瓦の場合においても、上記と同
様に引張り応力が裏面側に発生するため、同様に耐荷重
強度の改善が求められている。さら、に、波型の瓦の場
合には、特有の問題として、上記引張り応力が谷部に集
中し、厚みが均一な瓦の場合には、必ず谷部で破壊を生
じるという問題もあった。そこで、波型の瓦においても
、耐荷重強度を高めるには、厚みを大きくする必要があ
り、やはり重量の増大に伴うコストの増大及び施工作業
性の低下が問題となっていた。On the other hand, even in the case of tiles formed in a corrugated shape, tensile stress is generated on the back side in the same way as described above, so there is a similar need for improvement in load-bearing strength. Furthermore, in the case of corrugated roof tiles, there is a particular problem in that the above-mentioned tensile stress concentrates in the valleys, and in the case of tiles with uniform thickness, destruction always occurs in the valleys. . Therefore, even with corrugated roof tiles, it is necessary to increase the thickness in order to increase the load-bearing strength, which also poses problems such as increased cost and decreased construction workability due to increased weight.
そこで、上記のような問題を解消するものとして、裏面
に補強リブが設けられた瓦が提案されており、かつ製造
されている(実開昭63−116621号)、すなわち
、瓦の裏面に部分的に補強リブを配置することにより、
リブが設けられている部分以外の厚みの増大を招くこと
なく、耐荷重強度を高めようというものである。Therefore, in order to solve the above problems, a tile with reinforcing ribs on the back side has been proposed and manufactured (Utility Model Publication No. 116621/1983). By arranging reinforcing ribs,
The aim is to increase the load-bearing strength without increasing the thickness of the parts other than those where the ribs are provided.
しかしながら、裏面に補強リブを有する瓦を脱水プレス
法により得る場合、以下のような問題があった。However, when obtaining tiles having reinforcing ribs on the back surface by the dehydration pressing method, there are the following problems.
すなわち、補強リブが設けられている部分は、他の瓦部
分に比べて相対的に厚みが大きいため、この厚い部分(
すなわち補強リブが設けられている部分)の脱水率が十
分でなかった。その結果、押圧脱水成形後の含水量が厚
みの厚い部分で多くなり、(a)成形物の外形が崩れた
り、(b)外観形状が悪くなったり、並びに(C)厚み
の大きい部分の組織が締まっていないため強度が部分的
に十分なものとならない、といった種々の問題が生じて
いた。特に、強度を高めるべく、より厚い補強リブを設
けた場合には、すなわち補強リブが設けられている部分
の厚みが他の部分の厚みの1゜5倍以上となった場合に
は、上記の問題はより顕著に発生していた。In other words, the part where the reinforcing ribs are provided is relatively thick compared to other tile parts, so this thick part (
In other words, the dehydration rate of the area (where the reinforcing ribs were provided) was not sufficient. As a result, the water content after pressure dehydration molding increases in the thicker parts, resulting in (a) the collapse of the outer shape of the molded product, (b) deterioration of the external shape, and (C) the structure of the thicker parts. Various problems have arisen, such as insufficient strength in some areas because the parts are not tightened. In particular, when thicker reinforcing ribs are provided to increase strength, that is, when the thickness of the part where the reinforcing ribs are provided is 1.5 times or more the thickness of other parts, the above The problem was becoming more pronounced.
よって、本発明の目的は、上述した従来の補強リブが設
けられた瓦の種々の欠点を解消するものであり、より一
層耐荷重強度に優れかつ軽量の瓦を提供することにある
。Therefore, an object of the present invention is to eliminate the various drawbacks of the conventional tiles provided with reinforcing ribs as described above, and to provide a roof tile that has even better load-bearing strength and is lightweight.
本発明は、裏面に補強リブが設けられた瓦本体を有する
ものにおいて、該補強リブ内に補強リブの延びる方向に
延びるように中空補強部材が埋設されていることを特徴
とする。The present invention is characterized in that, in a tile body having a reinforcing rib provided on the back surface, a hollow reinforcing member is embedded within the reinforcing rib so as to extend in the direction in which the reinforcing rib extends.
補強リブ内に中空補強部材が埋設されているため、該中
空補強部材が埋設されたことにより破壊強度が高められ
る。のみならす、補強リフの一部が中空補強部材により
置換されることになるため、その分だけ補強リブを構成
する瓦本体形成材料が節減される。よって、脱水プレス
法で得る場合に、補強リブが設けられている部分の脱水
率が中空補強部材を設けたことにより高められ、含水率
の低減により補強リブの破壊強度が高められる。従って
、中空補強部材による破壊強度の改善と、補強リブを構
成する瓦本体材料の脱水率の改善による破壊強度の改善
とが相まって、瓦の耐荷重強度が効果的に高められる。Since the hollow reinforcing member is embedded within the reinforcing rib, the fracture strength is increased by embedding the hollow reinforcing member. In addition, since a portion of the reinforcing rib is replaced by the hollow reinforcing member, the material used to form the tile main body constituting the reinforcing rib can be saved accordingly. Therefore, when obtained by the dehydration press method, the dehydration rate of the portion where the reinforcing ribs are provided is increased by providing the hollow reinforcing member, and the fracture strength of the reinforcing ribs is increased by reducing the water content. Therefore, the improvement in breaking strength due to the hollow reinforcing member and the improvement in breaking strength due to the improvement in the dehydration rate of the tile main body material forming the reinforcing ribs combine to effectively increase the load-bearing strength of the tile.
また、瓦本体形成材料が中空補強リブを設けた分だけ節
減されるため、その分だけ瓦が軽量化される。Further, since the material used to form the tile main body is reduced by the amount of the hollow reinforcing ribs, the tile is made lighter by that amount.
以下、図面を参照しつつ本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例の瓦の一部を破断して示す斜
視図であり、第2図及び第3図は、それぞれ、第1図の
■−■線及び■−■線に沿う各断面図である。FIG. 1 is a partially cutaway perspective view of a roof tile according to an embodiment of the present invention, and FIGS. 2 and 3 are taken along lines ■-■ and ■-■ in FIG. 1, respectively. FIG.
瓦1は、裏面に複数本の補強リブ2が設けられた断面が
波型形状の瓦本体3を有する。この瓦本体3は、水硬性
無機質成形物により構成されている。水硬性態I!質成
形物は、繊維強化セメント、モルタル、または珪酸カル
シウムのような水硬性無機質材料を後述するように脱水
プレスすることにより得られる。The tile 1 has a tile main body 3 with a corrugated cross section and a plurality of reinforcing ribs 2 provided on the back surface. This tile main body 3 is made of a hydraulic inorganic molded product. Hydraulic state I! The molded product is obtained by dehydrating and pressing a hydraulic inorganic material such as fiber-reinforced cement, mortar, or calcium silicate as described below.
本実施例の瓦1の特徴は、複数本の補強リブ2内に、補
強リブ2が延びる方向に延ばされた中空補強部材4が埋
設されていることにある。中空補強部材4は、第5図(
a)に全体を斜視図で示すように、略三角形状の断面を
有する角筒状に構成されており、後述する成形時のプレ
ス圧力により破壊しないように、弾性を有する材料で構
成されている0弾性を有する材料としては、例えば、ポ
リ塩化ビニル等の押し出し成形可能な熱可塑性樹脂、熱
硬化性樹脂、金属またはこれらの複合材料が挙げられ、
特に好ましくは、プラスチックまたは繊維強化プラスチ
ック(FRP)が用いられる。A feature of the tile 1 of this embodiment is that a hollow reinforcing member 4 extending in the direction in which the reinforcing ribs 2 extend is embedded within a plurality of reinforcing ribs 2. The hollow reinforcing member 4 is shown in FIG.
As shown in the overall perspective view in a), it has a rectangular tube shape with a substantially triangular cross section, and is made of an elastic material so as not to break due to press pressure during molding, which will be described later. Examples of materials having zero elasticity include extrudable thermoplastic resins such as polyvinyl chloride, thermosetting resins, metals, and composite materials thereof.
Particularly preferably, plastic or fiber reinforced plastic (FRP) is used.
第2図及び第3図から明らかなように、中空補強部材4
が埋設されているため、瓦lにおいては中空補強部材4
が埋設されている分だけ補強リブ2を構成する瓦形成材
料がw1滅される。従って、瓦1を形成する材料を節減
することができるため、軽量化される。As is clear from FIGS. 2 and 3, the hollow reinforcing member 4
Since the hollow reinforcing member 4 is buried in the roof tile I,
The tile-forming material constituting the reinforcing rib 2 is destroyed by the amount that is buried. Therefore, the material used to form the tile 1 can be saved, resulting in a reduction in weight.
同様に、補強リブ2内に中空補強部材4が埋設されてい
るため、瓦を構成する材料が節減されることにより、後
述する脱水プレス工程における脱水率が高められる。従
って、補強リブ2をより緻密に形成することができるた
め、補強リブ2の強度、ひいては瓦1の耐荷重強度を効
果的に高め得る。のみならず、中空補強部材4が埋設さ
れることにより、該中空補強部材4自体の強度の寄与に
よっても、補強リブ2の強度が高められる。Similarly, since the hollow reinforcing member 4 is embedded within the reinforcing rib 2, the material constituting the roof tile can be saved, thereby increasing the dewatering rate in the dewatering pressing process described later. Therefore, since the reinforcing ribs 2 can be formed more densely, the strength of the reinforcing ribs 2 and, by extension, the load-bearing strength of the tile 1 can be effectively increased. In addition, by embedding the hollow reinforcing member 4, the strength of the reinforcing rib 2 is increased due to the contribution of the strength of the hollow reinforcing member 4 itself.
次に、上記実施例の瓦1の製造方法の一例を第4図及び
第5図を参照して説明する。Next, an example of a method for manufacturing the roof tile 1 of the above embodiment will be explained with reference to FIGS. 4 and 5.
まず、第4図(a)に示すように、上型5及び下型6を
有する金型を用意する。上型5及び下型6のプレス面に
は、それぞれ、第1図の波型形状を形成するために波型
の凹凸か付与されている。First, as shown in FIG. 4(a), a mold having an upper mold 5 and a lower mold 6 is prepared. The pressing surfaces of the upper die 5 and the lower die 6 are each provided with wavy irregularities in order to form the wavy shape shown in FIG.
なお、下型6の波型の凹凸面には、複数の脱水孔7が開
口している。この脱水孔7は、後述するように脱水プレ
スに際し、水硬性無機質材料から浸出した水を除去する
ために設けられているものであり、図示しない吸引手段
に接続されている。Note that a plurality of dehydration holes 7 are opened in the corrugated uneven surface of the lower mold 6. The dehydration hole 7 is provided to remove water leached from the hydraulic inorganic material during dehydration pressing as will be described later, and is connected to a suction means (not shown).
また、下型6の凹凸面の上面には、脱水を容易とするた
めの空間を形成するために金′l148が敷設されてい
る。金w48に代えて、脱水濾布を用いてもよい。Furthermore, a metal layer 148 is laid on the upper surface of the uneven surface of the lower mold 6 to form a space for facilitating dewatering. A dehydrated filter cloth may be used instead of gold W48.
他方、上型5の波型の凹凸が付与された面には、上方に
富んだ複数の凹部5aが形成されている。On the other hand, a plurality of recesses 5a are formed on the surface of the upper mold 5 provided with the wave-shaped unevenness.
この凹部5aは、図面の紙面−紙背方向に延びるように
形成されている。そして、凹部5a内には、弾性を有す
る材料で構成された係止治具9が吊り下げられている。This recessed portion 5a is formed to extend in the direction from the plane of the drawing to the back of the paper. A locking jig 9 made of an elastic material is suspended within the recess 5a.
この係止治具9に、前述した中空補助部材4が吊り下げ
られている。The aforementioned hollow auxiliary member 4 is suspended from this locking jig 9.
すなわち、第5図(a)に示すように、中空補強部材4
の上面から上方に突出するように適当数の引っ掛は治具
10が所定距離を隔てて形成されている。引つ掛は治具
10は、第5図(b)に略図的拡大断面図で示すように
、先端に断面略三角形の形状を有する引っ掛は部10a
を有する。他方、係止治具9は、先端部分が二分岐され
ており、分岐された各先端部分9a、9aの内側に係止
部9b、9bを有する。係止部9b、9b間の距離は、
引っ掛は治具10の引っ掛は部10aの幅よりも狭いよ
うに構成されている。That is, as shown in FIG. 5(a), the hollow reinforcing member 4
A suitable number of hooks are formed at a predetermined distance from the jig 10 so as to protrude upward from the upper surface of the jig 10. As shown in the schematic enlarged cross-sectional view in FIG.
has. On the other hand, the locking jig 9 has a distal end portion branched into two, and has locking portions 9b, 9b inside each of the bifurcated distal end portions 9a, 9a. The distance between the locking parts 9b, 9b is
The hook of the jig 10 is configured to be narrower than the width of the portion 10a.
中空補強部材4を係止治具9に吊り下げるに際しては、
第5図(b)に矢印Aで示す方向に引っ掛は治具10を
係止治具9の先端部分9a、9a内に挿入する。挿入が
進むに連れて、引っ掛は部10aにより係止治具9の先
端部分9a、9aが押し拡げられる。引つ掛は部10a
の最大幅部分が先端部分9a、9a内に進入した時点で
、先端部分9a、9aの弾性により、係止部9b、9b
によって引っ掛は部10aのコーナ一部分10b。When suspending the hollow reinforcing member 4 from the locking jig 9,
The hooking jig 10 is inserted into the tip portions 9a, 9a of the locking jig 9 in the direction shown by arrow A in FIG. 5(b). As the insertion progresses, the tip portions 9a, 9a of the locking jig 9 are pushed apart by the hook portion 10a. The hook is part 10a
When the maximum width part of the tip enters into the tip portions 9a, 9a, the elasticity of the tip portions 9a, 9a locks the locking portions 9b, 9b.
The hook is a corner portion 10b of the portion 10a.
10bが係止される。10b is locked.
なお、係止治具9から引っ掛は治具10を分離する際に
は、再度引っ掛は部10aを第5図(b)の矢印入方向
に押圧し、引っ掛は部10aにより係止治具9の先端部
分9a、9aの開き角度を大きくすれば、係止治具9か
ら引っ掛は治具10を離脱することができる。In addition, when separating the hook jig 10 from the locking jig 9, press the hook part 10a again in the direction of the arrow in FIG. By increasing the opening angle of the tip portions 9a, 9a of the jig 9, the jig 10 can be detached from the locking jig 9.
第4図(a)に戻り、上記のような上型5及び下型6間
に、水硬性無機質成形材料11を投入する。Returning to FIG. 4(a), a hydraulic inorganic molding material 11 is placed between the upper mold 5 and lower mold 6 as described above.
次に、上型5を降下させて、水硬性無機質成形材料11
をプレスする。この状態を第4図(b)に示す、プレス
圧が加えられるに連れて、水硬性無機質材料11に含有
されていた水分が脱水孔7を介して外部に排出される。Next, the upper mold 5 is lowered and the hydraulic inorganic molding material 11 is
Press. This state is shown in FIG. 4(b). As press pressure is applied, the water contained in the hydraulic inorganic material 11 is discharged to the outside through the dehydration hole 7.
また、このプレスにより、上型5に設けられた凹部5a
に沿った形状の補強リブが成形されると共に、該補強リ
ブ内に、上述した中空補強部材4が埋設される。Also, by this pressing, the recess 5a provided in the upper die 5
A reinforcing rib having a shape along the shape is formed, and the hollow reinforcing member 4 described above is embedded within the reinforcing rib.
上型5を下方に降下させた際に、上述した係止治具9の
先端部分9a、9b内に中空補強部材4側に固定された
引っ掛は治具10が強く押し付けられることになる。従
って、・第5図(c)に示すように、プレス終了後に上
型5を上動させた場合、係止治具9と引っ掛は治具10
との保合が自動的に解かれる。When the upper mold 5 is lowered, the jig 10 is strongly pressed against the hooks fixed to the hollow reinforcing member 4 side within the tip portions 9a and 9b of the locking jig 9 described above. Therefore, as shown in FIG. 5(c), when the upper die 5 is moved upward after the press is finished, the locking jig 9 and the hooking jig 10
The binding with is automatically broken.
上記のようにして、内部に中空補強部材4が埋設された
複数本の補強リブ2を一方面に有する未硬化の水硬性無
機質成形物12を得ることができる。In the manner described above, it is possible to obtain an uncured hydraulic inorganic molded article 12 having on one side a plurality of reinforcing ribs 2 in which hollow reinforcing members 4 are embedded.
しかる後、下型6から未硬化の水硬性無機質成形物12
を取り出し、蒸気室内で蒸気養生することにより硬化さ
せる。このようにして、第1図に示した本実施例の瓦l
を得ることができる。After that, the uncured hydraulic inorganic molded product 12 is removed from the lower mold 6.
is taken out and cured by steam curing in a steam chamber. In this way, the tiles of this embodiment shown in FIG.
can be obtained.
次に、上記実施例の瓦の効果をより具体的な実験例に基
づき説明する。Next, the effects of the tiles of the above embodiment will be explained based on more specific experimental examples.
水硬性無機質材料として、セメン)100重量部、フラ
イアッシュ50重量部、合成繊維としてのビニロン繊維
2重量部及び水50重量部を混合したものを用い、表面
300Rの山部と谷部とを有する波型の瓦本体を形成し
た。なお、この瓦本体は、全体が幅600m、長さ42
1m+及び厚み6■の大きさを有する。裏面には谷部に
、幅30■×長さ3B(1mX厚み12mの補強リブ2
を形成した。また、補強リブ2内に埋設されている中空
補強部材4として、長さ360WX厚み2閣のFPRか
らなる角筒状の中空補強部材2を埋設した。As a hydraulic inorganic material, a mixture of 100 parts by weight of cement, 50 parts by weight of fly ash, 2 parts by weight of vinylon fiber as a synthetic fiber, and 50 parts by weight of water is used, and the surface has peaks and valleys of 300R. A corrugated tile body was formed. Additionally, this tile body has a total width of 600m and a length of 42m.
It has a size of 1m+ and a thickness of 6cm. On the back side, there are 2 reinforcing ribs in the trough with a width of 30cm x length of 3B (1m x thickness of 12m).
was formed. Further, as the hollow reinforcing member 4 buried in the reinforcing rib 2, a hollow reinforcing member 2 in the shape of a rectangular tube made of FPR with a length of 360 W and a thickness of 2 mm was buried.
脱水プレスは100kg/C1fiで行い、蒸気養生は
、温度60′c、相対湿度95%に設定された蒸気室中
に24時間放置することにより行った。The dehydration press was carried out at 100 kg/C1fi, and the steam curing was carried out by leaving the sample in a steam chamber set at a temperature of 60'C and a relative humidity of 95% for 24 hours.
上記のようにして得られた実施例の瓦の耐荷重試験を、
第6図に示すように、瓦Iを2本の支持棒15,15で
支持し、中央の荷重点16において上方から荷重をかけ
ることにより行った。荷重点16の大きさは5.0X6
0smとした。結果を下記の第1表に示す。The load-bearing test of the tiles of the example obtained as above was carried out as follows:
As shown in FIG. 6, the tile I was supported by two support rods 15, 15, and a load was applied from above at a central load point 16. The size of load point 16 is 5.0X6
It was set to 0sm. The results are shown in Table 1 below.
また、比較のために、中空補強部材が埋設されていない
補強リブ付き瓦、並びに補強リブが設けられていない瓦
を比較例として作製し、同様に耐荷重試験を行った。比
較例についての耐荷重試験の結果も、第1表に併せて示
す。For comparison, a tile with reinforcing ribs in which no hollow reinforcing member was embedded and a tile without reinforcing ribs were produced as comparative examples, and the same load-bearing test was conducted. The results of the load test for the comparative example are also shown in Table 1.
(以下、余白)
第 1 表
第1表から明らかなように、本実施例にかかる瓦では、
通常の補強リブが設けられている比較例1の瓦に比べて
成形性が良くなるため、補強リブの厚みを大きくするこ
とができ、補強リブが設けられていない部分の肉厚が薄
くとも耐荷重破壊強度がかなり高められることがわかる
。(Hereinafter, blank space) Table 1 As is clear from Table 1, the tile according to this example has the following characteristics:
Compared to the tile of Comparative Example 1, which has regular reinforcing ribs, it has better formability, so the thickness of the reinforcing ribs can be increased, and even if the wall thickness of the part where no reinforcing ribs are not provided is thin, it is durable. It can be seen that the load-breaking strength is considerably increased.
なお、上述してきた実施例の説明では、波型の形状に成
形された瓦に通用した例を説明したが、本発明は、平板
状の瓦に補強リブが設けられたものにも同様に適用する
ことができる。In addition, in the explanation of the embodiments described above, an example was explained that was applicable to tiles formed in a corrugated shape, but the present invention is equally applicable to tiles in the form of a flat plate with reinforcing ribs. can do.
以上のように、本発明によれば、補強リブ内に中空補強
部材が埋設されているため、中空補強部材が埋設されて
いる分だけ補強リブ部分の瓦成形材料の使用量が削減さ
れる。従って、補強リブが設けられている部分の脱水効
率が高められるため、補強リブの破壊強度を高めること
ができ、また中空補強部材自体の強度の寄与によっても
耐破壊強度が高められる。よって、補強リブが設けられ
た従来の瓦に比べて、−段と耐荷重強度に優れた瓦を得
ることができる。As described above, according to the present invention, since the hollow reinforcing member is embedded within the reinforcing rib, the amount of tile forming material used in the reinforcing rib portion is reduced by the amount of the hollow reinforcing member embedded. Therefore, since the dewatering efficiency of the portion where the reinforcing ribs are provided is increased, the breaking strength of the reinforcing ribs can be increased, and the breaking strength is also increased due to the contribution of the strength of the hollow reinforcing member itself. Therefore, it is possible to obtain a roof tile that is significantly superior in load-bearing strength compared to conventional roof tiles provided with reinforcing ribs.
また、中空補強部材を埋設した分だけ瓦形成材料が削減
されるため、破壊強度が高められるだけでなく、材料削
減に伴う軽量化も期待することができる。よって、運搬
時や施工時の作業性を大幅に改善することが可能となる
。Furthermore, since the amount of tile-forming material is reduced by the amount of embedding the hollow reinforcing member, not only is the breaking strength increased, but also weight reduction can be expected due to the reduction in material. Therefore, it is possible to significantly improve workability during transportation and construction.
第1図は本発明の一実施例にかかる瓦の一部を破断した
状態を示す斜視図、第2図は第1図の■−n線に沿う断
面図、第3図は第1図の■−■線、に沿う断面図、第4
図(a)〜(C)は、それぞれ、本発明の一実施例にか
かる瓦の製造方法において水硬性無機質成形物を成形す
る工程を示す各断面図、第5図(a)及び(b)は、そ
れぞれ、中空補強部材の全体を示す斜視図及び中空補強
部材に設けられた引っ掛は治具が上型に設けられた係止
治具に係合される工程を説明するための略図的拡大断面
図、第6図は耐荷重試験方法を説明するための斜視図で
ある。
図において、lは瓦、2は補強リブ、3は瓦本体、4は
中空補強部材を示す。
特許出願人 積木化学工業 株式会社第4図
第5図
第6図1 is a perspective view showing a partially broken state of a roof tile according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line ■-n in FIG. 1, and FIG. Sectional view along ■-■ line, 4th
Figures (a) to (C) are cross-sectional views showing the step of molding a hydraulic inorganic molded product in the method for manufacturing a roof tile according to an embodiment of the present invention, and Figures 5 (a) and (b) respectively. are a perspective view showing the entire hollow reinforcing member, and the hooks provided on the hollow reinforcing member are schematic diagrams for explaining the process in which the jig is engaged with the locking jig provided on the upper mold. The enlarged sectional view and FIG. 6 are perspective views for explaining the load test method. In the figure, l indicates a tile, 2 indicates a reinforcing rib, 3 indicates a tile main body, and 4 indicates a hollow reinforcing member. Patent applicant: Block Chemical Industry Co., Ltd. Figure 4 Figure 5 Figure 6
Claims (1)
リブ内に、該補強リブの延びる方向に延びるように埋設
された中空補強部材とを備えることを特徴とする瓦。(1) A tile comprising: a tile main body provided with reinforcing ribs on the back surface; and a hollow reinforcing member embedded within the reinforcing ribs so as to extend in the direction in which the reinforcing ribs extend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11303990A JPH0411149A (en) | 1990-04-27 | 1990-04-27 | Roof tile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11303990A JPH0411149A (en) | 1990-04-27 | 1990-04-27 | Roof tile |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0411149A true JPH0411149A (en) | 1992-01-16 |
Family
ID=14601933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11303990A Pending JPH0411149A (en) | 1990-04-27 | 1990-04-27 | Roof tile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0411149A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104908141A (en) * | 2015-06-18 | 2015-09-16 | 滕文建 | Intelligent machine manufacturing equipment for hollow wave tile with straw fiber |
-
1990
- 1990-04-27 JP JP11303990A patent/JPH0411149A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104908141A (en) * | 2015-06-18 | 2015-09-16 | 滕文建 | Intelligent machine manufacturing equipment for hollow wave tile with straw fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7338702B2 (en) | Non-woven glass mat with dissolvable binder system for fiber-reinforced gypsum board | |
US4214027A (en) | Process for the production of fiber-containing plaster boards | |
WO2000002959A3 (en) | New and useful improvements in fiber-reinforced composite materials structures and methods of making same | |
US11618225B2 (en) | Method of manufacturing cross-corrugated support structures | |
KR20170117049A (en) | Interlocking structure Block strengthening means and modular construction system | |
JP2001524175A (en) | Building elements | |
GB2245607A (en) | Apertured fibre-reinforced plastics sheet | |
JPH0411149A (en) | Roof tile | |
CN111236531A (en) | Decoration and heat preservation integrated ceramsite concrete prefabricated plate | |
KR102337510B1 (en) | Asswmbly block for high thermal insulation light-weight structure from recycled waste styrofoam and method for manufacturing the same | |
FI20185632A1 (en) | Bearing wall structure and method for producing the same | |
JP4072147B2 (en) | Non-combustible compressed fiber panel | |
IT201800006702A1 (en) | PANEL IN EXPANDED MATERIAL FOR THE REALIZATION OF A LIGHTENED MARBLE SHEET. | |
CN219491694U (en) | Assembled building templates and template subassembly | |
CN215406872U (en) | Embedded hanging piece and sandwich heat-insulation laminated shear wall | |
CN219491693U (en) | Building template and template assembly | |
CN220226217U (en) | Building templates based on increase wall adhesive force | |
CN213358986U (en) | Connection enhanced composite insulation board | |
CN104100083B (en) | A kind of bonding dense rib type material | |
CN100354091C (en) | Process for making plant fiber thermal insulation external wall panel and external wall panel thereby | |
JPH0411150A (en) | Roof tile | |
KR101711843B1 (en) | A Truss Deck Slab Mixed with Reinforcement for Concrete | |
JPS63223252A (en) | Tile | |
JPH0437641A (en) | Hydraulic inorganic molding | |
JPS6239204A (en) | Manufacture of reinforced cement board |