JPH04110820A - Light beam scanning optical system - Google Patents

Light beam scanning optical system

Info

Publication number
JPH04110820A
JPH04110820A JP2230203A JP23020390A JPH04110820A JP H04110820 A JPH04110820 A JP H04110820A JP 2230203 A JP2230203 A JP 2230203A JP 23020390 A JP23020390 A JP 23020390A JP H04110820 A JPH04110820 A JP H04110820A
Authority
JP
Japan
Prior art keywords
curvature
lens
radius
light beam
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2230203A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2230203A priority Critical patent/JPH04110820A/en
Priority to US07/752,284 priority patent/US5233457A/en
Publication of JPH04110820A publication Critical patent/JPH04110820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PURPOSE:To excellently compensate the image plane performance by providing a lens which is arranged between a deflector and a spherical mirror and has a difference between the center of radius of curvature of an incidence surface and the center of the radius of curvature of a projection surface in a scanning plane, and satisfying specific conditional inequalities. CONSTITUTION:The inequalities preferably hold for the relation among the distance (object point) (s) (not shown in figure) from the deflection point 10a to the position where a collimator lens converges a beam in the absence of a toric lens 15 and the spherical mirror 20, the radius (R1a) of curvature of the spherical mirror 20, and the radius (RM) of curvature of the lens projection surface in the main scanning direction, the relation between the distance (d) from the deflection point 10a of the polygon mirror 10 to the mirror 20 and the radius (RM) of curvature, and the relation between the core thickness (d1) of the toric lens 15 and the radius (R2a) of curvature of the lens incidence surface in the main scanning direction. When the inequalities are satisfied, an excellent distortion characteristic and excellent image plane flatness are obtained over a wide view angle range.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ビーム走査光学系、特にレーザビーム・プ
リンタやファクシミリ等に組み込まれ、画像情報を乗せ
た光束を走査媒体上に集光させる光ビーム走査光学系の
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a light beam scanning optical system, particularly a light beam that is incorporated into a laser beam printer, facsimile, etc., and focuses a light beam carrying image information onto a scanning medium. Regarding the structure of a scanning optical system.

従来の技術と課題 一般に、レーザビーム・プリンタやファクシミリで使用
されている光ビーム走査光学系は、基本的には、光源と
しての半導体レーザ、ポリゴンミラー、ガルバノミラ−
等の偏向器、fθレンズにより構成されている。偏向器
は半導体レーザから発せられた光束を等角速度で走査す
るものであり、そのままでは集光面で主走査方向中心部
から両端部にわたって走査速度に差を生じ、等質な画像
が得られない。fθレンズは、この様な走査速度差を補
正するために設置されている。しかし、rθレンズは種
々の凹レンズ、凸レンズ等を組み合わせたものであり、
レンズ設計が極めて複雑で、研摩面数が多くて加工上の
精度向上が図り難く、高価でもある。しかも、透光性の
良好な材質を選択しなければならないという材質面から
の制約もある。
Conventional Technologies and Issues In general, light beam scanning optical systems used in laser beam printers and facsimile machines basically consist of a semiconductor laser as a light source, a polygon mirror, and a galvano mirror.
It is composed of a deflector such as, and an fθ lens. A deflector scans the light beam emitted from a semiconductor laser at a constant angular velocity, and if left as is, there will be a difference in scanning speed from the center in the main scanning direction to both ends of the light condensing surface, making it impossible to obtain a uniform image. . The fθ lens is installed to correct such a difference in scanning speed. However, the rθ lens is a combination of various concave lenses, convex lenses, etc.
The lens design is extremely complicated, and the number of polished surfaces is large, making it difficult to improve processing precision, and it is also expensive. Moreover, there are also constraints from the material standpoint, such as the need to select a material with good translucency.

そのため、最近では、fθレンズに代えて、楕円面ミラ
ー、放物面ミラー、凹面反射鏡を使用することが提案さ
れている。しかしながら、この種のミラーでは加工自体
及び加工精度を上げることが困難であるという問題点を
有している。
Therefore, recently, it has been proposed to use an ellipsoidal mirror, a parabolic mirror, or a concave reflecting mirror in place of the fθ lens. However, this type of mirror has a problem in that it is difficult to improve the processing itself and the processing accuracy.

以上の点に鑑み、本出願人は、高価で制約の多いfθレ
ンズや従来提案された放物面ミラー等に代えて、より加
工が容易で加工精度を高めることができる球面ミラーを
採用し、光学系のコンパクト化を図り、なおかつ集光点
での光束の主走査方向に垂直な像面の湾曲を小さくする
と共に、偏向器の面倒れ誤差を補正することのできる光
学系を提案した(特開平1−200219号公報、同1
−200221号公報等参照)。しかし、この光学系で
も主走査方向の像面性と歪曲収差の補正は必ずしも満足
すべきものではなく、例えば、歪曲収差の補正に重点を
置くと主走査方向の像面性が悪化し、結果的に主走査方
向の収差補正が不十分であるという問題点を有している
In view of the above points, the present applicant has adopted a spherical mirror that is easier to process and can improve processing accuracy, instead of the expensive and restrictive f-theta lens and the conventionally proposed parabolic mirror. We have proposed an optical system that can be made more compact, reduce the curvature of the image plane perpendicular to the main scanning direction of the light beam at the condensing point, and correct the surface tilt error of the deflector. Publication No. 1-200219, 1
-Refer to Publication No. 200221, etc.). However, even with this optical system, the image plane properties in the main scanning direction and the correction of distortion aberration are not necessarily satisfactory. For example, if emphasis is placed on correcting distortion aberrations, the image plane properties in the main scanning direction deteriorate, resulting in Another problem is that aberration correction in the main scanning direction is insufficient.

課題を解決するための手段 以上の課題を解決するため、本発明に係る光ビーム走査
光学系は、 (a)強度変調された光束を発生する光源と、(b)前
記光源から放射された光束を走査方向と同一平面の直線
状に収束させる手段と、(C)集光線付近に置かれ、前
記収束光束を等角速度で走査する偏向器と、 (d)前記偏向器で走査された光束を折り返して走査媒
体上に集光きせる球面ミラーと、(e)前記偏向器と球
面ミラーとの間に配置され、入射面と射出面のいずれか
一方がトロイダル面を有し、走査面内において入射面の
曲率半径の中心と射出面の曲率半径の中心とが一致しな
いレンズとを備え、 (f)以下の式を満足すること、 0.6<(lR1I+d)/ IRzl<1.3但し、
R2:レンズの入射側主走査方向面内の曲率半径 R1:レンズの射出側主走査方向面 内の曲率半径 d:偏向器による走査域中心方向 への光束反射点から球面ミラ ーまでの距離 を特徴とする。
Means for Solving the Problems In order to solve the above problems, a light beam scanning optical system according to the present invention includes: (a) a light source that generates an intensity-modulated light beam; and (b) a light beam emitted from the light source. (C) a deflector placed near the condensing line and scanning the converged light beam at a constant angular velocity; (d) a means for converging the light beam scanned by the deflector into a straight line on the same plane as the scanning direction; (e) a spherical mirror that can be folded back to condense light onto the scanning medium; It is equipped with a lens in which the center of the radius of curvature of the surface and the center of the radius of curvature of the exit surface do not coincide, and (f) the following formula is satisfied: 0.6<(lR1I+d)/IRzl<1.3However,
R2: Radius of curvature in the main scanning direction plane on the entrance side of the lens R1: Radius of curvature in the main scanning direction plane on the exit side of the lens d: Characterized by the distance from the point where the light beam is reflected toward the center of the scanning area by the deflector to the spherical mirror shall be.

ここで、トロイダル面とは、二つの主経線がそれぞれ異
なった曲率中心を有する面をいう。レンズの他の面は球
面、平面又はシリンドリカル面等のいずれでもよい。
Here, the toroidal surface refers to a surface whose two principal meridians have different centers of curvature. The other surfaces of the lens may be spherical, flat, or cylindrical.

作用 以上の構成において、光源から放射きれた光束は偏向器
によって等角速度に走査され、この走査光束はレンズを
通過した後、球面ミラーで反射され、走査媒体上に集光
する。前記偏向器による主走査及び走査媒体の移動によ
る副走査で画像が形成される。そして、球面ミラーによ
る反射光束は主走査方向に対する走査速度を走査域中心
からその両端部にわたって均等となる様に補正され、か
つ、集光面においては広画角にわたって良好な歪曲特性
と、良好な像面平坦性が得られる。
Effect In the above configuration, the light beam emitted from the light source is scanned at a constant angular velocity by the deflector, and after passing through the lens, this scanning light beam is reflected by the spherical mirror and focused onto the scanning medium. An image is formed by main scanning by the deflector and sub-scanning by moving the scanning medium. The light beam reflected by the spherical mirror is corrected so that the scanning speed in the main scanning direction is equalized from the center of the scanning area to both ends thereof, and the condensing surface has good distortion characteristics over a wide angle of view. Image plane flatness can be obtained.

また、光源から放射された光束は走査方向(偏向面内)
に直線状に収束されて偏向器に入射される。そして、レ
ンズのトロイダル面は偏向器で走査された光束を感光体
面上へ集光許せ、偏向器の面倒れによる誤差を補正する
と共に、副走査方向の像面湾曲を補正する。
Also, the light flux emitted from the light source is in the scanning direction (in the deflection plane)
The light is converged into a straight line and incident on the deflector. The toroidal surface of the lens allows the light beam scanned by the deflector to be focused onto the photoreceptor surface, correcting errors due to surface tilt of the deflector, and correcting field curvature in the sub-scanning direction.

さらに、走査面内においてレンズの入射面の曲率半径の
中心と射出面の曲率半径の中心とをずらすことにより、
像面湾曲、歪曲収差の主走査方向の非対称性が是正され
る。
Furthermore, by shifting the center of the radius of curvature of the entrance surface of the lens and the center of the radius of curvature of the exit surface within the scanning plane,
Asymmetry in the main scanning direction of field curvature and distortion is corrected.

尖蓋忽 以下、本発明に係る光ビーム走査光学系の実施例につき
、添付図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a light beam scanning optical system according to the present invention will be described with reference to the accompanying drawings.

第1図において、(1)は半導体レーザ、(6)はコリ
メータレンズ、(7)はシリンドリカルレンズ′、(1
0)はポリゴンミラー、(15)はトーリックレンズ、
(25)はビームスプリッタ、(20)は球面ミラー(
30)はドラム状の感光体である。
In Figure 1, (1) is a semiconductor laser, (6) is a collimator lens, (7) is a cylindrical lens', and (1) is a collimator lens.
0) is a polygon mirror, (15) is a toric lens,
(25) is a beam splitter, (20) is a spherical mirror (
30) is a drum-shaped photoreceptor.

半導体レーザ(1)は図示しない制御回路によって強度
変調(オン、オフ)され画像情報を乗せた発散光束を放
射する。この発散光束はコリメータレンズ(6)を通過
することにより収束光束に修正きれる。さらに、この収
束光束はシリンドリカルレンズ(7)を通過することに
より走査方向に、即ち、以下のポリゴンミラー(10)
の反射面付近に(偏向面内の)直線状に収束きれる。ポ
リゴンミラー(10)は図示しないモータにて支軸(1
1)を中心に矢印(8)方向に一定速度で回転駆動され
る。従って、シリンドリカルレンズ(7)から射出きれ
た収束光束は、ポリゴンミラー(10)の面で連続的に
反射きれ、等角速度で走査きれる。この走査光束はトー
リックレンズ(15)、ビームスプリッタ(25)を透
過した後、球面ミラー(20)の凹面側にて反射きれ、
さらに、ビームスプリッタ(25)で反射された後感光
体(30)上に集光される。このときの集光光束は感光
体(30)の軸方向に等速で走査され、これを主走査と
称する。また、感光体(30)は矢印(b)方向に一定
速度で回転駆動きれ、この回転による走査を副走査と称
する。
The semiconductor laser (1) is intensity-modulated (turned on and off) by a control circuit (not shown) and emits a divergent beam carrying image information. This divergent light beam can be corrected into a convergent light beam by passing through a collimator lens (6). Furthermore, this convergent light beam passes through a cylindrical lens (7) in the scanning direction, that is, the following polygon mirror (10).
It can be converged in a straight line (within the deflection plane) near the reflecting surface. The polygon mirror (10) is rotated by a spindle (1) by a motor (not shown).
1) is rotated at a constant speed in the direction of arrow (8). Therefore, the convergent light beam completely emitted from the cylindrical lens (7) is continuously reflected on the surface of the polygon mirror (10) and can be scanned at a constant angular velocity. After this scanning light beam passes through the toric lens (15) and the beam splitter (25), it is reflected on the concave side of the spherical mirror (20).
Furthermore, after being reflected by a beam splitter (25), the light is focused onto a photoreceptor (30). The condensed light beam at this time is scanned at a constant speed in the axial direction of the photoreceptor (30), and this is called main scanning. Further, the photoreceptor (30) can be rotated at a constant speed in the direction of arrow (b), and scanning by this rotation is called sub-scanning.

ここで、トーリックレンズ(15)とは、入射側又は射
出側のいずれか一方の面がトロイダル面で他方の面が球
面、平面又はシリンドリカル面であるレンズをいう。ト
ロイダル面とは二つの主経線がそれぞれ異なった曲率中
心を有する面をいう。第2図、第3図は、入射側の面が
球面、射出側の面がトロイダル面を有するトーリックレ
ンズ(15)を示す。トーリックレンズ(15)の構成
は任意であり、第4図は入射側の面がトロイダル面、射
出側の面が球面を有するトーリックレンズ(15)を組
み込んだ光学系を示す。第5図は入射側の面がトロイダ
ル面、射出側の面がシリンドリカル面を有するトーリッ
クレンズ(15)を組み込んだ光学系を示す。
Here, the toric lens (15) refers to a lens in which either the entrance side or the exit side is a toroidal surface and the other surface is a spherical, flat, or cylindrical surface. A toroidal surface is a surface whose two principal meridians have different centers of curvature. FIGS. 2 and 3 show a toric lens (15) having a spherical surface on the entrance side and a toroidal surface on the exit side. The structure of the toric lens (15) is arbitrary, and FIG. 4 shows an optical system incorporating a toric lens (15) having a toroidal surface on the entrance side and a spherical surface on the exit side. FIG. 5 shows an optical system incorporating a toric lens (15) having a toroidal surface on the entrance side and a cylindrical surface on the exit side.

第6図は入射側の面がシリンドリカル面、射出側の面が
トロイダル面を有するトーリックレンズ(15)を組み
込んだ光学系を示す。
FIG. 6 shows an optical system incorporating a toric lens (15) having a cylindrical surface on the entrance side and a toroidal surface on the exit side.

以上の構成からなる光ビーム走査光学系においては、半
導体レーザ(1)の強度変調と前記主走査、副走査とに
よって感光体(30)上に画像(静電潜像)が形成され
る。そして、球面ミラー(20)が従来のfθレンズに
代わって、トーリックレンズ(15)と共に主走査方向
に対する走査速度を走査域中心からその両端部にわたっ
て均等となるように(歪曲収差を)補正すると共に、感
光体り30)上での主走査方向の像面湾曲を補正する。
In the light beam scanning optical system having the above configuration, an image (electrostatic latent image) is formed on the photoreceptor (30) by the intensity modulation of the semiconductor laser (1) and the main scanning and sub-scanning. The spherical mirror (20) replaces the conventional f-theta lens and works with the toric lens (15) to correct (distortion aberration) so that the scanning speed in the main scanning direction is equal from the center of the scanning area to both ends thereof. , the curvature of field in the main scanning direction on the photoreceptor 30) is corrected.

また、ポリゴンミラー(10)からの反射光路中に設置
したトーリックレンズ(15)のトロイダル面は、ポリ
ゴンミラー(10)の面倒れ誤差を補正すると共に、感
光体(30)上での副走査方向の像面湾曲を補正する。
In addition, the toroidal surface of the toric lens (15) installed in the reflected optical path from the polygon mirror (10) corrects the surface tilt error of the polygon mirror (10), and also Corrects the field curvature of

即ち、ポリゴンミラー(10)の各反射面相互に垂直度
の誤差が生じていると、感光体(30)上での走査線が
副走査方向にずれを生じ、画像にピッチむらが発生する
。この面倒れ誤差はポリゴンミラー(10)による偏向
面に垂直な断面においてポリゴンミラー(10)の各反
射面と感光体(30)の集光面とを共役関係に設定すれ
ば補正することができる。本実施例ではシリンドリカル
レンズ(7)によって光束をポリゴンミラー(10)に
集光スる一方、トーリックレンズ(15)のトロイダル
面によってポリゴンミラー(10)の各反射面と集光面
とが共役関係を保持するようにしている。一方、トーリ
ックレンズ(15)の他方の面(球面、シリンドリカル
面)は、主として主走査方向の像面湾曲を補正すると共
に、歪曲収差の補正を行なう。
That is, if there is an error in perpendicularity between the reflective surfaces of the polygon mirror (10), the scanning lines on the photoreceptor (30) will shift in the sub-scanning direction, causing pitch unevenness in the image. This surface tilt error can be corrected by setting each reflective surface of the polygon mirror (10) and the condensing surface of the photoreceptor (30) in a conjugate relationship in a cross section perpendicular to the deflection surface of the polygon mirror (10). . In this embodiment, the cylindrical lens (7) focuses the light beam onto the polygon mirror (10), while the toroidal surface of the toric lens (15) creates a conjugate relationship between each reflective surface of the polygon mirror (10) and the condensing surface. I try to keep it. On the other hand, the other surface (spherical surface, cylindrical surface) of the toric lens (15) mainly corrects field curvature in the main scanning direction, and also corrects distortion aberration.

さらに、トーリックレンズ(15)はポリゴンミラー(
10)による偏向面に垂直な断面の光束による像面を平
坦にする(副走査方向の像面湾曲を補正する)ため、偏
向面内における曲率半径を適切な値とし[以下の実験例
における(Rla)、 (Rlb)、 (R2a)。
Furthermore, the toric lens (15) is a polygon mirror (
10) In order to flatten the image plane (correct the field curvature in the sub-scanning direction) due to the light beam in the cross section perpendicular to the deflection plane, the radius of curvature in the deflection plane is set to an appropriate value [in the following experimental example ( Rla), (Rlb), (R2a).

(R2b)参照]、かつ、入射側の面と射出側の面とを
主走査方向に偏心[第2図中(Y)方向への(yt)。
(R2b)], and the entrance side surface and the exit side surface are eccentric in the main scanning direction [(yt) in the (Y) direction in FIG.

(Y、)の偏心コさせることが好ましい。この偏心によ
って、像面湾曲、歪曲収差が主走査方向の中心点から左
右に対称でない場合、左右のバランスを是正する。その
結果、全体的な湾曲、収差が低減する。同様の効果は、
球面ミラー(20)をも主走査方向に偏心[第2図中(
YM)の偏心]させることによっても達成きれる。偏心
量(y+)、 (yz)、(yM)の具体例は、以下の
実験例(I)〜(IX)に示す。
It is preferable to make (Y, ) eccentric. This eccentricity corrects the left-right balance when field curvature and distortion are not symmetrical left and right from the center point in the main scanning direction. As a result, overall curvature and aberration are reduced. A similar effect is
The spherical mirror (20) is also decentered in the main scanning direction [see Figure 2 (
This can also be achieved by eccentricity of YM). Specific examples of the eccentricity (y+), (yz), and (yM) are shown in Experimental Examples (I) to (IX) below.

また、本実施例ではコリメータレンズ(6)にて発散光
束を収束光束に修正している。これは収束光束とするこ
とによって感光体(30)上での集光点(結像面)での
湾曲を補正するためである。即ち、ポリゴンミラー(1
0)へ収束光束あるいは発散光束を入射させると(他の
回転偏向器でも同じであるが)、ポリゴンミラーク10
)での反射後の集光点は、ポリゴンミラー(10)の後
には光学部品がないとすると、その反射点を中心として
略円弧状となり、これを直線で受けると像面湾曲を生じ
ることになる。ポリゴンミラー(10)へ収束光束を入
射させると、光線入射方向に凹の像面湾曲を生じる。ま
た、入射光の収束具合によって、球面ミラー(20)と
像面との距離も変わる。この距離の変化によって像面湾
曲も変化する。即ち、収束光束による像面湾曲により、
球面ミラー(20)の凹面による湾曲を補正し、結果的
に集光面での像面湾曲を小キくシ、像面の平坦性を良好
なものとする。
Further, in this embodiment, the collimator lens (6) corrects the divergent light beam into a convergent light beam. This is to correct the curvature at the focal point (imaging surface) on the photoreceptor (30) by converging the light beam. That is, polygon mirror (1
When a convergent beam or a diverging beam is incident on the polygon mirror 10 (the same applies to other rotary deflectors), the polygon mirror 10
), assuming that there are no optical components after the polygon mirror (10), the focal point after reflection at the polygon mirror (10) will be approximately arc-shaped with the reflection point as the center, and if it is received in a straight line, curvature of field will occur. Become. When a convergent light beam is incident on the polygon mirror (10), a concave curvature of field occurs in the direction of the light beam incidence. Furthermore, the distance between the spherical mirror (20) and the image plane changes depending on the degree of convergence of the incident light. The curvature of field also changes with this change in distance. In other words, due to the curvature of field due to the convergent light beam,
The curvature due to the concave surface of the spherical mirror (20) is corrected, and as a result, the curvature of field at the condensing surface is reduced, and the flatness of the image surface is improved.

像面湾曲が小さくなると、走査位置(像高)の相違によ
る集光光束径の変動が小きくなり、光学系を広画角で使
用することができ、また集光光束径を小さくできるので
画像の高密度化が可能となる利点を有する。
When the curvature of field becomes smaller, fluctuations in the diameter of the condensed beam due to differences in scanning position (image height) become smaller, allowing the optical system to be used at a wide angle of view, and because the diameter of the condensed beam can be made smaller, the diameter of the condensed beam can be reduced. This has the advantage of allowing higher density.

さらに、本実施例につき、詳述すると、第2図に示すよ
うに、トーリックレンズ(15)と球面ミラー(20)
とがないときに偏向点(10a)からコリメータレンズ
(6)がビームを集光させる位置までの距離(物点)(
s)(図示せず)と球面ミラー(20)の曲率半径(R
M)との関係、ポリゴンミラー(10〉の偏向点(10
a)から球面ミラー(20)までの距11i(d)と前
記曲率半径(RM)との関係、及びトーリックレンズ(
15)の芯厚(dl)とレンズ入射面主走査方向曲率半
径(Rla)とレンズ射出面主走査方向曲率半径(R2
a)との関係については、それぞれ、(1s/R21)
〉0.4      ・・・・・・■0.1< (d/
 l RM I )<0.7       ・・・・・
・■0.6< (l Rla l +d+)/ l R
2a l <1.3 −■なる式を満足するのが望まし
い。
Furthermore, to explain this example in detail, as shown in FIG. 2, a toric lens (15) and a spherical mirror (20)
The distance (object point) from the deflection point (10a) to the position where the collimator lens (6) focuses the beam when there is no
s) (not shown) and the radius of curvature (R
M), the deflection point (10) of the polygon mirror (10)
The relationship between the distance 11i (d) from a) to the spherical mirror (20) and the radius of curvature (RM), and the toric lens (
15), the core thickness (dl), the radius of curvature of the lens entrance surface in the main scanning direction (Rla), and the radius of curvature of the lens exit surface in the main scanning direction (R2
Regarding the relationship with a), respectively, (1s/R21)
〉0.4 ・・・・・・■0.1< (d/
lRMI)<0.7...
・■0.6< (l Rla l +d+)/ l R
It is desirable to satisfy the following formula: 2a l <1.3 −■.

なお、第2図において、(d’)は球面ミラー(20)
から感光体(30)までの距離、(do)は偏向点(1
0a)からトーリックレンズ(15)の入射面までの距
離、(d、)はトーリックレンズ(15)の射出面から
球面ミラー(20)までの距離である。
In addition, in Fig. 2, (d') is a spherical mirror (20).
The distance from to the photoreceptor (30), (do) is the deflection point (1
0a) to the entrance surface of the toric lens (15), and (d,) is the distance from the exit surface of the toric lens (15) to the spherical mirror (20).

前記0式、0式、0式を満足すると、広画角にわたって
良好な歪曲特性と、良好な像面平坦性が得られる。各式
での下限及び上限は、感光体(30)上での画像歪みの
程度により経験上許容できる範囲として設定した値であ
る。
When the above formulas 0, 0, and 0 are satisfied, good distortion characteristics and good image plane flatness can be obtained over a wide angle of view. The lower and upper limits in each equation are values set as empirically acceptable ranges depending on the degree of image distortion on the photoreceptor (30).

前記0式の下限を越えると、像面が球面ミラー(20)
に近付き配置が困難となり、歪曲特性も悪くなる。
If the lower limit of the above formula 0 is exceeded, the image surface becomes a spherical mirror (20)
, the arrangement becomes difficult and the distortion characteristics deteriorate.

前記0式の下限を越えると、走査角の増大に従って正の
歪曲が増大し、主走査方向の両端(走査開始付近及び走
査終了付近)で画像が伸びることとなる。また、前記0
式の上限を越えると、走査角の増大に従って負の歪曲が
増大し、主走査方向の両端で画像が縮むこととなり、き
らに像面湾曲が大きくなる。
When the lower limit of the above equation 0 is exceeded, positive distortion increases as the scanning angle increases, and the image becomes elongated at both ends in the main scanning direction (near the start of scanning and near the end of scanning). In addition, the above 0
When the upper limit of the equation is exceeded, negative distortion increases as the scanning angle increases, the image shrinks at both ends in the main scanning direction, and the curvature of field increases.

前記0式の下限及び上限を越えると、像面湾曲が大きく
なる。
When the lower and upper limits of the above equation 0 are exceeded, the curvature of field becomes large.

ここで、本実施例における実験例(I)、(I[)。Here, experimental examples (I) and (I[) in this example.

(1)、(It/ )、(v)、(VI)、(■)、(
■)、(IX)での構成データ及び特性データを示す。
(1), (It/ ), (v), (VI), (■), (
3) shows the configuration data and characteristic data of (IX).

[以下余 白] 以上(1)各実験例(I )、(I[)、(III)、
(IV)、(V)、(VI)。
[Left below] (1) Each experimental example (I), (I[), (III),
(IV), (V), (VI).

(■)、(■)、(IX)における感光体集光面での収
差をそれぞれ第7図、第8図、第9図、第10図、第1
1図、第12図、第13図、第14図、第15図に示す
。各図中(a)は、横軸を走査角度、縦軸を歪曲度(歪
曲収差)としたグラフである。各図中(b)は、横軸を
走査角度、縦軸を湾曲度としたグラフで、点線は偏向面
内の光束による像面湾曲(主走査方向の像面湾曲)を示
し、実線は偏向面に対する垂直面内の光束による像面湾
曲(副走査方向の像面湾曲)を示す。
The aberrations at the photoreceptor condensing surface in (■), (■), and (IX) are shown in Figures 7, 8, 9, 10, and 1, respectively.
1, FIG. 12, FIG. 13, FIG. 14, and FIG. 15. In each figure, (a) is a graph in which the horizontal axis is the scanning angle and the vertical axis is the degree of distortion (distortion aberration). In each figure, (b) is a graph in which the horizontal axis is the scanning angle and the vertical axis is the degree of curvature.The dotted line indicates the curvature of field due to the light beam in the deflection plane (curvature of field in the main scanning direction), and the solid line indicates the deflection angle. This shows the curvature of field (curvature of field in the sub-scanning direction) due to a light beam in a plane perpendicular to the surface.

なお、本発明に係る光ビーム走査光学系は以上の実施例
に限定するものではなく、その要旨の範囲内で種々に変
形することができる。
Note that the light beam scanning optical system according to the present invention is not limited to the above-described embodiments, and can be modified in various ways within the scope of the gist.

例えば、偏向器としては前記のポリゴンミラー(10)
以外に、光束を一平面に等角速度で走査可能なものであ
れば、種々のものを用いることができる。また、光源と
しては半導体レーザ以外に、他のレーザ発生手段や点光
源を用いてもよい。
For example, as a deflector, the polygon mirror (10) described above may be used.
In addition, various types can be used as long as they can scan the light beam in one plane at a constant angular velocity. Further, as the light source, other than a semiconductor laser, other laser generating means or a point light source may be used.

また、前記実施例ではコリメータレンズにより半導体レ
ーザから放射された発散光束を収束光束に修正している
が、単に略平行光束に修正するだけでもよい。
Further, in the embodiment described above, the diverging light beam emitted from the semiconductor laser is corrected into a convergent light beam by the collimator lens, but it is also possible to simply correct the diverging light beam into a substantially parallel light beam.

発明の効果 以上の説明で明らかなように、本発明によれば、偏向器
から感光体面への光路中に少なくとも一つのトロイダル
面を含むレンズと球面ミラーを介在させたため、偏向器
の各反射面の面倒れによる誤差を補正し、画像の副走査
方向のピッチむら、あるいは主走査方向での走査速度を
均等に補正できることは勿論、さらに走査面内において
前記レンズの入射面の曲率半径の中心と射出面の曲率半
径の中心とが一致しないように、かつ、前記0式を満足
するように配置したため、走査媒体上において広画角に
わたって歪曲収差及び主走査、副走査方向の像面性を良
好なものに補正できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, each reflective surface of the deflector is It goes without saying that it is possible to correct errors caused by surface tilt of the lens, and evenly correct pitch irregularities in the sub-scanning direction of the image or scanning speed in the main scanning direction. Because it is arranged so that the center of the radius of curvature of the exit surface does not coincide with the center of the radius of curvature and satisfies the above equation 0, distortion aberration and image surface properties in the main scanning and sub-scanning directions are improved over a wide angle of view on the scanning medium. It can be corrected to something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光学系の一実施例の概略構成を示
す斜視図、第2図は第1図に示した光学系の偏向面上で
の光路を模式的に説明するための図、第3図、第4図、
第5図、第6図は種々のトーリックレンズを使用した場
合の光学系の偏向面と直交する面上での光路を示すため
の図、第7図、第8図、第9図、第10図、第11図、
第12図、第13図、第14図、第15図は感光体上で
の像歪を示すグラフである。 (1)・・・半導体レーザ、(6)・・・コリメータレ
ンズ、(7)・・・シリンドリカルレンズ、(10)・
・・ポリゴンミラー、(15)・・・トーリックレンズ
、 (20)・・・球面ミラー、(25)・・・ビーム
スプリッタ、(30)・・・感光体。
FIG. 1 is a perspective view showing a schematic configuration of an embodiment of the optical system according to the present invention, and FIG. 2 is a diagram schematically illustrating the optical path on the deflection surface of the optical system shown in FIG. 1. , Figure 3, Figure 4,
Figures 5 and 6 are diagrams showing optical paths on a plane perpendicular to the deflection plane of the optical system when various toric lenses are used, Figures 7, 8, 9, and 10. Figure 11,
FIGS. 12, 13, 14, and 15 are graphs showing image distortion on the photoreceptor. (1)...Semiconductor laser, (6)...Collimator lens, (7)...Cylindrical lens, (10)...
... Polygon mirror, (15) ... Toric lens, (20) ... Spherical mirror, (25) ... Beam splitter, (30) ... Photoreceptor.

Claims (1)

【特許請求の範囲】 1、強度変調された光束を発生する光源と、前記光源か
ら放射された光束を走査方向と同一平面の直線状に収束
させる手段と、 集光線付近に置かれ、前記収束光束を等角速度で走査す
る偏向器と、 前記偏向器で走査された光束を折り返して走査媒体上に
集光させる球面ミラーと、 前記偏向器と球面ミラーとの間に配置され、入射面と射
出面のいずれか一方がトロイダル面を有し、走査面内に
おいて入射面の曲率半径の中心と射出面の曲率半径の中
心とが一致しないレンズとを備え、 0.6<(|R_1|+d)/|R_2|<1.3但し
、R_1:レンズの入射側主走査方向面内の曲率半径 R_2:レンズの射出側主走査方向面内の曲率半径 d:偏向器による走査域中心方向への光束反射点から球
面ミラーまでの距離 以上の条件式を満足すること、 を特徴とする光ビーム走査光学系。
[Scope of Claims] 1. A light source that generates an intensity-modulated light beam; a means for converging the light beam emitted from the light source into a straight line on the same plane as the scanning direction; a deflector that scans a light beam at a constant angular velocity; a spherical mirror that folds back the light beam scanned by the deflector and focuses it on a scanning medium; and a spherical mirror that is disposed between the deflector and the spherical mirror, and that is arranged between an incident surface and an exit surface. A lens having one of its surfaces has a toroidal surface, and the center of the radius of curvature of the entrance surface and the center of the radius of curvature of the exit surface do not coincide in the scanning plane, 0.6<(|R_1|+d) /|R_2|<1.3 However, R_1: Radius of curvature in the main scanning direction plane on the entrance side of the lens R_2: Radius of curvature d in the main scanning direction plane on the exit side of the lens: Luminous flux toward the center of the scanning area by the deflector A light beam scanning optical system characterized by satisfying a conditional expression that is greater than or equal to the distance from a reflection point to a spherical mirror.
JP2230203A 1990-08-30 1990-08-30 Light beam scanning optical system Pending JPH04110820A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2230203A JPH04110820A (en) 1990-08-30 1990-08-30 Light beam scanning optical system
US07/752,284 US5233457A (en) 1990-08-30 1991-08-29 Beam scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230203A JPH04110820A (en) 1990-08-30 1990-08-30 Light beam scanning optical system

Publications (1)

Publication Number Publication Date
JPH04110820A true JPH04110820A (en) 1992-04-13

Family

ID=16904194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230203A Pending JPH04110820A (en) 1990-08-30 1990-08-30 Light beam scanning optical system

Country Status (1)

Country Link
JP (1) JPH04110820A (en)

Similar Documents

Publication Publication Date Title
US6104522A (en) Optical scanning apparatus with controlled sag and ghost
JPH06265810A (en) Reflection type scanning optical system
JPH09243943A (en) Laser beam scanning optical device
JP3467193B2 (en) Refractive / reflective fθ optical element and scanning optical system
JPH0727125B2 (en) Optical scanning device
JP4227334B2 (en) Scanning optical system
JPH07199109A (en) Raster scanning system
JPH0364726A (en) Light beam scanning optical system
JP2000098288A (en) Optical scanning optical system and image forming device using the same
JPH0364727A (en) Light beam scanning optical system
JPH04194814A (en) Light beam scanning optical system
JPH06281872A (en) Optical system for scanning light beam
JP2643224B2 (en) Light beam scanning optical system
JP3003065B2 (en) Optical scanning device
JPH04141619A (en) Scanning optical system with surface tilt correcting function
JPH04245214A (en) Light beam scanning optical system
JPH0862492A (en) Scanning lens system
JPH04110818A (en) Light beam scanning optical system
JPH04110819A (en) Light beam scanning optical system
JPH04110820A (en) Light beam scanning optical system
JPH08248345A (en) Optical scanner
JP3132047B2 (en) Light beam scanning optical system
JPH01200220A (en) Light beam scanning optical system
JP3748715B2 (en) Scanning imaging lens
JPH10260371A (en) Scanning optical device