JPH04110709A - Method and device for measuring length by electron beam - Google Patents

Method and device for measuring length by electron beam

Info

Publication number
JPH04110709A
JPH04110709A JP23041990A JP23041990A JPH04110709A JP H04110709 A JPH04110709 A JP H04110709A JP 23041990 A JP23041990 A JP 23041990A JP 23041990 A JP23041990 A JP 23041990A JP H04110709 A JPH04110709 A JP H04110709A
Authority
JP
Japan
Prior art keywords
electron beam
electron
sample
pattern
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23041990A
Other languages
Japanese (ja)
Inventor
Hiroshi Nozue
野末 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23041990A priority Critical patent/JPH04110709A/en
Publication of JPH04110709A publication Critical patent/JPH04110709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the high accurate length measurement by irradiating a length measuring part on a sample with light, and heating there, and obtaining the pattern. CONSTITUTION:Electron beams 102 radiated from an electron gun part 101 and passed through an electron optical system 103 are condensed narrow to irradiate a wafer 111. At this stage, the beam 102 is scanned on a part to be measured of the wafer 111, and the secondary electron generated from a irradiated part is caught by a secondary electron detecting unit 108, and is processed by a control unit 109, and dimension thereof is obtained. Furthermore, the light 113 radiated from a light source 112 irradiates a pattern part on the wafer 111 to be measured, and heat there. Strength of this light 113 can be controlled by the control unit 109, and temperature of the pattern part is controlled by controlling the strength of the light 113. The signal having excellent S/N can be thereby obtained by heating the pattern part, and high accurate length measuring is performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子線によりパターンの寸法を正確、かつ再
現性良く測長する電子線測長方法及びその装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam length measurement method and apparatus for measuring the dimensions of a pattern accurately and with good reproducibility using an electron beam.

〔従来の技術〕[Conventional technology]

近年、半導体集積回路の高集積化が進むにつれ、半導体
検査装置に関しても高信頼性が追求されている。半導体
回路の高集積化については、超LSIなどと呼ばれてい
る高密度記憶回路装置が微細加工技術の進歩により開発
されつつあるが、この装置をより低価格で生産するため
、即ち歩留り向上及び工期短縮のため、製造工程中での
検査、特にパターン寸法測長か微細化に伴ってより重要
となってきている。
In recent years, as semiconductor integrated circuits have become more highly integrated, higher reliability has been sought for semiconductor inspection equipment. With regard to higher integration of semiconductor circuits, high-density memory circuit devices called VLSIs are being developed due to advances in microfabrication technology. In order to shorten the construction period, inspection during the manufacturing process, especially pattern dimension measurement, is becoming more important as miniaturization progresses.

他方、高品質化においては、集積回路のパターン寸法が
より高精度なものを得るため、高精度寸法測長が必要で
ある。
On the other hand, in order to obtain higher quality integrated circuit pattern dimensions, highly accurate dimension measurement is required.

第6図は従来の電子線測長装置を示す模式図である。FIG. 6 is a schematic diagram showing a conventional electron beam length measuring device.

図に示すように、従来の装置は、防雪台107と、防雪
台107上に設置され、真空ポンプ105及び106に
よって真空引きされる真空鏡体部100E、真空鏡体部
100内に設置された電子光学系103と、ステージ系
104を制御する制御部109と、測長部パターンを表
示するCRTIIOとより構成される。ステージ系10
4は、Z方向に垂直な面内での回転方向及びXY力方向
移動可能で、その上には測長を必要とするウェハー11
1が保持されている。電子銃部101より出射し、電子
光学系103 を通過した電子ビーム+02は、ウェハ
ーIll上に細く絞られ照射される。
As shown in the figure, the conventional device includes a snow protection stand 107, a vacuum mirror unit 100E installed on the snow protection stand 107 and evacuated by vacuum pumps 105 and 106, and a vacuum mirror unit 100E installed inside the vacuum mirror unit 100. It is composed of an electron optical system 103, a control section 109 that controls the stage system 104, and a CRTIIO that displays the length measurement section pattern. Stage series 10
4 is movable in the rotational direction and in the XY force direction within a plane perpendicular to the Z direction, and above it is a wafer 11 that requires length measurement.
1 is retained. The electron beam +02 emitted from the electron gun section 101 and passed through the electron optical system 103 is narrowly focused and irradiated onto the wafer Ill.

このとき、電子ビーム102はウェハーIll上の測長
部で走査され、これにより照射部より発生した二次電子
は、二次電子検出器108によって捕集され、得られた
信号は制御部109で処理され寸法が求まる。
At this time, the electron beam 102 is scanned by the length measurement section on the wafer Ill, and the secondary electrons generated from the irradiation section are collected by the secondary electron detector 108, and the obtained signal is sent to the control section 109. Processed and dimensions determined.

第7図はウェハーの測長部と電子ビームとの位置関係を
示した断面図であり、第8図は二次電子信号波形図であ
る。電子ビーム102によりウェハー111上のパター
ン1llaを走査するにあたっては、1回の走査だけで
は得られる信号波形のS/Nが悪く信頼性に欠けるため
、通常同一箇所を複数回2〜100回走査する。得られ
た信号波形305がら種々のアルゴリズムによってパタ
ーン寸法Sが計算される。
FIG. 7 is a sectional view showing the positional relationship between the length measuring section of the wafer and the electron beam, and FIG. 8 is a secondary electron signal waveform diagram. When scanning the pattern 1lla on the wafer 111 with the electron beam 102, the S/N ratio of the signal waveform obtained by only one scan is poor and reliability is poor, so the same spot is usually scanned multiple times from 2 to 100 times. . The pattern size S is calculated from the obtained signal waveform 305 using various algorithms.

〔発明が解決しようとする課題] 上述した従来の電子線測長装置は二次電子を検出し、そ
の波形をもとにパターン寸法を計算するが、信号波形の
S/Nが悪いと測長精度が悪く、S/Nを向上させるに
は、同一箇所を繰り返し電子ビームで走査する必要があ
る。ところが、測長部に繰り返し電子ビームが照射され
ると、チャージアップの影響が大きくなり、測長精度が
悪くなるばかりでなく、パターンにダメージを与えてし
まい、パターンが変形したり、デバイスの特性が劣化し
てしまう。また、ビーム照射部にコンタミネーションを
付着してしまうという問題がある。
[Problems to be Solved by the Invention] The conventional electron beam length measurement device described above detects secondary electrons and calculates pattern dimensions based on the waveform, but if the S/N of the signal waveform is poor, the length measurement The accuracy is poor, and in order to improve the S/N ratio, it is necessary to repeatedly scan the same location with an electron beam. However, if the length measuring section is repeatedly irradiated with an electron beam, the effect of charge-up becomes large, which not only deteriorates the length measurement accuracy but also damages the pattern, deforming the pattern, or changing the characteristics of the device. will deteriorate. Further, there is a problem in that contamination adheres to the beam irradiation section.

本発明の目的は試料上での電子線走査回数を減らしてチ
ャージアップの影響をなくし、かつパターンやデバイス
のダメージをなくし、さらにコンタミネーションの付着
を防止した電子線測長方法及びその装置を提供すること
にある。
The purpose of the present invention is to provide an electron beam length measurement method and apparatus that reduces the number of electron beam scans on a sample, eliminates the effects of charge-up, eliminates damage to patterns and devices, and prevents contamination. It's about doing.

[課題を解決するための手段] 前記目的を達成するため、本発明に係る電子線測長方法
においては、電子線を試料上に集束・走査し、前記試料
上に形成されたパターンの寸法を測長する電子線測長方
法であって、 前記試料上測長部に光を照射、加熱し、前記パターンの
寸法を求めるものである。
[Means for Solving the Problems] In order to achieve the above object, in the electron beam length measurement method according to the present invention, an electron beam is focused and scanned on a sample, and the dimensions of a pattern formed on the sample are measured. This is an electron beam length measurement method for measuring length, in which the length measurement section on the sample is irradiated with light and heated to determine the dimension of the pattern.

また、本発明に係る電子線測長装置においては、電子光
学系と、二次電子検出器と、光源とを有し、電子線を試
料上に集束・走査し、前記試料上に形成されたパターン
の寸法を測定する電子線測長装置であって、 電子光学系は、真空雰囲気中で試料上に電子線を集束・
走査するものであり、 二次電子検出器は、電子線により試料から発生した二次
電子を捕集・検出するものであり、光源は、試料上の測
長部に光を照射し、加熱するものである。
Further, the electron beam length measuring device according to the present invention includes an electron optical system, a secondary electron detector, and a light source, and focuses and scans an electron beam on a sample to form a This is an electron beam length measurement device that measures the dimensions of a pattern, and the electron optical system focuses and focuses an electron beam onto a sample in a vacuum atmosphere.
The secondary electron detector collects and detects secondary electrons generated from the sample using an electron beam, and the light source irradiates light onto the length measurement section on the sample to heat it. It is something.

[作用] 試料(ウェハー)上の測長部が光照射により加熱される
。これにより、二次電子の発生効率が向上されるととも
に、二次電子信号波形のS/Nが向上される。
[Function] The length measuring section on the sample (wafer) is heated by light irradiation. This improves the efficiency of secondary electron generation and improves the S/N of the secondary electron signal waveform.

[実施例] 以下、本発明の実施例を図により説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) 第1図は、本発明の実施例1を示す模式断面図である。(Example 1) FIG. 1 is a schematic cross-sectional view showing Example 1 of the present invention.

図において、本発明に係る装置は、防雪台107と、防
雪台107上に設置され、真空ポンプ+05及び106
により真空引きされる真空鏡体部100と、真空鏡体部
100内に設置された電子光学系103と、ステージ系
104を制御する制御部109と、測長部パターンを表
示するCRT +10とを有する。ステージ系104は
、Z方向に垂直な面内での回転方向及びXY力方向移動
可能で、その上には測長を必要とするウェハー111が
保持されている。電子銃部101より出射し、電子光学
系103を通過した電子ビーム102は、ウェハー11
1上に細く絞られ照射される。このとき、電子ビーム1
02はウェハー111上の測長部で走査され、これによ
り照射部より発生した二次電子は、二次電子検出器+0
8によって捕集され、得られた信号は制御部109で処
理され寸法が求まる。
In the figure, the device according to the present invention is installed on a snow protection stand 107 and a vacuum pump +05 and 106.
A vacuum mirror body 100 that is evacuated by the vacuum mirror body 100, an electron optical system 103 installed in the vacuum mirror body 100, a control unit 109 that controls the stage system 104, and a CRT +10 that displays the length measurement pattern. have The stage system 104 is movable in the rotation direction and the XY force direction within a plane perpendicular to the Z direction, and holds thereon a wafer 111 that requires length measurement. The electron beam 102 emitted from the electron gun section 101 and passed through the electron optical system 103 is directed to the wafer 11.
1 and is narrowly focused and irradiated. At this time, electron beam 1
02 is scanned by the length measuring section on the wafer 111, and the secondary electrons generated from the irradiation section are detected by the secondary electron detector +0
8, and the obtained signal is processed by a control unit 109 to determine the dimensions.

さらに本発明では光源112を装備している。光源11
2を出射した光113は、ウェハーIII上の測長すべ
きパターン部を照射し、これを加熱する。光113の強
度は、制御部109から制御することが可能で、強度を
制御することにより、パターン部の温度は制御される。
Furthermore, the present invention is equipped with a light source 112. light source 11
The light 113 emitted from the wafer 2 irradiates the pattern portion to be measured on the wafer III and heats it. The intensity of the light 113 can be controlled from the control section 109, and by controlling the intensity, the temperature of the pattern section is controlled.

第2図は本発明の詳細な説明するための照射電子ビーム
の加速電圧と、照射部からの二次電子発生効率δとの関
係を定性的に示した図である。
FIG. 2 is a diagram qualitatively showing the relationship between the accelerating voltage of the irradiation electron beam and the secondary electron generation efficiency δ from the irradiation part, for explaining the present invention in detail.

二次電子発生効率δは、発生する二次電子数と照射電子
数との比で、δ〉1のとき、照射電子数よりも発生する
二次電子数の方が多い。δが大きいほど、二次電子発生
効率が高く、S/Nの良い信号が得られる。曲線201
は室温(23℃)において、また曲線202はパターン
部を約110℃に加熱した場合のものである。加熱する
ことにより、二次電子の放出効率δは向上する。ただし
、加熱温度を高くし過ぎると、パターン部から熱電子や
光が発生し、二次電子のコントラストを低下してしまっ
たり、またレジストパターン等ではパターンが変形して
しまうので、加熱温度としては、室温〜150℃が適当
である。
The secondary electron generation efficiency δ is the ratio between the number of secondary electrons generated and the number of irradiated electrons, and when δ>1, the number of secondary electrons generated is greater than the number of irradiated electrons. The larger δ is, the higher the secondary electron generation efficiency is, and a signal with a better S/N ratio can be obtained. curve 201
is at room temperature (23°C), and curve 202 is when the pattern portion is heated to about 110°C. By heating, the secondary electron emission efficiency δ is improved. However, if the heating temperature is too high, thermoelectrons and light will be generated from the pattern part, reducing the contrast of secondary electrons, and resist patterns will be deformed, so the heating temperature should not be set too high. , room temperature to 150°C.

このようにしてパターン部を110℃に加熱したときの
パターン断面部を第3図に、二次電子信号波形を第4図
に示す。パターン部を加熱することにより、S/Nの良
い信号が得られ電子ビームの走査回数を減らすことが可
能である。また、パターン部を加熱することにより、1
00回以上走査を繰り返してもコンタミネーションがほ
とんど付着しないというメリットがある。
FIG. 3 shows a cross section of the pattern when the pattern portion is heated to 110° C. in this manner, and FIG. 4 shows a secondary electron signal waveform. By heating the pattern portion, it is possible to obtain a signal with a good S/N ratio and to reduce the number of times the electron beam is scanned. In addition, by heating the pattern part, 1
It has the advantage that almost no contamination adheres even if scanning is repeated 00 times or more.

(実施例2) 第5図は本発明の実施例2を示す模式断面図である。(Example 2) FIG. 5 is a schematic sectional view showing Example 2 of the present invention.

本実施例は、光源112に別の光源+14を付加するこ
とにより、パターン部をより短時間に、かつ均一に加熱
するようにしたものである。光源114は照射位置可変
で、光源112で測長部を、光71)itl14で次の
測長部を加熱する方法を用いても良い。さらに、照射範
囲を適当に調整することにより、ごく狭い領域からより
広い領域(11Lmφ以下〜ウェハー全面)まで照射す
ることが可能である。
In this embodiment, by adding another light source +14 to the light source 112, the pattern portion can be heated more uniformly in a shorter time. The light source 114 may have a variable irradiation position, and a method may be used in which the light source 112 heats the length measuring section and the light 71) itl 14 heats the next length measuring section. Furthermore, by appropriately adjusting the irradiation range, it is possible to irradiate from a very narrow area to a wider area (11 Lmφ or less to the entire wafer surface).

また、光源はより多く取り付け、さらに効率を上げるこ
とも可能である。光源としては、ウェハーを加熱するた
めに約200〜1l100n程度の範囲内の波長の光を
発生する赤外線ランプ、紫外線ランプ、He−Neレー
ザ、 YAGレーザ、C03レーザ等が使用可能である
が、特に限定されるものではない。
It is also possible to install more light sources to further increase efficiency. As a light source, infrared lamps, ultraviolet lamps, He-Ne lasers, YAG lasers, C03 lasers, etc. that generate light with wavelengths in the range of about 200 to 1l100n can be used to heat the wafer, but in particular It is not limited.

[発明の効果] 以上説明したように本発明の電子線測長方法は、試料上
測長部に200〜1]00nm範囲内の波長を有する光
を照射し、室温〜150℃の範囲内で設定した温度に加
熱するため、試料上での電子線収束・走査時に、二次電
子の発生効率を向上し、二次電子信号波形のS/Nを向
上することができ、これによら試料上での電子線走査回
数を減少し、チャージアップの影響をなくし、パターン
やデバイスにダメージを与えることなく、かつコンタミ
ネーションの付着を防止して高精度の測長を行うことが
できるという効果がある。
[Effects of the Invention] As explained above, the electron beam length measurement method of the present invention irradiates the length measurement section on the sample with light having a wavelength in the range of 200 to 1]00 nm, and Because it is heated to a set temperature, it is possible to improve the generation efficiency of secondary electrons and improve the S/N of the secondary electron signal waveform when converging and scanning the electron beam on the sample. This has the effect of reducing the number of electron beam scans in the process, eliminating the effects of charge-up, preventing damage to patterns and devices, and preventing contamination, allowing highly accurate length measurements. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1を示す模式断面図、第2図は
二次電子発生効率図、第3図はパターン部を示す断面図
、第4図は波形図、第5図は本発明の実施例2を示す模
式断面図、第6図は従来例を示す模式断面図、第7図は
従来例におけるパターン部を示す断面図、第8図は波形
図である。 100・・・真空鏡体部   lot・・・電子銃部+
02303・・・電子ビーム  103・・・電子光学
系104・・・ステージ系   105.106・・・
真空ポンプ107・・・防震台      108・・
・二次電子検出器109・・・制御部     110
・・・CRTIII、301・・・ウェハー   11
2.114・・・光源113・・・光      20
1,202・・・二次電子発生効率302・・・パター
ン    304・・・二次電子信号第 図 ビーム 位置 第 4図 第 図 第 図 第8図
Fig. 1 is a schematic sectional view showing Example 1 of the present invention, Fig. 2 is a secondary electron generation efficiency diagram, Fig. 3 is a sectional view showing the pattern section, Fig. 4 is a waveform diagram, and Fig. 5 is a diagram of the present invention. FIG. 6 is a schematic sectional view showing a second embodiment of the invention, FIG. 6 is a schematic sectional view showing a conventional example, FIG. 7 is a sectional view showing a pattern portion in the conventional example, and FIG. 8 is a waveform diagram. 100...Vacuum mirror body part lot...Electron gun part+
02303... Electron beam 103... Electron optical system 104... Stage system 105.106...
Vacuum pump 107... Earthquake isolation stand 108...
・Secondary electron detector 109...control unit 110
...CRTIII, 301...Wafer 11
2.114...Light source 113...Light 20
1,202...Secondary electron generation efficiency 302...Pattern 304...Secondary electron signal (Fig. 4) Beam position (Fig. 4) (Fig. 8)

Claims (2)

【特許請求の範囲】[Claims] (1)電子線を試料上に集束・走査し、前記試料上に形
成されたパターンの寸法を測長する電子線測長方法であ
って、 前記試料上測長部に光を照射、加熱し、前記パターンの
寸法を求めることを特徴とする電子線測長方法。
(1) An electron beam length measurement method in which an electron beam is focused and scanned on a sample to measure the length of a pattern formed on the sample, the length measurement section on the sample being irradiated with light and heated. , an electron beam length measurement method characterized by determining the dimensions of the pattern.
(2)電子光学系と、二次電子検出器と、光源とを有し
、電子線を試料上に集束・走査し、前記試料上に形成さ
れたパターンの寸法を測定する電子線測長装置であって
、 電子光学系は、真空雰囲気中で試料上に電子線を集束・
走査するものであり、 二次電子検出器は、電子線により試料から発生した二次
電子を捕集・検出するものであり、光源は、試料上の測
長部に光を照射し、加熱するものであることを特徴とす
る電子線測長装置。
(2) An electron beam length measurement device that has an electron optical system, a secondary electron detector, and a light source, focuses and scans an electron beam on a sample, and measures the dimensions of a pattern formed on the sample. The electron optical system focuses and focuses an electron beam onto a sample in a vacuum atmosphere.
The secondary electron detector collects and detects secondary electrons generated from the sample using an electron beam, and the light source irradiates light onto the length measurement section on the sample to heat it. An electron beam length measuring device characterized in that:
JP23041990A 1990-08-31 1990-08-31 Method and device for measuring length by electron beam Pending JPH04110709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23041990A JPH04110709A (en) 1990-08-31 1990-08-31 Method and device for measuring length by electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23041990A JPH04110709A (en) 1990-08-31 1990-08-31 Method and device for measuring length by electron beam

Publications (1)

Publication Number Publication Date
JPH04110709A true JPH04110709A (en) 1992-04-13

Family

ID=16907596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23041990A Pending JPH04110709A (en) 1990-08-31 1990-08-31 Method and device for measuring length by electron beam

Country Status (1)

Country Link
JP (1) JPH04110709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019293B1 (en) 1997-04-09 2006-03-28 Nec Corporation Position detecting system and method
JP2007333585A (en) * 2006-06-15 2007-12-27 Shimadzu Corp Temperature measurement method in vacuum heating device, and the vacuum heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019293B1 (en) 1997-04-09 2006-03-28 Nec Corporation Position detecting system and method
JP2007333585A (en) * 2006-06-15 2007-12-27 Shimadzu Corp Temperature measurement method in vacuum heating device, and the vacuum heating device

Similar Documents

Publication Publication Date Title
JP4801903B2 (en) Method and apparatus for endpoint detection in etching using an electron beam
JP2003007613A (en) Method of acquiring exposure parameter, method of evaluating the exposure parameter, and method and system for charged particle beam exposure
US4857742A (en) Position detecting device using variable radiation
JP2001147113A (en) Pattern dimension measuring device and method
JPH04110709A (en) Method and device for measuring length by electron beam
US6998611B2 (en) Electron beam apparatus and device manufacturing method using same
US6992287B2 (en) Apparatus and method for image optimization of samples in a scanning electron microscope
JPH08313244A (en) Method of measuring thickness of thin film
US20040084619A1 (en) Method and an apparatus for determining the dimension of a feature by varying a resolution determining parameter
JPS58164135A (en) Semiconductor processing device using convergent ion beam
JP2000077019A (en) Electron microscope
US6665371B1 (en) Synchrotron radiation measurement apparatus, X-ray exposure apparatus, and device manufacturing method
US6396059B1 (en) Using a crystallographic etched silicon sample to measure and control the electron beam width of a SEM
JP2020056677A (en) Electron beam measuring device and electron beam measuring method
JP2000267259A (en) Photomask, exposing method and aligner
JP2001118537A (en) Beam-scanning inspection apparatus
JPH07286842A (en) Method and device for inspecting dimension
JP4299920B2 (en) Exposure apparatus and exposure beam calibration method
JP3368036B2 (en) Focused ion beam processing equipment
JP2002072456A (en) Reticle repair method, reticle obtain by the same and reticle repair device
JPH0982264A (en) Pattern inspection device and scanning electron microscope
JP2002334833A (en) System and method for charged particle beam exposure
JPH0682399A (en) Electron beam analyzing method and apparatus
JPH09245714A (en) Control method and focused ion beam device used therefor
JP2001349997A (en) Electron beam irradiation device and method