JPH04110189U - ionized water generator - Google Patents

ionized water generator

Info

Publication number
JPH04110189U
JPH04110189U JP2234691U JP2234691U JPH04110189U JP H04110189 U JPH04110189 U JP H04110189U JP 2234691 U JP2234691 U JP 2234691U JP 2234691 U JP2234691 U JP 2234691U JP H04110189 U JPH04110189 U JP H04110189U
Authority
JP
Japan
Prior art keywords
ionized water
water outlet
electrolytic
flow path
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2234691U
Other languages
Japanese (ja)
Inventor
光八 上村
一彦 中島
Original Assignee
大島 政雄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大島 政雄 filed Critical 大島 政雄
Priority to JP2234691U priority Critical patent/JPH04110189U/en
Publication of JPH04110189U publication Critical patent/JPH04110189U/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

(57)【要約】 【目的】 イオン水生成器の隔膜を省略して衛生的で長
寿命となす。 【構成】 隔膜を省略した電解槽の酸性イオン水取出口
とアルカリイオン水取出口の絞り量率に差を持たせるよ
うになす。
(57) [Summary] [Purpose] To omit the diaphragm of the ionized water generator to make it sanitary and have a long service life. [Structure] A difference is made between the throttling rate of the acidic ionized water outlet and the alkaline ionized water outlet of the electrolytic cell in which the diaphragm is omitted.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案はイオン水生成器の改良に関するものである。 The present invention relates to an improvement of an ionized water generator.

【0002】0002

【従来の技術】[Conventional technology]

従来、イオン水生成器は対設した電極の中央を不織布、素焼き板等の水の通過 を一部制限する隔膜で仕切り、両電極に電圧を印加することで水の通過を制限し つつイオンを電界の作用で該隔膜を通過させて夫々の電極に吸引して酸性イオン 水とアルカリイオン水とに電解するようになしている。 Conventionally, ionized water generators pass water through a material such as non-woven fabric or unglazed plate through the center of opposing electrodes. The passage of water is restricted by partitioning it with a diaphragm that partially restricts the water and applying voltage to both electrodes. The ions are then passed through the diaphragm by the action of an electric field and attracted to each electrode, producing acidic ions. It is designed to electrolyze water and alkaline ionized water.

【0003】0003

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかし、上記隔膜を使用したイオン水生成器の課題は、該隔膜に細菌・微生物 が付着繁茂する恐れを有し、さらには長期の使用によって該隔膜が絶縁物によっ て目詰まり発生し、電流の流れを遮断して電解効率を低下させることである。 However, the problem with ionized water generators using the above-mentioned diaphragm is that bacteria and microorganisms are present in the diaphragm. There is a risk that the diaphragm may adhere and grow, and furthermore, the diaphragm may become damaged by the insulator after long-term use. This causes clogging, which cuts off the flow of current and reduces electrolytic efficiency.

【0004】 すなわち、水で濡れる隔膜には大腸菌等の細菌等が棲息しやすく、また、上記 隔膜は電極に吸引されて陰極側向っては陽イオンが、陽極側に向っては陰イオン が通過することになるが、このイオンは水酸基イオンや水素イオンに限られるも のではなく、水に含まれるカルシュームイオン、マグネシュームイオン、珪素分 をも含み、珪素分はそれ自体絶縁物であるし、カルシュームイオン、マグネシュ ームイオンは隔膜に付着して炭酸カルシュームや炭酸カルシューム等の不溶性で 絶縁性の物質となって堆積するためである。0004 In other words, bacteria such as E. coli can easily live in the diaphragm that gets wet with water, and the above-mentioned The diaphragm is attracted to the electrode, with cations flowing towards the cathode and anions towards the anode. will pass through, but these ions are limited to hydroxyl ions and hydrogen ions. Calcium ions, magnesium ions, and silicon content contained in water. The silicon content is itself an insulator, and calcium ions and magnesium The bulk ions adhere to the diaphragm and are absorbed by insoluble calcium carbonate and calcium carbonate. This is because it becomes an insulating substance and is deposited.

【0005】 そこで、本考案は上記課題を解決するためになされたもので、隔膜を省略して 細菌・微生物の繁殖源を有さず、効率的な電解を長期間に渡って保証できるイオ ン水生成器を提供することを目的としたものである。[0005] Therefore, this invention was devised to solve the above problem, and the diaphragm was omitted. An ionizer that does not contain any breeding sources for bacteria or microorganisms and can guarantee efficient electrolysis over a long period of time. The purpose of this project is to provide a water generator for water production.

【0006】[0006]

【課題を解決するための手段】 上記の目的に沿い、先述実用新案登録請求の範囲を要旨とする本考案の構成は 前述課題を解決するために、一端側に原料水流入口2を有した電解槽1内に、一 対の平板状電極8,9をその中央に電解流路7aを形成して平行に収納し、該電 解槽1の他端側には上記電解流路7aの陽極平板状電極8側に連通する酸性イオ ン水取出口3と、電解流路7aの陰極平板状電極9側に連通するアルカリイオン 水取出口4とを設け、この酸性イオン水取出口3とアルカリイオン水取出口4と のいずれか一方または双方には、該酸性イオン水取出口3よりの流出量とアルカ リイオン水取出口4よりの流出量に差を持たせる流量絞り体51,52を設けて なる技術的手段を講じたものである。[Means to solve the problem] In line with the above purpose, the structure of the present invention, which has the gist of the above-mentioned utility model registration claims, is as follows: In order to solve the above-mentioned problem, an electrolytic cell 1 with a raw water inlet 2 at one end is installed. A pair of flat electrodes 8 and 9 are housed in parallel with an electrolytic flow path 7a formed in the center. At the other end of the tank 1, there is an acidic ion which communicates with the anode plate-like electrode 8 side of the electrolytic flow path 7a. The alkali ions that communicate with the water outlet 3 and the cathode flat plate electrode 9 side of the electrolytic flow path 7a A water outlet 4 is provided, and the acidic ionized water outlet 3 and the alkaline ionized water outlet 4 are provided. One or both of the above include the amount of outflow from the acidic ionized water outlet 3 and the amount of alkaline water. Flow restrictors 51 and 52 are provided to provide a difference in the amount of outflow from the ionized water outlet 4. This was achieved by taking technical measures.

【0007】[0007]

【作用】[Effect]

それ故、本考案は電解流路7aを通過する水は陽極平板状電極8と陰極平板状 電極9との間に発生する電界によって電解され、陽極平板状電極8側に酸性イオ ン水が、陰極平板状電極9側にアルカリイオン水が集まり、酸性イオン水取出口 3より酸性イオン水が、アルカリイオン水取出口4よりアルカリイオン水が流出 するのは従来と同じである。 Therefore, in the present invention, the water passing through the electrolytic flow path 7a is connected to the anode flat electrode 8 and the cathode flat electrode 8. It is electrolyzed by the electric field generated between the electrode 9 and acidic ions on the anode flat electrode 8 side. The alkaline ionized water gathers on the cathode flat plate electrode 9 side, and the acidic ionized water exits. Acidic ionized water flows out from 3 and alkaline ionized water flows out from alkaline ionized water outlet 4. This is the same as before.

【0008】 しかし、上記電界作用において従来必要とされた隔膜を本考案においては使用 していない。この隔膜の作用は水が乱流によって混合するのを防ぐ作用と、隔膜 によって仕切られた一方側と他方側との夫々が均一なPH値となる作用を呈する とされているが、必ずしもこの隔膜が存在しないと電解が生じないものではない ことも確かである。[0008] However, in the present invention, the diaphragm that was conventionally required for the electric field action described above is not used. I haven't. The function of this diaphragm is to prevent water from mixing due to turbulence, and to prevent water from mixing due to turbulence. One side and the other side partitioned by each have a uniform pH value. However, this does not necessarily mean that electrolysis cannot occur without this diaphragm. That is also true.

【0009】 そして、乱流による混入は、酸性イオン水とアルカリイオン水とのPH値を近 付け結果として、電解効率を低下させるものであるが、本考案者は、この混入に 一定の制御を加えれば、PH値の調整も不可能ではないとことに着目した。すな わち、アルカリイオン水を得る目的であればアルカリイオン水が酸性イオン水側 に混ざり込むように、酸性イオン水を得る目的の場合は逆に酸性イオン水がアル カリイオン水側に混ざり込むようになせば、所望のPH値のイオン水が得られる わけであり、この制御は酸性イオン水取出口3とアルカリイオン水取出口4とで 流出量に差を持たせることで実現できる。すなわち、流量絞り体51,52はこ の流出量を制御して電解水の混入を所定方向に偏らせる作用を呈する。[0009] Mixing due to turbulence causes the pH values of acidic ionized water and alkaline ionized water to be close to each other. As a result, the electrolytic efficiency decreases, but the inventor of the present invention We focused on the fact that it is not impossible to adjust the pH value if a certain amount of control is applied. sand In other words, if the purpose is to obtain alkaline ionized water, alkaline ionized water is on the acidic ionized side. Conversely, when the purpose is to obtain acidic ionized water, acidic ionized water becomes alkalized. By allowing it to mix into the potassium ionized water side, ionized water with the desired pH value can be obtained. Therefore, this control is performed by the acidic ionized water outlet 3 and the alkaline ionized water outlet 4. This can be achieved by creating a difference in the amount of outflow. That is, the flow restricting bodies 51 and 52 are It has the effect of controlling the outflow amount of electrolyzed water and biasing the mixing of electrolyzed water in a predetermined direction.

【0010】0010

【実施例】【Example】

次に、本考案の実施例を添付図面にしたがって説明する。 図中、1が電解槽で、この電解槽1は一端側に原料水流入口2を有した電解槽 1内に、一対の平板状電極8,9をその中央に電解流路7aを形成して平行に収 納し、該電解槽1の他端側には上記電解流路7aの陽極平板状電極8側に連通す る酸性イオン水取出口3と、電解流路7aの陰極平板状電極9側に連通するアル カリイオン水取出口4とを設けてなる従来公知なものより隔膜を省略したものが 使用できるが、本実施例では乱流の発生を極力回避すべく「図2」乃至「図4」 に示すごときものを使用している。 Next, embodiments of the present invention will be described with reference to the accompanying drawings. In the figure, 1 is an electrolytic cell, and this electrolytic cell 1 has a raw water inlet 2 at one end. 1, a pair of flat electrodes 8 and 9 are housed in parallel with an electrolytic flow path 7a formed in the center. The other end of the electrolytic cell 1 is connected to the anode flat electrode 8 side of the electrolytic flow path 7a. The acidic ionized water outlet 3 connected to the cathode flat plate electrode 9 side of the electrolytic flow path 7a This is a version that omits the diaphragm compared to the conventional version that has a potassium ion water outlet 4. However, in this example, in order to avoid the occurrence of turbulence as much as possible, "Fig. 2" to "Fig. 4" I am using something like the one shown below.

【0011】 すなわち、上記電解槽1は一方側容器部1aと他方側容器部1bとで薄手の縦 二分割容器状に構成してある。この一方側容器部1aと他方側容器部1bとは共 に合成樹脂等の防水材で構成されるのは無論であるが、望ましくは後述陽極平板 状電極8と陰極平板状電極9とを収納するため絶縁材で構成することが望ましい 。また、この一方側容器部1aと他方側容器部1bとは嵌合部にパッキン11を 介挿し締着螺子12,12,12・・・で相互を定着して気密性を有した薄手の 容器状となしてある。[0011] That is, the electrolytic cell 1 has a thin longitudinal structure with one side container part 1a and the other side container part 1b. It is constructed in the shape of a two-part container. The one side container portion 1a and the other side container portion 1b are the same. Of course, it is made of a waterproof material such as synthetic resin, but it is preferable to use an anode flat plate as described below. In order to accommodate the shaped electrode 8 and the cathode flat electrode 9, it is preferable to use an insulating material. . Moreover, the one side container part 1a and the other side container part 1b have a packing 11 in the fitting part. Thin, airtight seals that are secured to each other with interposed fastening screws 12, 12, 12... It is shaped like a container.

【0012】 そして、上記電解槽1の一端側に原料水流入口2を、他端側に酸性イオン水流 出口3とアルカリイオン水流出口4とを設けてある。すなわち、この電界槽1は 原料水流入口2より流入した水道水等の原料水は該電界槽1内を通って酸性イオ ン水流出口3とアルカリイオン水流出口4とから流出するようになしてある。0012 Then, a raw water inlet 2 is provided at one end of the electrolytic cell 1, and an acidic ion water flow is provided at the other end. An outlet 3 and an alkaline ionized water outlet 4 are provided. That is, this electric field chamber 1 is Raw water such as tap water that flows in from the raw water inlet 2 passes through the electric field tank 1 and collects acidic ions. The ionized water flows out from an ionized water outlet 3 and an alkaline ionized water outlet 4.

【0013】 また、上記電解槽1内の原料水流入口2が連通される部位より下流側部位には 、電解槽1内に全幅にわたって上記原料水流入口2の断面積より小さい断面積の スリット状狭窄流路10を形成する堰5を設け、この堰5より上流部位に該スリ ット状狭窄流路10と同じ幅を有した所定容量のタンク室6を設けてある。本願 において電解槽1の全幅とは「図2」、「図3」の左右方向の内法寸法で、した がって、スリット状狭窄流路10およびタンク室6の幅(同じく「図2」、「図 3」の左右方向の内法寸法)が共に電解槽1(正確には、後述電解流路7a)の 全幅の寸法を有することになる。[0013] In addition, there is a portion downstream of the portion where the raw water inlet 2 in the electrolytic cell 1 is communicated with. , with a cross-sectional area smaller than the cross-sectional area of the raw water inlet 2 over the entire width of the electrolytic cell 1. A weir 5 forming a slit-like constricted flow path 10 is provided, and the slit is located upstream of the weir 5. A tank chamber 6 having a predetermined capacity and having the same width as the narrowed channel 10 is provided. main application The total width of electrolytic cell 1 is the inner dimension in the left and right direction in "Figure 2" and "Figure 3". Therefore, the width of the slit-like constricted flow path 10 and the tank chamber 6 (also shown in "Fig. 2" and "Fig. 3") are both of the electrolytic cell 1 (more precisely, the electrolytic flow path 7a described later). It will have a full width dimension.

【0014】 そして、スリット状狭窄流路10のスリット間隙(「図4」の左右方向幅)は 、原料水流入口2の断面積(内径の断面積)より該スリット状狭窄流路10の断 面積が小さくなるように設定する。この断面積の相違は、スリット状狭窄流路1 0によって流路を狭窄することで、流入する原料水がタンク室6内全体に圧入し 、その後スリット状狭窄流路10を通過することで乱流のない層流を得るように なしている。[0014] The slit gap (width in the left-right direction in "Fig. 4") of the slit-like constricted flow path 10 is , the cross section of the slit-like constricted channel 10 is determined from the cross-sectional area (cross-sectional area of the inner diameter) of the raw water inlet 2. Set so that the area is small. This difference in cross-sectional area is due to the slit-like constriction channel 1 By narrowing the flow path with 0, the inflowing raw material water is forced into the entire tank chamber 6. , and then passes through the slit-like constricted flow path 10 to obtain a laminar flow without turbulence. I am doing it.

【0015】 なお、図示実施例では上記堰5の上流部位にも前段堰5aと、さらにその上流 部に前段タンク室6aを設け、水が堰5と前段堰5aとの二段を通過するように なしているが、この前段堰5aと前段タンク室6aとは省略してもよい。また、 上記堰5には「図3」に最も明らかに示すごとく、縦方向に整流突起13,13 ,13・・・を設けてあるが、この整流突起13,13,13・・・も省略可能 である。[0015] In the illustrated embodiment, there is also a pre-stage weir 5a in the upstream part of the weir 5, and further upstream of the weir 5a. A pre-stage tank chamber 6a is provided in the section so that water passes through two stages: the weir 5 and the pre-stage weir 5a. However, the front weir 5a and the front tank chamber 6a may be omitted. Also, As most clearly shown in FIG. , 13... are provided, but these rectifying protrusions 13, 13, 13... can also be omitted. It is.

【0016】 また、上記電解槽1内には、上記スリット状狭窄流路10より下流側に電解槽 室7を設け、この電解槽室7内に一対の平板状の陽極平板状電極8と陰極平板状 電極9とを、その中央に上記スリット状狭窄流路10を介してタンク室6に連通 する電解流路7aを形成して平行に対設収納してある。[0016] Further, in the electrolytic cell 1, an electrolytic cell is provided on the downstream side of the slit-like constricted flow path 10. A chamber 7 is provided in which a pair of flat anode electrodes 8 and a flat cathode electrode 8 are installed. The electrode 9 is connected to the tank chamber 6 through the slit-like constricted channel 10 at its center. The electrolytic channels 7a are formed and are housed parallel to each other.

【0017】 上記陽極平板状電極8と陰極平板状電極9との材質に関しては特に制約はない が、耐食性金属が使用されることは無論であり、陽極平板状電極8と陰極平板状 電極9との間には図示しない電源装置により所定の直流電圧が印加されるのは従 来と同じである。[0017] There are no particular restrictions on the materials of the anode flat electrode 8 and cathode flat electrode 9. However, it goes without saying that a corrosion-resistant metal is used, and the anode flat electrode 8 and the cathode flat electrode 8 are connected to each other. A predetermined DC voltage is applied between the electrode 9 by a power supply device (not shown). It's the same as before.

【0018】 また、上記スリット状狭窄流路10と、陽極平板状電極8と陰極平板状電極9 との間の電解流路7aとは、略同じ寸法となし、略同一平面上にあることが水の 流れに乱流を発生しずらいことからより実用的である。[0018] Further, the slit-like constricted flow path 10, the anode flat plate electrode 8 and the cathode flat plate electrode 9 are also included. The electrolytic flow path 7a between the It is more practical because it is less likely to cause turbulence in the flow.

【0019】 そして、上記酸性イオン水流出口3の上流端を電解流路7aの下流側で陽極平 板状電極8側に、アルカリイオン水流出口4の上流端を同じく電解流路7aの下 流側で陰極平板状電極9側に連通してなる。[0019] Then, the upstream end of the acidic ionized water outlet 3 is connected to the anode level on the downstream side of the electrolytic flow path 7a. Place the upstream end of the alkaline ionized water outlet 4 on the plate electrode 8 side under the electrolytic flow path 7a. The flow side communicates with the cathode flat electrode 9 side.

【0020】 すなわち、酸性イオン水流出口3はその上流端を電解流路7aの下流側で陽極 平板状電極8側に位置することで、陽極平板状電極8の表面に沿って流れ電解に より酸性イオン水化された水を流出させ、アルカリイオン水流出口4は上流端を 電解流路7aの下流側で陰極平板状電極9の表面に沿って流れ電解によりアルカ リイオン化された水を流出させるようになしている。[0020] That is, the acidic ion water outlet 3 has its upstream end connected to the anode on the downstream side of the electrolytic flow path 7a. By being located on the flat electrode 8 side, the anode flows along the surface of the flat electrode 8 and causes electrolysis. More acidic ionized water flows out, and the alkaline ionized water outlet 4 connects the upstream end to Alkaline flows along the surface of the cathode flat plate electrode 9 on the downstream side of the electrolytic flow path 7a and is electrolyzed. It allows ionized water to flow out.

【0021】 上記酸性イオン水流出口3とアルカリイオン水流出口4とはその断面積を陽極 平板状電極8と陰極平板状電極9との間の間隙で形成される電解流路7aの断面 積の2分の1以上に設定すればその上流部位で乱流が発生することはほとんどな いが、図示例では、電解流路7aの下流側に、この電解流路7aの陽極平板状電 極8側略半分に相当する衝突板14を設け、陽極平板状電極8の表面に沿って流 れてきた水はこの衝突板14に衝突し、陽極平板状電極8の下流側端と該衝突板 14との間に形成した折返し間隙18から折返し流路15内に流入し、この折返 し流路15の下流端に酸性イオン水流出口3を設けている。なお、この折返し流 路15は一方側容器部1aに膨出した膨出部16(第1図参照)内に形成して陽 極平板状電極8の裏面に沿って位置している。[0021] The acidic ionized water outlet 3 and alkaline ionized water outlet 4 have their cross-sectional areas as an anode. Cross section of the electrolytic flow path 7a formed by the gap between the flat plate electrode 8 and the cathode flat electrode 9 If the value is set to 1/2 or more of the product, turbulence will hardly occur in the upstream region. However, in the illustrated example, an anode flat electrode of the electrolytic flow path 7a is provided on the downstream side of the electrolytic flow path 7a. A collision plate 14 corresponding to approximately half of the pole 8 side is provided to allow the flow to flow along the surface of the anode flat electrode 8. The falling water collides with this collision plate 14, and the downstream end of the anode flat electrode 8 and the collision plate 14 and flows into the folded passage 15 through the folded gap 18 formed between the folded An acidic ion water outlet 3 is provided at the downstream end of the flow path 15. Note that this turning flow The channel 15 is formed in a bulge 16 (see FIG. 1) that bulges in the one side container portion 1a. It is located along the back surface of the extremely flat electrode 8.

【0022】 したがって、図示実施例では、酸性イオン水流出口3の上流部位で発生するお それのある乱流の影響を、酸性イオン水流出口3の位置を陽極平板状電極8の下 流端より距離を持たせることで回避している。[0022] Therefore, in the illustrated embodiment, the risk generated at the upstream portion of the acidic ionized water outlet 3 is To reduce the influence of turbulent flow, the acidic ion water outlet 3 is positioned below the anode flat electrode 8. This is avoided by keeping a distance from the flow end.

【0023】 さらに、図示例では陰極平板状電極9の表面に沿って流れてきた水は、そのま ま、衝突板14と他方側容器部1bとの間に形成された上部間隙19を通って直 進することになるが、電解流路7aの下流側には上部間隙19を介して該電解流 路7aに連通する所定の容量を有した下流側タンク室17を設け、上記アルカリ イオン水流出口4の上流端はこの下流側タンク室17に連通させている。[0023] Furthermore, in the illustrated example, the water flowing along the surface of the cathode flat electrode 9 remains as it is. However, it passes directly through the upper gap 19 formed between the collision plate 14 and the other side container part 1b. However, the electrolytic flow flows through the upper gap 19 on the downstream side of the electrolytic flow path 7a. A downstream tank chamber 17 having a predetermined capacity communicating with the passage 7a is provided, and the alkali The upstream end of the ionized water outlet 4 communicates with this downstream tank chamber 17.

【0024】 すなわち、上記下流側タンク室17は、アルカリイオン水流出口4と電解流路 7aとの間に介在されることになり、所定の容量を有することで局所的圧力変動 を均一化することができ、したがって、図示実施例では、アルカリイオン水流出 口4の上流部位で発生するおそれのある乱流の影響を、下流側タンク室17の圧 力変動均一化作用で回避している。[0024] That is, the downstream tank chamber 17 is connected to the alkaline ionized water outlet 4 and the electrolytic flow path. 7a, and has a predetermined capacity to prevent local pressure fluctuations. Therefore, in the illustrated example, the alkaline ionized water effluent can be homogenized. The influence of turbulence that may occur upstream of the port 4 is reduced by reducing the pressure in the downstream tank chamber 17. This is avoided by equalizing force fluctuations.

【0025】 そして、本考案は、酸性イオン水取出口3とアルカリイオン水取出口4とのい ずれか一方または双方には、該酸性イオン水取出口3よりの流出量とアルカリイ オン水取出口4よりの流出量に差を持たせる流量絞り体51,52を設けてなる 。[0025] In addition, the present invention provides a connection between the acidic ionized water outlet 3 and the alkaline ionized water outlet 4. One or both of them contain the amount of outflow from the acidic ionized water outlet 3 and the amount of alkaline water. Flow restrictors 51 and 52 are provided to provide a difference in the amount of outflow from the on-water outlet 4. .

【0026】 上記流量絞り体51,52は、固定絞り、可変絞りのいずれでもよく、「図1 」では固定絞り弁51a,52a、オリフィス51b,52b、可変絞り弁51 c,52cを示しているが、これらの一種を使用してもよく、さらには、オリフ ィス51b,52bに代え図示はしていないが管路を縮径したものを使用しても よいことは無論である。[0026] The flow rate restricting bodies 51 and 52 may be fixed or variable restrictors, and may be either fixed or variable restrictors. ", fixed throttle valves 51a, 52a, orifices 51b, 52b, variable throttle valve 51 c, 52c are shown, but one type of these may also be used. Although not shown in the drawings, instead of the pipes 51b and 52b, pipes with reduced diameter may be used. Of course it's a good thing.

【0027】[0027]

【考案の効果】[Effect of the idea]

本考案は上記のごときで、上記流量絞り体51,52は両者が同じ絞り割合で あると、原料水流入口2より流入した水は電解され、酸性イオン水流出口3とア ルカリイオン水流出口4とより1対1で流出するが、この場合は隔膜を省略した ことで電解イオン水の混入を完全には防止しえないため、効率のみが低下する。 しかし、酸性イオン水流出口3とアルカリイオン水流出口4とで絞り割合を変化 させると、電解されたイオン水はもっぱら一方側から他方側に混ざり込み、逆方 向への混入はほとんど回避できる。したがって、例えば、アルカリイオン水を得 たいとするならば、アルカリイオン水流出口4側をより多く絞って、アルカリイ オン水が酸性イオン水側に混入するように設定すれば、酸性イオン水が混入しな いアルカリイオン水がアルカリイオン水流出口4より流出することになり、隔膜 を省略しても支障のないイオン水生成器を提供することができるものである。 The present invention is as described above, and the flow restricting bodies 51 and 52 have the same restricting ratio. When there is, the water flowing in from the raw water inlet 2 is electrolyzed and flows through the acidic ion water outlet 3 and the Lucariion water flows out in a one-to-one ratio with the outflow port 4, but in this case, the diaphragm was omitted. As a result, the contamination of electrolyzed ionized water cannot be completely prevented, so only the efficiency decreases. However, the squeezing ratio changes between the acidic ionized water outlet 3 and the alkaline ionized water outlet 4. When the electrolyzed ionized water is mixed exclusively from one side to the other, it flows in the opposite direction. Most of the contamination in the opposite direction can be avoided. Therefore, for example, when obtaining alkaline ionized water, If you want to increase the amount of alkaline ion water, narrow down the alkaline ion water outlet 4 side more. If the settings are set so that the on-water is mixed into the acidic ionized water side, the acidic ionized water will not be mixed in. The alkaline ionized water flows out from the alkaline ionized water outlet 4, and the diaphragm It is possible to provide an ionized water generator that can be omitted without any problem.

【0028】 なお、一度電解したイオン水を他方側に混入させることは、結果としてその分 電解効率を低下させることになるが、隔膜を省略できたことは、衛生面および目 詰まりに依る効率低下の回避からして充分実用性を有し、さらに、特筆すべきは 、酸性イオン水流出口3とアルカリイオン水流出口4との一方側を他方側より多 く絞ると電解流路7a内において陽極平板状電極8側と陰極平板状電極9側とで 流速にも差が発生し、絞られた側は電界中に長く滞留してよりイオン化され、実 際的には電界効率の低下は無視できるものであった。[0028] In addition, mixing ionized water that has been electrolyzed into the other side will result in Although it reduces the electrolytic efficiency, eliminating the diaphragm is good for hygiene and eyesight. It has sufficient practicality in terms of avoiding efficiency loss due to clogging, and what is particularly noteworthy is that , one side of the acidic ionized water outlet 3 and the alkaline ionized water outlet 4 is made larger than the other side. When narrowed down, the anode flat electrode 8 side and the cathode flat electrode 9 side in the electrolytic flow path 7a. A difference also occurs in the flow velocity, and the narrowed side stays in the electric field for a longer time and becomes more ionized. In reality, the decrease in field efficiency was negligible.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案イオン水生成器の要部断面図である。FIG. 1 is a sectional view of essential parts of the ionized water generator of the present invention.

【図2】本考案イオン水生成器に使用される電解槽の詳
細正面図である。
FIG. 2 is a detailed front view of an electrolytic cell used in the ionized water generator of the present invention.

【図3】電解槽の他方側容器部1bの正面図である。FIG. 3 is a front view of the other side container portion 1b of the electrolytic cell.

【図4】A−A線断面図である。FIG. 4 is a cross-sectional view taken along line A-A.

【符号の説明】[Explanation of symbols]

1 電界槽 2 原料水流入口 3 酸性イオン水取出口 4 アルカリイオン水取出口 7a 電解流路 8 陽極平板状電極 9 陰極平板状電極 51 流量絞り体 52 流量絞り体 1 Electric field bath 2 Raw water inlet 3 Acidic ion water outlet 4 Alkaline ion water outlet 7a Electrolytic flow path 8 Anode flat plate electrode 9 Cathode flat plate electrode 51 Flow restrictor 52 Flow restrictor

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 一端側に原料水流入口2を有した電解槽
1内に、一対の平板状電極8,9をその中央に電解流路
7aを形成して平行に収納し、該電解槽1の他端側には
上記電解流路7aの陽極平板状電極8側に連通する酸性
イオン水取出口3と、電解流路7aの陰極平板状電極9
側に連通するアルカリイオン水取出口4とを設け、この
酸性イオン水取出口3とアルカリイオン水取出口4との
いずれか一方または双方には、該酸性イオン水取出口3
よりの流出量とアルカリイオン水取出口4よりの流出量
に差を持たせる流量絞り体51,52を設けてなるイオ
ン水生成器。
1. A pair of flat electrodes 8 and 9 are housed in parallel with an electrolysis channel 7a formed in the center in an electrolytic cell 1 having a raw water inlet 2 at one end. On the other end side, there is an acidic ion water outlet 3 communicating with the anode flat electrode 8 side of the electrolytic flow path 7a, and a cathode flat electrode 9 of the electrolytic flow path 7a.
An alkaline ionized water outlet 4 communicating with the side is provided, and one or both of the acidic ionized water outlet 3 and the alkaline ionized water outlet 4 are provided with the acidic ionized water outlet 3.
This ionized water generator is provided with flow restrictors 51 and 52 that make a difference between the amount of flow from the alkaline water outlet 4 and the amount of flow from the alkaline ionized water outlet 4.
JP2234691U 1991-03-13 1991-03-13 ionized water generator Pending JPH04110189U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234691U JPH04110189U (en) 1991-03-13 1991-03-13 ionized water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234691U JPH04110189U (en) 1991-03-13 1991-03-13 ionized water generator

Publications (1)

Publication Number Publication Date
JPH04110189U true JPH04110189U (en) 1992-09-24

Family

ID=31907866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234691U Pending JPH04110189U (en) 1991-03-13 1991-03-13 ionized water generator

Country Status (1)

Country Link
JP (1) JPH04110189U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535850A (en) * 1976-07-07 1978-01-19 Okazaki Mfg Co Ltd Continuous adjusting device for drinking water
JPS578957U (en) * 1980-06-17 1982-01-18
JPH01104388A (en) * 1987-07-10 1989-04-21 Tatsuo Okazaki Electrolytic ion water formation device with flow rate ratio regulating component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535850A (en) * 1976-07-07 1978-01-19 Okazaki Mfg Co Ltd Continuous adjusting device for drinking water
JPS578957U (en) * 1980-06-17 1982-01-18
JPH01104388A (en) * 1987-07-10 1989-04-21 Tatsuo Okazaki Electrolytic ion water formation device with flow rate ratio regulating component

Similar Documents

Publication Publication Date Title
US5534120A (en) Membraneless water electrolyzer
JPH04284889A (en) Ionic water producing apparatus
JP4904367B2 (en) Membrane electrolysis reactor system with four chambers
JP2007075730A (en) Apparatus for generating electrolytic water
KR101974147B1 (en) Electrolyzer and control method of electrolyzer
JPH04110189U (en) ionized water generator
JP2991111B2 (en) Non-diaphragm type water electrolyzer
JPH08257561A (en) Electrolytic water generating device
KR20120019316A (en) Electrolyzed-water system having non_diaphragm electrolysis apparatus
JPH05245473A (en) Electrolytic ion water producing device
KR20120137157A (en) Method for controlling flowpath system in water electrolysis apparatus
JP3120417B2 (en) Non-diaphragm type electrolytic cell
JP2009297696A (en) Method and device for preparing sterilized water containing carbonic acid gas
CN214457047U (en) Electrolyzed water generating device
JP3581362B1 (en) Alkaline ion water purifier
JP3055743B2 (en) Non-diaphragm type electrolytic cell for ion-rich water generation
JP2001070940A (en) Electrolytic water generator
JP3128794B2 (en) Non-diaphragm type electrolytic cell for ion-rich water generation
CN216191291U (en) Reversing system of EDR water purifier
CN220283785U (en) Large-section air stripping reflux structure
KR20120137156A (en) Flowpath system in water electrolysis apparatus
JPH06246272A (en) Non-isolation type device for continuous production of ion rich water
JPH08168767A (en) Diaphragmless type electrolytic cell
JPH07132288A (en) Continuous electrolytic water conditioning device having ph regulating function
JPH06154759A (en) Ionic water supply device