JPH04110123U - Pressure swing type air separation equipment - Google Patents

Pressure swing type air separation equipment

Info

Publication number
JPH04110123U
JPH04110123U JP1138991U JP1138991U JPH04110123U JP H04110123 U JPH04110123 U JP H04110123U JP 1138991 U JP1138991 U JP 1138991U JP 1138991 U JP1138991 U JP 1138991U JP H04110123 U JPH04110123 U JP H04110123U
Authority
JP
Japan
Prior art keywords
blower
switching valve
valve
adsorption tower
raw air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1138991U
Other languages
Japanese (ja)
Inventor
俊雄 鈴木
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP1138991U priority Critical patent/JPH04110123U/en
Publication of JPH04110123U publication Critical patent/JPH04110123U/en
Withdrawn legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 従来圧力スウィング方式の空気分離装置で
は、吸着材に吸着されたガスの脱離に真空ポンプを用い
ていたが、これは所要動力が大きい欠点があった。本考
案では、真空ポンプに代えて複数の原空ポンプを用いて
この欠点を解消しようとする。 【構成】 ブロワ入口弁(11A,11B)、原空ブロ
ワ(1A),(1B)、ブロワ出口弁(12A,12
B)をもつ原料空気加圧供給管(20A,20B)を複
数系統設け、同供給管を第1の三方切換弁(13)に接
続し、この切換弁(13)を第2の三方切換弁(14)
を介して吸着塔(2)へ接続し、第2の三方切換弁(1
4)から前記供給管(20A,20B)のブロワ入口弁
と原空ブロワの間に接続されたバイパス管(21)を設
け、かつ第1の三方切換弁(13)を製品ガス排出管
(22)に接続した。
(57) [Summary] [Purpose] Conventional pressure swing type air separation equipment uses a vacuum pump to desorb the gas adsorbed by the adsorbent, but this has the disadvantage of requiring a large amount of power. The present invention attempts to eliminate this drawback by using a plurality of raw air pumps instead of a vacuum pump. [Configuration] Blower inlet valve (11A, 11B), raw air blower (1A), (1B), blower outlet valve (12A, 12
A plurality of feedstock air pressurized supply pipes (20A, 20B) with B) are provided, the supply pipes are connected to the first three-way switching valve (13), and this switching valve (13) is connected to the second three-way switching valve. (14)
is connected to the adsorption tower (2) via the second three-way switching valve (1
4), a bypass pipe (21) connected between the blower inlet valve of the supply pipe (20A, 20B) and the raw air blower is provided, and the first three-way switching valve (13) is connected to the product gas discharge pipe (22). ).

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

本考案は、吸着塔に充填された吸着材によって原料空気中の窒素等を吸脱着さ せる圧力スウィング(以下PSAという)方式の空気分離装置に関する。 This invention adsorbs and desorbs nitrogen, etc. from the raw air using the adsorbent packed in the adsorption tower. This invention relates to a pressure swing (hereinafter referred to as PSA) type air separation device.

【0002】0002

【従来の技術】[Conventional technology]

図7によって従来のPSA方式空気分離装置の概略系統図を説明する。吸着塔 (2)内には吸着材(2−1)が充填されている。同吸着塔には、吸着材(2− 1)以外にも、吸着材(2−1)の保護又は吸着能力を向上するために、図示し ない脱湿材や熱交換器等が必要に応じて設置される。 A schematic system diagram of a conventional PSA type air separation device will be explained with reference to FIG. adsorption tower (2) is filled with adsorbent (2-1). The adsorption tower contains an adsorbent (2- In addition to 1), in order to protect or improve the adsorption capacity of the adsorbent (2-1), Dehumidifying materials and heat exchangers, etc., will be installed as necessary.

【0003】 吸着塔(2)への原料ガスである空気は、原空/製品切換弁(13)の上流か ら吸気弁(10)を介して、又は原空ブロワ(1)により加圧されて、原空/製 品切換弁(13)を通って吸着塔(2)へ導入される。原空ブロワ(1)の前後 には必要に応じてブロワ入口弁(11)、ブロワ出口弁(12)及び原空調整ダ ンパ(17)が設けられている。吸着材(2−1)を流過した吸着塔(2)の排 ガスは排気弁(16)を介して大気放出管(4)より系外に排出される。0003 Is the air that is the raw material gas to the adsorption tower (2) upstream of the raw air/product switching valve (13)? The raw air/product is pressurized through the intake valve (10) or by the raw air blower (1). It is introduced into the adsorption tower (2) through the product switching valve (13). Before and after the original air blower (1) The blower inlet valve (11), blower outlet valve (12) and source air adjustment valve are installed as necessary. A damper (17) is provided. The exhaust of the adsorption tower (2) that has passed through the adsorption material (2-1) The gas is discharged to the outside of the system from the atmosphere discharge pipe (4) via the exhaust valve (16).

【0004】 吸着材(2−1)に吸着された製品ガスは、真空ポンプ(5)を作動して吸着 塔(2)内を減圧することによって吸着材(2−1)から脱離され原空/製品切 換弁(13)を介して製品タンク(3)に供給され製品として搬出される。真空 ポンプ(5)の下流側には、必要に応じて封水回収装置・脱湿装置・製品ガスに よる吸着塔内パージ配管等が設けられるが、その図示は省略されている。0004 The product gas adsorbed by the adsorbent (2-1) is adsorbed by operating the vacuum pump (5). By reducing the pressure inside the tower (2), it is desorbed from the adsorbent (2-1) and the raw air/product is removed. It is supplied to the product tank (3) via the changeover valve (13) and transported out as a product. vacuum On the downstream side of the pump (5), a water seal recovery device, dehumidification device, and product gas Although purge piping and the like within the adsorption tower are provided, their illustration is omitted.

【0005】 また、この従来のPSA空気分離装置では、吸着材(2−1)に吸着されたガ スを製品としているが、吸着材(2−1)で吸着されないガスを製品とすること もできる。[0005] In addition, in this conventional PSA air separation device, gas adsorbed on the adsorbent (2-1) The product is a gas that is not adsorbed by the adsorbent (2-1). You can also do it.

【0006】[0006]

【考案が解決しようとする課題】[Problem that the idea aims to solve]

前記の従来実施例においては、真空ポンプは吸着塔内で吸着材に吸着されてい た製品ガスを大量に送ガスするために、装置内で最も動力を必要とする補機であ る。また、PSA方式の空気分離装置は、その名の示すとおり吸着塔内圧力に加 圧・減圧を繰り返すことにより吸着材への製品ガスの分離吸着・脱離により製品 ガスを得るものであるが、圧力を変える工程毎に原空ブロワと真空ポンプは同時 に必要ではなく、各工程に応じて原空ブロワ・真空ポンプが別々に稼動すること になっている。この補機としての原空ブロワと真空ポンプの起動停止の繰り返し を避けるため、通常は吸着塔を複数基設け、配管中に設けられた弁の切換により これら補機が常に稼動状態になるような系統を構成し、各工程の切換タイミング を適切に選定するようにする装置もあるが、この場合には、系統の構成が複雑と なり、また前記切換タイミングを適切に行なわせるための制御装置が必要となる 。 In the above-mentioned conventional embodiment, the vacuum pump does not adsorb to the adsorbent in the adsorption tower. This is the auxiliary equipment that requires the most power in the equipment in order to deliver a large amount of product gas. Ru. In addition, as the name suggests, the PSA type air separation equipment applies pressure to the internal pressure of the adsorption tower. By repeating pressure and depressurization, the product gas is separated and adsorbed and desorbed onto the adsorbent. It is used to obtain gas, but the raw air blower and vacuum pump are used at the same time for each process to change the pressure. It is not necessary for the original air blower and vacuum pump to operate separately depending on each process. It has become. Repeated starting and stopping of the original air blower and vacuum pump as auxiliary equipment In order to avoid A system is configured so that these auxiliary machines are always in operation, and the switching timing of each process is There are devices that allow for appropriate selection of In addition, a control device is required to appropriately perform the switching timing. .

【0007】 本考案は、前記に鑑みてなされたものであり、構成が簡単で、かつ、大きい動 力を必要とする真空ポンプを省略したPSA空気分離装置を提供しようとするも のである。[0007] The present invention was made in view of the above, and has a simple configuration and a large movement. Although we are trying to provide a PSA air separation device that eliminates the vacuum pump that requires power, It is.

【0008】[0008]

【課題を解決するための手段】[Means to solve the problem]

本考案のPSA方式空気分離装置は、ブロワ入口弁と同ブロワ入口弁の下流に 配置された原空ブロワと同原空ブロワの下流に配置されたブロワ出口弁をもつ原 料空気加圧供給管を複数系統設け、前記複数系統の原料空気加圧供給管を第1の 三方切換弁に接続し、前記第1の三方切換弁を第2の三方切換弁を介して吸着材 を充填した吸着塔へ接続し、前記第2の三方切換弁から前記複数系統の原料空気 加圧供給管のブロワ入口弁と原空ブロワの間に接続されたバイパス管を設け、か つ前記第1の三方切換弁を製品ガス排出管に接続したことを特徴とする。 The PSA type air separation device of this invention has a blower inlet valve and a downstream part of the blower inlet valve. A source air blower with a blower outlet valve located downstream of the air blower and a blower outlet valve located downstream of the air blower. A plurality of systems of pressurized feed air supply pipes are provided, and the pressurized feed air supply pipes of the plurality of systems are connected to a first The adsorbent is connected to a three-way switching valve, and the first three-way switching valve is connected to the adsorbent through the second three-way switching valve. is connected to an adsorption tower filled with A bypass pipe connected between the blower inlet valve of the pressurized supply pipe and the raw air blower is installed, and The first three-way switching valve is connected to a product gas discharge pipe.

【0009】[0009]

【作用】[Effect]

本考案では、原料空気を吸着塔内へ供給して同塔内の吸着材に吸着させる時に は、原料空気を複数系統の原料空気加圧供給管から第1の三方切換弁及び第2の 三方切換弁を経て吸着塔内へ供給する。 In this invention, when feed air is supplied into the adsorption tower and adsorbed by the adsorbent in the tower, The raw air is supplied from multiple systems of pressurized raw air supply pipes to the first three-way switching valve and the second three-way switching valve. It is supplied into the adsorption tower via a three-way switching valve.

【0010】 吸着塔内の吸着材に吸着されたガスを脱離・送ガスする時には、吸着塔内を第 2の三方切換弁を介してバイパス管に接続して各系統の原料空気加圧供給管の原 空ブロワを作動させて吸着塔内を減圧し、吸着されたガスを吸着材から脱離し、 バイパス管及び第1の三方切換弁を経て製品ガス排出管に排出する。0010 When desorbing and transporting the gas adsorbed by the adsorbent in the adsorption tower, the inside of the adsorption tower is It is connected to the bypass pipe through the three-way switching valve No. 2 and the source of the raw material air pressurized supply pipe of each system is The empty blower is operated to reduce the pressure inside the adsorption tower, and the adsorbed gas is desorbed from the adsorbent. The product gas is discharged to the product gas discharge pipe via the bypass pipe and the first three-way switching valve.

【0011】 この際、吸着ガスの吸着材からの脱離及び製品ガス排出管への送ガスは複数の 原空ブロワによって行なわれ、真空ポンプを用いることなくこれを効果的に行な うことができる。[0011] At this time, the desorption of the adsorbed gas from the adsorbent and the delivery of the gas to the product gas discharge pipe are performed in multiple ways. This is done using a field blower, which effectively does this without using a vacuum pump. I can.

【0012】0012

【実施例】【Example】

本考案の一実施例を、図1ないし図6によって説明する。本実施例は、吸着塔 内に窒素(N2 )を吸着する吸着材を充填したPSA方式の空気分離装置に係る ものである。An embodiment of the present invention will be described with reference to FIGS. 1 to 6. This embodiment relates to a PSA type air separation apparatus in which an adsorption tower is filled with an adsorbent that adsorbs nitrogen (N 2 ).

【0013】 図1に示すように、吸着塔(2)にはN2 吸着材(2−1)が充填されている 。上流側から下流側へ順次ブロワ入口弁(11A),原空調整ダンパ(17A) 原空ブロワ(1A)及びブロワ出口弁A(12A)をもつ原料空気を加圧して供 給する供給管(20A)と、上流側から下流側へ順次ブロワ入口弁B(11B) ,原空調整ダンパ(17B),原空ブロワB(1B)及びブロワ出口弁B(12 B)をもつ原料空気を加圧して供給する供給管(20B)が設けられている。ま た吸気弁(10)をもつ原料空気の吸入管(20C)が設けられ、前記供給管( 20A),(20B)と吸入管(20C)は合流して第1の三方切換弁である原 空/製品切換弁(13)に接続されている。As shown in FIG. 1, the adsorption tower (2) is filled with N 2 adsorbent (2-1). A supply pipe (20A) that pressurizes and supplies raw material air, which has a blower inlet valve (11A), a raw air adjustment damper (17A), a raw air blower (1A), and a blower outlet valve A (12A) sequentially from the upstream side to the downstream side. Then, from the upstream side to the downstream side, the raw air is pressurized and supplied to the blower inlet valve B (11B), raw air adjustment damper (17B), raw air blower B (1B), and blower outlet valve B (12 B). A supply pipe (20B) is provided. In addition, a raw air intake pipe (20C) having an intake valve (10) is provided, and the supply pipes (20A), (20B) and the intake pipe (20C) are merged into a raw air supply pipe, which is a first three-way switching valve. /Connected to the product switching valve (13).

【0014】 前記原空/製品切換弁(13)は、第2の三方切換弁である加圧/吸引切換弁 (14)を経て、前記吸着塔(2)の下部に接続されている。加圧/吸引切換弁 (13)から出るバイパス管(21)は、分岐してそれぞれ前記ブロワ入口弁A (11A)と原空ブロワA(1A)の中間の位置で供給管(20A)に、ブロワ 入口弁B(11B)と原空ブロワB(1B)の中間の位置で供給管(20B)に 接続され、バイパス管(21)の分岐した部分には、それぞれブロワ吸引弁A( 15A)とブロワ吸引弁B(15B)が設けられている。[0014] The source air/product switching valve (13) is a pressurization/suction switching valve that is a second three-way switching valve. (14) and is connected to the lower part of the adsorption tower (2). Pressure/suction switching valve Bypass pipes (21) exiting from (13) are branched to each other at the blower inlet valve A. (11A) and the air blower A (1A), connect the supply pipe (20A) to the blower to the supply pipe (20B) at a position between the inlet valve B (11B) and the raw air blower B (1B). A blower suction valve A ( 15A) and a blower suction valve B (15B).

【0015】 前記原空/製品切換弁(13)には、製品タンク(3)へ至る製品ガス排出管 (22)が接続されている。また、前記吸着塔(2)の上部は、排気弁(16) を経て大気放出管(4)に接続されている。[0015] The raw air/product switching valve (13) has a product gas discharge pipe leading to the product tank (3). (22) is connected. Moreover, the upper part of the adsorption tower (2) is equipped with an exhaust valve (16). It is connected to the atmosphere discharge pipe (4) through.

【0016】 前記吸着塔(2)内には、図示しないが、吸着材(2−1)の保護又は吸着能 力を向上するために、必要に応じて、脱湿材や熱交換器等が設置され、また、製 品ガス排出管(22)には、図示しないが、必要に応じて封水回収装置,脱湿装 置,製品ガスによる吸着塔内パージ配管等が設けられる。[0016] Although not shown in the adsorption tower (2), there is protection or adsorption capacity of the adsorbent (2-1). In order to improve performance, dehumidification materials, heat exchangers, etc. are installed as necessary, and manufacturing Although not shown in the figure, the product gas discharge pipe (22) is equipped with a water seal recovery device and a dehumidification device as necessary. In addition, purge piping for the product gas inside the adsorption tower is installed.

【0017】 以上のように構成された本実施例では、吸着塔2内が大気圧より低い吸気工程 においては、原料空気は吸気弁(10)より吸気管(20C),原空/製品切換 弁(13)及び加圧/吸引切換弁(14)を経由して吸着塔(2)内へ導入され 、また吸着塔(2)内の圧力が前記吸気管(20C)より流入する空気によって 上昇した後の加圧工程では、原空ブロワA(1A)又は原空ブロワB(1B)よ り供給管(20A),(20B)の一方及び前記2個の切換弁(13),(14 )を経由して吸着塔(2)内へ導入される。原空ブロワA(1A)と原空ブロワ B(1B)の前後には、それぞれブロワ入口弁A(11A)とブロワ入口弁B( 11B),ブロワ出口弁A(12A)とブロワ出口弁B(12B)及び原空調整 ダンパA(17A)と原空調整ダンパB(17B)が設置されており、加圧工程 においては何れかの原空ブロワが運転されて、原料用空気を加圧して吸着塔(2 )内へ導入する。このようにして、吸着塔(2)内へ導入された原料空気中のN 2 は、同塔に充填された吸着材(2−1)によって吸着される。[0017] In this embodiment configured as described above, the intake stage in which the pressure inside the adsorption tower 2 is lower than atmospheric pressure is In this case, the raw air is transferred from the intake valve (10) to the intake pipe (20C), and the source air/product switching It is introduced into the adsorption tower (2) via the valve (13) and the pressurization/suction switching valve (14). , and the pressure inside the adsorption tower (2) is increased by the air flowing in from the intake pipe (20C). In the pressurizing process after rising, air blower A (1A) or air blower B (1B) is used. one of the supply pipes (20A), (20B) and the two switching valves (13), (14). ) into the adsorption tower (2). Genku blower A (1A) and Genku blower Before and after B (1B), there are blower inlet valve A (11A) and blower inlet valve B ( 11B), blower outlet valve A (12A), blower outlet valve B (12B) and original air adjustment Damper A (17A) and original air adjustment damper B (17B) are installed, and the pressurization process In the case, one of the raw air blowers is operated to pressurize the feed air and blow it into the adsorption tower (2 ). In this way, N in the feed air introduced into the adsorption tower (2) 2 is adsorbed by the adsorbent (2-1) packed in the column.

【0018】 その上で原空ブロワを停止し又はアンロードし、吸着材(2−1)に吸着され ない吸着塔(2)内にある酸素(O2 )等の加圧されたガスは、排気弁(16) ,大気放出管(4)を経て系外に放出される(排気工程)。Then, the raw air blower is stopped or unloaded, and the pressurized gas such as oxygen (O 2 ) in the adsorption tower (2) that is not adsorbed by the adsorbent (2-1) is exhausted. It is discharged outside the system via the valve (16) and the atmosphere discharge pipe (4) (exhaust process).

【0019】 次に、加圧/吸引切換弁(14)を作動して、吸着塔(2)内をバイパス管( 21)に接続し、また原空/製品切換弁(13)を作動させて供給管(20A) ,(20B)を製品ガス排出管(22)に接続する。この際、ブロワ入口弁A( 11A),ブロワ入口弁B(11B)及び吸気弁(10),及び排気弁(16) は閉じられる。その上で原空ブロワA(1A),原空ブロワB(1B)を共に運 転する。吸着塔(2)内はこれによって減圧されて吸着材(2−1)に吸着され ていたN2 は吸着材(2−1)から脱離され、更に減圧が進むとN2 の脱離が進 行すると共に脱離されたN2 ガスは、加圧/吸引切換弁(14),バイパス管( 21),原空ブロワA(1A)及び原空ブロワB(1B),原空/製品切換弁( 13),製品ガス排出管(22)を経て製品タンク(3)内に導入される(減圧 ・送気工程)。製品タンク(3)内に導入されたN2 ガスは、適宜製品ガスとし て供給される。Next, the pressurization/suction switching valve (14) is operated to connect the inside of the adsorption tower (2) to the bypass pipe (21), and the raw air/product switching valve (13) is operated. The supply pipes (20A) and (20B) are connected to the product gas discharge pipe (22). At this time, blower inlet valve A (11A), blower inlet valve B (11B), intake valve (10), and exhaust valve (16) are closed. Then, the raw air blower A (1A) and the raw air blower B (1B) are operated together. This reduces the pressure inside the adsorption tower (2), and the N 2 that had been adsorbed on the adsorbent (2-1) is desorbed from the adsorbent (2-1), and as the pressure decreases further, the desorption of N 2 continues. The N2 gas released as it progresses is transferred to the pressurization/suction switching valve (14), the bypass pipe (21), the raw air blower A (1A), the raw air blower B (1B), and the raw air/product switching valve. (13), the product gas is introduced into the product tank (3) via the discharge pipe (22) (depressurization/air supply process). The N 2 gas introduced into the product tank (3) is appropriately supplied as a product gas.

【0020】 図2は、本実施例の前記各工程における吸着塔(2)の現象を示すものである 。即ち、吸気工程aにおいては、吸着塔内に空気が塔内減圧分のみ流入する。加 圧工程bでは、原空ブロワが稼動し吸着塔内に強制的に原料空気が導入され加圧 状態で吸着材にN2 ガス(製品ガス)が吸着される。排気工程cでは、原空ブロ ワ停止により吸着塔内にある加圧された非吸着ガスが系外に放出される。減圧・ 排気工程dでは、原空ポンプが稼動し吸着塔内が減圧され吸着材に吸着していた 製品ガスが吸着材から脱離される。原空ポンプの稼動によって吸着塔内が更に減 圧されると、製品ガスの吸着材からの脱離が進行すると共にこれが前記のように 製品タンクへ送気される。FIG. 2 shows the phenomena of the adsorption tower (2) in each of the steps of this example. That is, in the intake step a, air flows into the adsorption tower only by an amount corresponding to the reduced pressure inside the tower. In the pressurizing step b, the raw air blower is operated to forcibly introduce raw air into the adsorption tower, and N2 gas (product gas) is adsorbed by the adsorbent under pressure. In the exhaust step c, the pressurized non-adsorbed gas in the adsorption tower is discharged to the outside of the system by stopping the raw air blower. In the depressurization/exhaust step d, the raw air pump is operated to reduce the pressure inside the adsorption tower, and the product gas adsorbed on the adsorbent is desorbed from the adsorbent. When the pressure inside the adsorption tower is further reduced by operating the raw air pump, the product gas is desorbed from the adsorbent and is fed to the product tank as described above.

【0021】 図3ないし図6では、上に説明したそれぞれ図2の工程a〜dにおける空気, ガス等の流れを矢印で示す。即ち、図3に示す吸気工程では、吸気弁→吸気管( 20C)→原空/製品切換弁(13)→加圧/吸引切換弁(14)→吸着塔(2 )と吸着塔(2)へ原料空気が前工程における吸着塔内減圧差分だけ流入する。 原料空気と吸着塔内の圧力の差がなくなると原空ブロワを稼動して、図4に示す 加圧工程に入る。原料空気は一方原空ブロワ→一方の供給管(例えば(20A) )→原空/製品切換弁(13)→加圧/吸引切換弁(14)→吸着塔(2)と吸 着塔(2)へ流入する。図5に示す排気工程では、原空ブロワは停止し(又はア ンロードし)、排気弁(16)を開くことにより非吸着ガスが大気放出管(4) から大気へ放出される。図6に示す減圧・送気工程では、排気弁(16)は閉じ られ、2台の原空ブロワを共に運転して、吸着塔内の吸着材から脱離された製品 ガス(N2 ガス)を吸着塔(2)→加圧/吸引切換弁(14)→原空ブロワ→原 空/製品切換弁(13)→製品タンク(3)と製品タンク(3)へ供給する。そ の上で、再び前記の吸気工程に再び戻り各工程が繰り返されることになる。[0021] In FIGS. 3 to 6, arrows indicate the flow of air, gas, etc. in steps a to d of FIG. 2, respectively, described above. That is, in the intake process shown in FIG. 3, intake valve → intake pipe (20C) → raw air/product switching valve (13) → pressurization/suction switching valve (14) → adsorption tower (2) and adsorption tower (2). The raw material air flows into the adsorption tower by the difference in pressure in the adsorption tower in the previous step. When the pressure difference between the raw air and the adsorption tower disappears, the raw air blower is operated and the pressurization process shown in FIG. 4 begins. The raw air is supplied from one raw air blower → one supply pipe (for example (20A)) → raw air/product switching valve (13) → pressurization/suction switching valve (14) → adsorption tower (2) and adsorption tower (2) flows into. In the exhaust process shown in FIG. 5, the raw air blower is stopped (or unloaded) and the exhaust valve (16) is opened to release non-adsorbed gas to the atmosphere from the atmosphere discharge pipe (4). In the pressure reduction/air supply process shown in Fig. 6, the exhaust valve (16) is closed, and the two raw air blowers are operated together to remove the product gas ( N2 gas) desorbed from the adsorbent in the adsorption tower. is supplied to the adsorption tower (2) → pressurization/suction switching valve (14) → raw air blower → raw air/product switching valve (13) → product tank (3) and product tank (3). Then, the process returns to the intake process and repeats each process.

【0022】 以上説明したように、本実施例では、吸着塔(2)に充填された吸着材(2− 1)に吸着されたN2 を脱離し、これを送ガスする時には、2個の原空ブロワ( 1A),(1B)を稼動させて、第2の三方切換弁である加圧/吸引切換弁(1 4),バイパス管(21),2系統の供給管(20A),(20B)、第1の三 方切換弁である原空/製品切換弁(13),製品ガス排出管(22)を経てN2 ガスを製品タンク3へ送るようにしている。As explained above, in this embodiment, when desorbing N 2 adsorbed on the adsorbent (2-1) packed in the adsorption tower (2) and sending the gas, two The raw air blowers (1A) and (1B) are operated, and the pressure/suction switching valve (14), which is the second three-way switching valve, the bypass pipe (21), and the two-system supply pipe (20A), ( 20B), a raw air/product switching valve (13) which is a first three-way switching valve, and a product gas discharge pipe (22) to send N 2 gas to the product tank 3.

【0023】 このように、2台の原空ブロワ(1A),(1B)を共に稼動させることによ って、従来のPSA方式空気分離装置におけるように所要動力の大きい真空ポン プを用いることなく、吸着塔(2)内を十分低圧にしてN2 ガスの吸着材(2− 1)からの脱離を行なうことができ、かつ、製品ガスとしての吸着材から脱離し たN2 ガスを大量に送気することができる。[0023] In this way, by operating the two raw air blowers (1A) and (1B) together, the adsorption tower (2) The internal pressure is sufficiently low to allow desorption of N2 gas from the adsorbent (2-1), and a large amount of N2 gas desorbed from the adsorbent is supplied as product gas. can do.

【0024】 また、本実施例では、バイパス管(21)と2系統の供給管(20A),(2 0B)を設け、減圧・送気工程に原空/製品切換弁(13)及び加圧/吸引切換 弁(14)を切換える簡単な操作によって、吸着材(2−1)からのN2 ガスの 脱離及び送ガスを行なうようにしているために、装置は複雑にはならず、また確 実な作動を確保することができる。[0024] In addition, in this embodiment, a bypass pipe (21) and two systems of supply pipes (20A) and (20B) are provided, and a raw air/product switching valve (13) and a pressurizing Since the desorption of N2 gas from the adsorbent (2-1) and the gas supply are performed by a simple operation of switching the /suction switching valve (14), the device does not become complicated. Reliable operation can be ensured.

【0025】[0025]

【考案の効果】[Effect of the idea]

本考案は、請求項1に記載された構成を有することによって、PSA方式空気 分離装置において装置構成上最も大容量の動力を消費する真空ポンプに代って、 複数の原空ブロワに従来の真空ポンプの機能を行なわせることができ、所要動力 を低減することができると共に、装置を簡単にし、かつ、その作動を確実にする ことができる。 The present invention has the structure set forth in claim 1, so that the PSA system air In place of the vacuum pump, which consumes the largest amount of power in the separation equipment configuration, Multiple air blowers can perform the functions of conventional vacuum pumps, reducing the power required. In addition to making the device simpler and ensuring its operation, be able to.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本考案の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】同実施例の各工程における吸着塔内の現象の説
明図である。
FIG. 2 is an explanatory diagram of phenomena inside the adsorption tower in each step of the same example.

【図3】同実施例の吸気工程におけるガスの流れの説明
図である。
FIG. 3 is an explanatory diagram of the flow of gas in the intake process of the same embodiment.

【図4】同実施例の加圧工程におけるガスの流れの説明
図である。
FIG. 4 is an explanatory diagram of gas flow in the pressurizing step of the same example.

【図5】同実施例の排気工程におけるガスの流れの説明
図である。
FIG. 5 is an explanatory diagram of the flow of gas in the exhaust process of the same embodiment.

【図6】同実施例の減圧・送気工程におけるガスの流れ
の説明図である。
FIG. 6 is an explanatory diagram of the flow of gas in the pressure reduction/air supply process of the same embodiment.

【図7】従来のPSA方式空気分離装置の系統図であ
る。
FIG. 7 is a system diagram of a conventional PSA type air separation device.

【符号の説明】[Explanation of symbols]

1,1A,1B 原空ブロワ 2 吸着塔 2−1 吸着材 3 製品タンク 4 大気放出管 5 真空ポンプ 10 吸気弁 11,11A,11B ブロワ入口弁 12,12A,12B ブロワ出口弁 13 原空/製品切換弁 14 加圧/吸引切換弁 15A,15B ブロワ吸引弁 16 排気弁 17,17A,17B 原空調整ダンパ 20A,20B 供給管 20C 吸気管 21 バイパス管 22 製品ガス排出管 1, 1A, 1B Gensky blower 2 Adsorption tower 2-1 Adsorbent 3 Product tank 4 Atmospheric discharge pipe 5 Vacuum pump 10 Intake valve 11, 11A, 11B Blower inlet valve 12, 12A, 12B Blower outlet valve 13 Original air/product switching valve 14 Pressure/suction switching valve 15A, 15B Blower suction valve 16 Exhaust valve 17, 17A, 17B Original air adjustment damper 20A, 20B supply pipe 20C intake pipe 21 Bypass pipe 22 Product gas discharge pipe

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 ブロワ入口弁と同ブロワ入口弁の下流に
配置された原空ブロワと同原空ブロワの下流に配置され
たブロワ出口弁をもつ原料空気加圧供給管を複数系統設
け、前記複数系統の原料空気加圧供給管を第1の三方切
換弁に接続し、前記第1の三方切換弁を第2の三方切換
弁を介して吸着材を充填した吸着塔へ接続し、前記第2
の三方切換弁から前記複数系統の原料空気加圧供給管の
ブロワ入口弁と原空ブロワの間に接続されたバイパス管
を設け、かつ前記第1の三方切換弁を製品ガス排出管に
接続したことを特徴とする圧力スウィング方式空気分離
装置。
1. A plurality of systems of pressurized raw air supply pipes each having a blower inlet valve, a raw air blower disposed downstream of the blower inlet valve, and a blower outlet valve disposed downstream of the raw air blower are provided, A plurality of systems of pressurized feed air supply pipes are connected to a first three-way switching valve, the first three-way switching valve is connected to an adsorption tower filled with an adsorbent via a second three-way switching valve, and the first three-way switching valve is connected to an adsorption tower filled with an adsorbent. 2
A bypass pipe is provided which is connected from the three-way switching valve between the blower inlet valve of the raw air pressurized supply pipe of the plurality of systems and the raw air blower, and the first three-way switching valve is connected to the product gas discharge pipe. A pressure swing type air separation device characterized by:
JP1138991U 1991-03-05 1991-03-05 Pressure swing type air separation equipment Withdrawn JPH04110123U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1138991U JPH04110123U (en) 1991-03-05 1991-03-05 Pressure swing type air separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1138991U JPH04110123U (en) 1991-03-05 1991-03-05 Pressure swing type air separation equipment

Publications (1)

Publication Number Publication Date
JPH04110123U true JPH04110123U (en) 1992-09-24

Family

ID=31900754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1138991U Withdrawn JPH04110123U (en) 1991-03-05 1991-03-05 Pressure swing type air separation equipment

Country Status (1)

Country Link
JP (1) JPH04110123U (en)

Similar Documents

Publication Publication Date Title
US6344069B2 (en) System for energy recovery in a vacuum pressure swing adsorption apparatus
US4222750A (en) Oxygen enrichment system for medical use
JP3172646B2 (en) Improved vacuum swing adsorption method
US5906674A (en) Process and apparatus for separating gas mixtures
JPS60110318A (en) Single bed type psa gas separation method and device
JPS598605A (en) Concentration of nitrogen
US6132496A (en) Apparatus for the separation of a gaseous mixture
JP2008229493A (en) Pressure swing adsorption type oxygen concentrator
KR930010761B1 (en) Air separating apparatus
JP5226282B2 (en) Oxygen concentrator
JPH11290637A (en) Separation of gas mixture by adsorption and plant therefor
US8496738B1 (en) Nitrogen and oxygen separation using vacuum swing adsorption
JPH04110123U (en) Pressure swing type air separation equipment
JP4798076B2 (en) Oxygen concentrator
JPH11267439A (en) Gas separation and gas separator for performing same
JPH01184016A (en) Apparatus for gas separation
JP3654661B2 (en) Oxygen generation method by pressure fluctuation adsorption separation method
JPH0731826A (en) Gas concentrator
JPH0938443A (en) Gas separator
JP3661884B2 (en) Gas separation device
JP3755622B2 (en) Mixed gas separation method
JP3895037B2 (en) Low pressure oxygen enrichment method
JPH01290516A (en) Separation of gaseous co and co2
JPH04334520A (en) Pressure swing type gas separator
JPH09141038A (en) Gas separator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19950615