JP2008229493A - Pressure swing adsorption type oxygen concentrator - Google Patents

Pressure swing adsorption type oxygen concentrator Download PDF

Info

Publication number
JP2008229493A
JP2008229493A JP2007072467A JP2007072467A JP2008229493A JP 2008229493 A JP2008229493 A JP 2008229493A JP 2007072467 A JP2007072467 A JP 2007072467A JP 2007072467 A JP2007072467 A JP 2007072467A JP 2008229493 A JP2008229493 A JP 2008229493A
Authority
JP
Japan
Prior art keywords
air
pressure
adsorption
pilot
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007072467A
Other languages
Japanese (ja)
Other versions
JP4799454B2 (en
Inventor
Matsusato Sugano
松佐登 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2007072467A priority Critical patent/JP4799454B2/en
Publication of JP2008229493A publication Critical patent/JP2008229493A/en
Application granted granted Critical
Publication of JP4799454B2 publication Critical patent/JP4799454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure swing adsorption type oxygen concentrator mounted with a solenoid valve minimizing pressure loss of an exhaust gas valve, while suppressing electric power consumption. <P>SOLUTION: The pressure swing adsorption type oxygen concentrator includes: one or more adsorption cylinders 8a, 8b containing an adsorbent preferentially adsorbing nitrogen to oxygen; an air compressing/supplying means supplying compressed raw air to the adsorption cylinders; and a gas flow path switching means for switching air supply and discharge to the adsorption cylinders. In the pressure swing adsorption type oxygen concentrator, by repeating an adsorption process of adsorbing nitrogen in the supply air by pressurizing inside the adsorption cylinders to the adsorbent, and taking out oxygen which has not been adsorbed as product gas, and a desorption process discharging the inside of the adsorption cylinders via the switching means, desorbing nitrogen adsorbed in the adsorbent to discharge, oxygen in the air is concentrated and taken out. The switching means is the pilot type solenoid valve, and includes a pilot air exhaust mechanism performing discharging at a discharge pressure of the pilot air lower than the atmospheric pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気中の窒素を吸着除去し、高濃度の濃縮酸素を取り出すための酸素濃縮器に関するものである。   The present invention relates to an oxygen concentrator for adsorbing and removing nitrogen in the air and taking out highly concentrated oxygen.

従来から用いられてきた圧力スイング吸着型酸素濃縮器の構成例を図2に示す。吸着剤にはA型あるいはX型のゼオライトが用いられ、それが2本の吸着筒に納められている。吸着筒を加圧して窒素を吸着させるために、空気圧縮供給手段としてコンプレッサーが接続されており、吸着筒とコンプレッサーの間および吸着筒と排気口の間には工程を制御するための切替手段である電磁弁が挿入されている。この例では吸着筒は2本であるが、吸着筒の数は一般的には制限はない。   FIG. 2 shows a configuration example of a pressure swing adsorption type oxygen concentrator that has been conventionally used. A-type or X-type zeolite is used as the adsorbent, and it is stored in two adsorption cylinders. In order to pressurize the adsorption cylinder and adsorb nitrogen, a compressor is connected as air compression supply means, and a switching means for controlling the process is provided between the adsorption cylinder and the compressor and between the adsorption cylinder and the exhaust port. A certain solenoid valve is inserted. In this example, there are two suction cylinders, but the number of suction cylinders is generally not limited.

基本的なプロセスは、吸着筒を加圧して窒素を吸着させ、吸着しなかった酸素を製品ガスとして取り出す吸着工程と、吸着筒を減圧して吸着した窒素を脱着させる脱着工程よりなる。吸着工程に於いては吸着筒の一端(以下原料端と呼ぶ)がコンプレッサーに接続され、加圧された空気(原料空気)が送り込まれる。吸着筒の内部では吸着剤が原料空気中の窒素分子を優先的に吸着し、吸着されなかった酸素が吸着筒の他端(製品端)より、逆止弁を通じて取り出され、製品タンクの中に一旦蓄えられたあと、圧力調整弁、流量調節バルブを通じて製品ガスとして取り出される。脱着工程に於いては、吸着筒の原料端が大気に解放され、吸着筒内部の圧力を低下させるとともに、製品ガスの一部を均圧弁を通じて還流(パージ)することによって、吸着剤が吸着した窒素を脱着させる。   The basic process includes an adsorption process in which the adsorption cylinder is pressurized to adsorb nitrogen and oxygen that has not been adsorbed is extracted as product gas, and a desorption process in which the adsorption cylinder is decompressed to desorb the adsorbed nitrogen. In the adsorption process, one end of the adsorption cylinder (hereinafter referred to as a raw material end) is connected to a compressor, and pressurized air (raw material air) is fed. Inside the adsorption cylinder, the adsorbent preferentially adsorbs nitrogen molecules in the raw material air, and oxygen that has not been adsorbed is taken out from the other end (product end) of the adsorption cylinder through a check valve into the product tank. After being stored once, it is taken out as product gas through a pressure regulating valve and a flow regulating valve. In the desorption process, the raw material end of the adsorption cylinder is released to the atmosphere, the pressure inside the adsorption cylinder is reduced, and part of the product gas is refluxed (purged) through a pressure equalizing valve, thereby adsorbing the adsorbent. Desorb nitrogen.

本例のように吸着筒を2本用いた系においては一方の吸着筒が吸着工程を行っている間に他方の吸着筒が脱着工程を行うようにして、製品ガスが連続して取り出せるようになっている。システムの構成によっては、脱着工程の効率を向上するために、脱着工程時に真空ポンプなどの減圧手段を用いて大気圧より低い圧力まで圧力を低下させるものもある。また、コンプレッサーの動力を節約するために、吸着工程と脱着工程の間に吸着工程が終わった吸着筒と脱着工程が終わった吸着筒を接続し、両者の圧力を均一化する均圧工程を持つものもある。   In a system using two adsorption cylinders as in this example, while one adsorption cylinder is performing an adsorption process, the other adsorption cylinder performs a desorption process so that product gas can be continuously taken out. It has become. Depending on the configuration of the system, in order to improve the efficiency of the desorption process, the pressure is reduced to a pressure lower than the atmospheric pressure using a pressure reducing means such as a vacuum pump during the desorption process. In addition, in order to save compressor power, there is a pressure equalization process that connects the adsorption cylinder after the adsorption process and the adsorption cylinder after the desorption process between the adsorption process and the desorption process, and equalizes the pressure of both. There are also things.

特開平9-20503号公報Japanese Patent Laid-Open No. 9-20503 特開2002-79030号公報JP 2002-79030 A 特開平9-141038号公報Japanese Patent Laid-Open No. 9-141038 特開2005-329251号公報JP 2005-329251 A 特開2006-62932号公報JP 2006-62932 A

上記のような酸素濃縮器に於いて、装置の性能の一つとして消費電力の低減が大きな課題となる。酸素濃縮器の部品のうち空気圧縮供給手段であるコンプレッサーが最も多くの電力を消費し、次に切替手段である電磁弁が多く消費する。したがって、コンプレッサーの消費電力を低減することがまず第一に重要な課題となる。   In the oxygen concentrator as described above, reduction of power consumption is a major issue as one of the performances of the apparatus. Of the components of the oxygen concentrator, the compressor that is the air compression supply means consumes the most electric power, and then the electromagnetic valve that is the switching means consumes a lot. Therefore, first of all, reducing the power consumption of the compressor is an important issue.

コンプレッサーの消費電力は、コンプレッサーの効率と、吸着プロセスに必要な圧縮空気を供給するための圧縮動力によって決定される。この内、圧縮動力は吸着プロセスが酸素を濃縮するのに必要な空気の圧力及び流量により決定されるので、吸着プロセスの効率向上によりこれらの値を低減する事が必要である。前述の通り、圧力スイング吸着プロセスは、吸着剤が酸素より窒素を優先的に吸着する性質および圧力により吸着量が変化する性質を利用して、コンプレッサーのような空気圧縮供給手段を用いて圧力を上昇させることにより窒素を吸着させて酸素を取り出し、真空ポンプまたは大気開放により圧力を下降させることにより吸着した窒素を脱着して吸着剤が再度窒素を吸着できるように再生することを繰り返すことにより酸素を連続的に取り出すプロセスである。そのため、圧力の上昇量及び下降量はプロセスの性能を大きく左右し、一般的に吸着工程における圧力が高いほど、また脱着工程における圧力が低いほど酸素回収率が向上し、少ない空気量でより多くの酸素を生成できるためコンプレッサーの空気供給量は少なくて済む。   The power consumption of the compressor is determined by the efficiency of the compressor and the compression power for supplying the compressed air necessary for the adsorption process. Among these, the compression power is determined by the pressure and flow rate of air necessary for the adsorption process to concentrate oxygen, and it is necessary to reduce these values by improving the efficiency of the adsorption process. As described above, the pressure swing adsorption process uses the property that the adsorbent adsorbs nitrogen preferentially over oxygen and the property that the adsorption amount changes depending on the pressure. Oxygen is extracted by adsorbing nitrogen by raising it, desorbing the adsorbed nitrogen by lowering pressure by vacuum pump or opening to the atmosphere, and regenerating so that the adsorbent can adsorb nitrogen again to repeat oxygen Is a process of continuously taking out Therefore, the amount of pressure increase and decrease greatly affects the performance of the process. Generally, the higher the pressure in the adsorption process and the lower the pressure in the desorption process, the higher the oxygen recovery rate, and the greater the amount of air with a small amount of air. The amount of air supplied to the compressor is small because it can generate oxygen.

しかし、コンプレッサーの消費電力は、同じ空気供給量であれば吐出圧力が高いほど大きくなるため、なるべく低い圧力に於いて高い回収率で酸素を濃縮できる工夫が必要である。例えば特開平9-20503号公報では、吸着剤の劣化による吸着効率低下、それに伴うプロセス消費電力の向上に対し、吸着床内を二層構造とする方法が記載されている。具体的には、低性能吸着剤を圧縮空気の入口に配置することで、吸着剤を劣化させる主要因である水分を吸着させ、窒素/酸素の吸脱着に主に使用される高性能吸着剤を低性能吸着剤の下流に配置するように吸着床内を構成する。このことで、吸着剤の劣化によるコンプレッサーの仕事量の増大をおさえ、経時的な消費電力の上昇を防止することができる。   However, since the power consumption of the compressor increases as the discharge pressure increases with the same air supply amount, it is necessary to devise a technique that can concentrate oxygen with a high recovery rate at as low a pressure as possible. For example, Japanese Patent Application Laid-Open No. 9-20503 describes a method in which the inside of the adsorption bed has a two-layer structure for reducing the adsorption efficiency due to the deterioration of the adsorbent and improving the process power consumption associated therewith. Specifically, by placing a low-performance adsorbent at the inlet of compressed air, it adsorbs moisture, which is the main factor that degrades the adsorbent, and is used mainly for adsorption / desorption of nitrogen / oxygen. The inside of the adsorption bed is configured so as to be disposed downstream of the low performance adsorbent. As a result, an increase in the work amount of the compressor due to the deterioration of the adsorbent can be suppressed, and an increase in power consumption over time can be prevented.

また、特開2002-79030号公報では、特に医療用酸素濃縮器において、使用される流量設定ポイントが複数点あるにもかかわらず,そのいずれの点においても同様の消費電力となる点を課題とし、流量設定値によって均圧弁の動作/非動作を制御することで、コンプレッサーの仕事量をその流量設定値に必要な最低限の値に抑え、消費電力を低減する方法が記載されてある。   Japanese Patent Laid-Open No. 2002-79030 has a problem in that, even in a medical oxygen concentrator, although there are a plurality of flow rate setting points used, the power consumption is the same at any point. A method is described in which the operation / non-operation of the pressure equalizing valve is controlled according to the flow rate setting value, so that the work amount of the compressor is suppressed to the minimum value necessary for the flow rate setting value, and the power consumption is reduced.

特開平9-141038号公報では、圧縮機の下流であって吸着床の上流となる位置に吸着床の3倍以上の容積となる空気タンクを取り付け吸着剤の吸着効率を上昇させることによって、コンプレッサーに要求される仕事量を減らす方法が記載されてある。   In Japanese Patent Application Laid-Open No. 9-141038, an air tank having a volume three times larger than that of the adsorption bed is installed at a position downstream of the compressor and upstream of the adsorption bed, thereby increasing the adsorption efficiency of the adsorbent. Describes how to reduce the amount of work required.

また同時に、配管および電磁弁の圧力損失を低減することにより、吸着工程に於いてはコンプレッサーから供給される圧縮空気の圧力をなるべく低下させずに吸着筒へ供給し、脱着工程に於いては吸着筒内の圧力をなるべく下げることが必要である。しかしながら、電磁弁における圧力損失を下げるために口径の大きい電磁弁を用いると、弁の切替に大きな力を必要とし、結果として電磁弁の消費電力を上昇させてしまうという問題がある。   At the same time, by reducing the pressure loss of the piping and solenoid valve, in the adsorption process, the pressure of compressed air supplied from the compressor is supplied to the adsorption cylinder without being reduced as much as possible, and in the desorption process, the adsorption is performed. It is necessary to reduce the pressure in the cylinder as much as possible. However, when a solenoid valve having a large diameter is used to reduce pressure loss in the solenoid valve, there is a problem that a large force is required for switching the valve, resulting in an increase in power consumption of the solenoid valve.

この対策として、電磁弁にパイロット弁を用いることで消費電力の低減を図る方法も複数開示されている。例えば、特開2005-329251号公報では、従来主流の直動式電磁弁を用いる場合よりも、パイロット式電磁弁を用いることで、消費電力の低減が図られるとの記載がある。さらに特開2006-62932号公報では、パイロット式電磁弁の数ある種類の中でも、使用する弁種を摺動の少ないダイアフラム弁にすることにより、流量損失を低下させ、消費電力の上昇を防止できるとしている。   As a countermeasure, a plurality of methods for reducing power consumption by using a pilot valve as an electromagnetic valve have been disclosed. For example, Japanese Patent Laid-Open No. 2005-329251 describes that power consumption can be reduced by using a pilot type electromagnetic valve, compared to the case of using a conventional mainstream direct acting type electromagnetic valve. Furthermore, in Japanese Patent Laid-Open No. 2006-62932, among a number of types of pilot-type solenoid valves, a flow rate loss can be reduced and an increase in power consumption can be prevented by making the valve type used a diaphragm valve with less sliding. It is said.

ダイアフラム型パイロット弁の構造は図3のようになっており、主弁2の開閉はダイアフラム14の上下動によって行われる。ダイアフラムの上部空間にはパイロットガス出入り口19を介してパイロットガスを導入・排気することができる。パイロット弁3は小型の直動式3方電磁弁で、パイロットガス出入り口19の接続方向をパイロットガス供給口20側と、パイロットガス排気口21側に切り替えている。また、ダイアフラムは上方からばね16によって押さえつけられている。   The structure of the diaphragm type pilot valve is as shown in FIG. 3, and the main valve 2 is opened and closed by moving the diaphragm 14 up and down. Pilot gas can be introduced into and exhausted from the upper space of the diaphragm through the pilot gas inlet / outlet 19. The pilot valve 3 is a small direct acting three-way solenoid valve, and the connection direction of the pilot gas inlet / outlet port 19 is switched between the pilot gas supply port 20 side and the pilot gas exhaust port 21 side. The diaphragm is pressed by a spring 16 from above.

このような構成の弁に於いては、パイロット弁3がoffとなっている場合、パイロットガス供給口20とパイロットガス出入り口19が接続され、ダイアフラム14上方の空間はパイロットガス圧力Phまで加圧される(図4)。この状態で、ガス入り口圧Pinとガス出口圧Poutがダイアフラム14を押す力がパイロットガスPhがダイアフラム14を押す力とばね力の合計よりも小さければダイアフラムは下方に移動し、ガス入り口17とガス出口18の間を遮断する。通常、PinはPoutと等しいかより大きいので、パイロットガス供給口20とガス入り口17を接続しておけば、PinとPhは等しくなり、ばね力によりダイアフラムは下方に移動するので、このような接続方法を使用する場合が多い。実施例に於いても同様の構成となっている。   In the valve having such a configuration, when the pilot valve 3 is off, the pilot gas supply port 20 and the pilot gas inlet / outlet port 19 are connected, and the space above the diaphragm 14 is pressurized to the pilot gas pressure Ph. (FIG. 4). In this state, if the force at which the gas inlet pressure Pin and the gas outlet pressure Pout push the diaphragm 14 is smaller than the sum of the force by which the pilot gas Ph pushes the diaphragm 14 and the spring force, the diaphragm moves downward, the gas inlet 17 and the gas The space between the outlets 18 is blocked. Usually, since Pin is equal to or larger than Pout, if the pilot gas supply port 20 and the gas inlet 17 are connected, Pin and Ph are equal, and the diaphragm moves downward by the spring force. Often use method. The configuration is the same in the embodiment.

一方、パイロット弁3がonとなった場合、パイロットガス排出口21とパイロットガス出入り口19が接続され、ダイアフラム上方の空間の圧力はPlまで低下する(図5)。通常はパイロットガス排出口21はガス出口18に接続、または大気解放されており、PinがPoutより十分大きい、あるいはPin,Poutが大気圧より十分大きければダイアフラムは上方に移動してガス入り口17とガス出口18が連通する。   On the other hand, when the pilot valve 3 is turned on, the pilot gas discharge port 21 and the pilot gas inlet / outlet port 19 are connected, and the pressure in the space above the diaphragm drops to Pl (FIG. 5). Normally, the pilot gas discharge port 21 is connected to the gas outlet 18 or opened to the atmosphere. If Pin is sufficiently larger than Pout, or if Pin and Pout are sufficiently larger than atmospheric pressure, the diaphragm moves upward to connect to the gas inlet 17. A gas outlet 18 communicates.

以上のような原理でバルブの開閉を行うため、パイロット空気を切り替えるためのパイロット弁は主弁のダイアフラム上部の空間を迅速に加圧・排気するために必要な程度に流路抵抗が低ければよく、パイロット弁を非常に小型にでき、消費電力も大きく削減できる。また、主弁はパイロット空気によって駆動されるものであるから、それ自体は電力を消費しない。そのため、圧力損失を低く抑えながら電磁弁の消費電力を大幅に削減することができる。   In order to open and close the valve according to the principle described above, the pilot valve for switching the pilot air only needs to have a flow resistance as low as necessary to quickly pressurize and exhaust the space above the diaphragm of the main valve. The pilot valve can be made very small and the power consumption can be greatly reduced. Moreover, since the main valve is driven by pilot air, it does not consume power by itself. Therefore, the power consumption of the solenoid valve can be greatly reduced while keeping the pressure loss low.

しかしながら、上記構成を酸素濃縮器の排気弁に適用しようとした場合、減圧・脱着が進んで吸着筒の圧力が低下してくると、上述Pinが低下してくるので、Plを大気圧まで低下させても、PlとPinの圧力差が十分得られず、ダイアフラムが下降し弁が閉じてしまう。そのため、ある一定圧力以下に吸着筒を減圧できない、という状態が生じる。結果として、吸着筒の最大圧力と最低圧力の差が減少し、プロセスの効率が低下するため、結果としてコンプレッサーの消費電力を上昇させることになる。   However, when the above configuration is applied to the exhaust valve of the oxygen concentrator, if the pressure reduction / desorption progresses and the pressure in the adsorption cylinder decreases, the above-mentioned Pin decreases, so Pl decreases to atmospheric pressure. Even if this is done, the pressure difference between Pl and Pin cannot be obtained sufficiently, the diaphragm descends and the valve closes. Therefore, a state occurs in which the adsorption cylinder cannot be depressurized below a certain pressure. As a result, the difference between the maximum pressure and the minimum pressure in the adsorption cylinder is reduced and the process efficiency is lowered, resulting in an increase in power consumption of the compressor.

この対策としては、別途真空ポンプなど真空源を準備してパイロット空気排出口を真空源に接続することがあげられる。しかしこの方法だと真空源を新たに準備する必要があり、またそれにより消費電力が上昇することとなる。以上のように、電磁弁の消費電力を抑えたまま、排気弁の圧力損失を最小限にする方法が求められていた。   As a countermeasure, a vacuum source such as a vacuum pump is separately prepared and the pilot air discharge port is connected to the vacuum source. However, with this method, it is necessary to prepare a new vacuum source, and this leads to an increase in power consumption. As described above, a method for minimizing the pressure loss of the exhaust valve while reducing the power consumption of the solenoid valve has been demanded.

上記のような課題を解決するために発明者は鋭意検討した結果、パイロット式電磁弁として、少ない圧力差で駆動が可能であるダイアフラム式弁を用いた上で、パイロット空気排出先として、空気供給手段の吸入側配管内を選択することによって、パイロット式電磁弁に必要な差圧を低減することができることを見出した。   As a result of intensive studies by the inventors to solve the above-mentioned problems, as a pilot type solenoid valve, a diaphragm type valve that can be driven with a small pressure difference is used. It has been found that the pressure difference required for the pilot solenoid valve can be reduced by selecting the inside of the suction side pipe of the means.

すなわち、本発明は、少なくとも、窒素を酸素より優先的に吸着する吸着剤を収容した1本以上の吸着筒と、大気を空気吸入口より取り入れ、該吸着筒に圧縮された原料空気を供給する空気圧縮供給手段と、該吸着筒への空気の供給、排気を切り替えるためのガス流路切替手段とを有し、該空気圧縮供給手段から該切替手段を通じて該吸着筒に原料空気を供給し、該吸着筒内部を加圧して該供給空気中の窒素を該吸着剤に吸着させ、吸着されなかった酸素を製品ガスとして取り出す吸着工程、該吸着筒内部を該切替手段を通じて排気し、該吸着剤に吸着した窒素を脱着させて排出する脱着工程を繰り返し行うことにより、空気中の酸素を濃縮して取り出す圧力スイング吸着型酸素濃縮器に於いて、該切替手段がパイロット式電磁弁であり、パイロット空気の排出圧力を大気圧より低い圧力で排気するパイロット空気排気機構を備えることを特徴とする圧力スイング吸着型酸素濃縮器を提供するものである。   That is, the present invention includes at least one adsorption cylinder containing an adsorbent that preferentially adsorbs nitrogen over oxygen, and takes in air from an air inlet and supplies compressed raw air to the adsorption cylinder. Air compression supply means, and supply of air to the adsorption cylinder, gas flow path switching means for switching the exhaust, supplying raw air to the adsorption cylinder from the air compression supply means through the switching means, An adsorption step of pressurizing the inside of the adsorption cylinder to adsorb nitrogen in the supply air to the adsorbent and taking out unadsorbed oxygen as product gas, exhausting the inside of the adsorption cylinder through the switching means, and the adsorbent In a pressure swing adsorption type oxygen concentrator that concentrates and extracts oxygen in the air by repeatedly desorbing and desorbing nitrogen adsorbed on the gas, the switching means is a pilot solenoid valve, There is provided a pressure swing adsorption-type oxygen concentrator characterized in that it comprises a pilot air exhaust mechanism for exhausting the exhaust pressure of the lot air at a pressure lower than atmospheric pressure.

また本発明は、前述に加え、該空気圧縮供給手段の原料空気取り入れ口に空気流入量を制限する流路抵抗手段を備え、該パイロット空気排気機構が、該パイロット式電磁弁のパイロット空気排出流路と該流路抵抗手段と該空気圧縮供給手段の間の空気吸入流路内とを接続する流路であることを特徴とする圧力スイング吸着型酸素濃縮器を提供するものである。   In addition to the above, the present invention further comprises flow path resistance means for restricting the air inflow amount at the raw air intake port of the air compression supply means, and the pilot air exhaust mechanism is connected to the pilot air discharge flow of the pilot solenoid valve. The present invention provides a pressure swing adsorption type oxygen concentrator, characterized in that it is a flow path connecting a flow path, the flow path resistance means, and the inside of an air suction flow path between the air compression supply means.

また本発明は、前述に加え、該流路抵抗手段が、該空気吸入口から放出される騒音を低減するための騒音低減手段であることを特徴とする圧力スイング吸着型酸素濃縮器を提供するものである。   In addition to the above, the present invention provides a pressure swing adsorption type oxygen concentrator, wherein the flow path resistance means is a noise reduction means for reducing noise released from the air inlet. Is.

また本発明は、前述に加え、該パイロット式電磁弁の主弁がダイアフラム型であること、該排出圧力が、ゲージ圧にして0KPa未満−10kPa以上であることを特徴とする圧力スイング吸着型酸素濃縮器を提供するものである。   Further, in addition to the above, the present invention provides a pressure swing adsorption type oxygen, characterized in that the main valve of the pilot type solenoid valve is a diaphragm type, and the discharge pressure is less than 0 Kpa to 10 kPa or more in terms of gauge pressure. A concentrator is provided.

本発明の圧力スイング吸着型酸素濃縮器は、酸素濃縮プロセスの性能を大きく左右する排気弁の圧力損失を低減し、電磁弁の消費電力とコンプレッサーの消費電力を同時に低減する事が可能となり、従来の装置よりもさらに低消費電力の圧力スイング吸着型酸素濃縮器が実現可能となる。   The pressure swing adsorption type oxygen concentrator of the present invention can reduce the pressure loss of the exhaust valve, which greatly affects the performance of the oxygen concentration process, and can simultaneously reduce the power consumption of the solenoid valve and the power consumption of the compressor. Thus, a pressure swing adsorption type oxygen concentrator with lower power consumption than that of the above apparatus can be realized.

図1に本発明の好ましい実施態様例を示す。大気中からサイレンサー12を通って、コンプレッサー1によって加圧された空気は加圧弁主弁2aまたは2bをとおり、吸着筒8aまたは8bに導かれる。吸着筒の内部には窒素を酸素より優先的に吸着する能力をもつ吸着剤が内蔵されており(図には明示されていない)、そこで導かれた空気中の窒素が吸着除去され、残った酸素が逆止弁9aまたは9bを通って製品タンク(11)で一時貯蔵され、製品ガスとして取り出される。吸着剤に吸着された窒素ガスは排気弁主弁4bまたは4aを通り、排気サイレンサー13を通って大気中に放出される。   FIG. 1 shows a preferred embodiment of the present invention. The air pressurized by the compressor 1 through the silencer 12 from the atmosphere passes through the pressurizing valve main valve 2a or 2b and is guided to the adsorption cylinder 8a or 8b. An adsorbent with the ability to preferentially adsorb nitrogen over oxygen is built in the adsorption cylinder (not shown in the figure), and the nitrogen in the air introduced there is adsorbed and removed and remains. Oxygen is temporarily stored in the product tank (11) through the check valve 9a or 9b and taken out as product gas. The nitrogen gas adsorbed by the adsorbent passes through the exhaust valve main valve 4b or 4a, and is released into the atmosphere through the exhaust silencer 13.

この実施例で示された装置の動作は以下の通りである。まず、吸着筒8aの加圧弁主弁2aが開き減圧弁主弁4aが閉じるため、コンプレッサーにより圧縮された空気が吸着筒8aの原料端に導入される。すると吸着筒8aの圧力が上昇する。内部の吸着剤は接触するガスの窒素分圧が高いほどより多くの窒素を吸着するが、酸素の吸着量は少ないため、導入された空気中の窒素分子が優先的に吸着され、酸素分子は殆ど吸着されない。したがって、吸着筒の製品端からは窒素分子が取り除かれ、酸素濃度が上昇したガスが流出する。このとき均圧弁9は閉じているので、流出したガスは逆止弁10aを通って製品タンク11に一旦貯蔵された後製品ガスとして取り出される。以上の工程を加圧・吸着工程と呼ぶ。   The operation of the apparatus shown in this embodiment is as follows. First, since the pressurizing valve main valve 2a of the adsorption cylinder 8a is opened and the pressure reducing valve main valve 4a is closed, the air compressed by the compressor is introduced into the raw material end of the adsorption cylinder 8a. Then, the pressure in the adsorption cylinder 8a increases. The adsorbent inside adsorbs more nitrogen as the nitrogen partial pressure of the gas in contact with it is higher, but because the amount of oxygen adsorbed is smaller, nitrogen molecules in the introduced air are preferentially adsorbed, and oxygen molecules Almost no adsorption. Therefore, nitrogen molecules are removed from the product end of the adsorption cylinder, and the gas having an increased oxygen concentration flows out. Since the pressure equalizing valve 9 is closed at this time, the outflow gas passes through the check valve 10a and is temporarily stored in the product tank 11 and then taken out as product gas. The above process is called a pressurization / adsorption process.

このとき減圧弁主弁4bは開き加圧弁主弁2bは閉じているため、吸着筒8bは排気されて圧力が低下する。吸着剤は、ガスの圧力が低下すると、吸着した窒素を放出する性質があるため、吸着剤から窒素が放出され、減圧弁主弁4bを通って、窒素ガスが排気される。これを減圧・脱着工程と呼ぶ。   At this time, since the pressure reducing valve main valve 4b is opened and the pressurizing valve main valve 2b is closed, the adsorption cylinder 8b is exhausted and the pressure is reduced. Since the adsorbent has a property of releasing adsorbed nitrogen when the gas pressure decreases, nitrogen is released from the adsorbent, and the nitrogen gas is exhausted through the pressure reducing valve main valve 4b. This is called a pressure reduction / desorption process.

次に加圧弁主弁2a,2bおよび減圧弁主弁4a,4bの状態は保持したまま、均圧弁9が開く。すると、吸着筒aは、コンプレッサーからの圧縮空気の供給・吸着剤の窒素の吸着・酸素が濃縮されたガスの流出・逆止弁10aを経由した製品タンク11への酸素濃縮ガスの供給を維持したままで、吸着筒8aの製品端から吸着筒8bの製品端へ酸素濃縮ガスの還流が行われる。この工程を吸着・パージガス供給工程と呼ぶ。   Next, the pressure equalizing valve 9 is opened while maintaining the states of the pressurizing valve main valves 2a and 2b and the pressure reducing valve main valves 4a and 4b. Then, the adsorption cylinder a maintains the supply of compressed air from the compressor, the adsorption of nitrogen from the adsorbent, the outflow of oxygen-enriched gas, and the supply of the oxygen-enriched gas to the product tank 11 via the check valve 10a. The oxygen-enriched gas is refluxed from the product end of the adsorption cylinder 8a to the product end of the adsorption cylinder 8b. This process is called an adsorption / purge gas supply process.

また、吸着筒8bに酸素濃縮ガスの還流が行われることによって、吸着筒b内の窒素ガス分圧はさらに低下し、吸着剤からの窒素ガス放出が促進される。この工程を脱着・パージ工程と呼ぶ。   In addition, when the oxygen-enriched gas is refluxed to the adsorption cylinder 8b, the nitrogen gas partial pressure in the adsorption cylinder b is further reduced, and the release of nitrogen gas from the adsorbent is promoted. This process is called a desorption / purge process.

次に、加圧弁主弁2aおよび減圧弁主弁4aの状態は保ったまま、加圧弁主弁2bが開き減圧弁主弁4bが閉じることによって、吸着筒8aおよびコンプレッサーから吸着筒8bに圧縮空気が供給される。吸着筒8aにおいては製品端からは酸素濃縮ガスが、原料端からは圧縮空気が抜き出されるため圧力が低下し、逆止弁が閉じて製品タンクへの酸素濃縮ガスの供給は停止する。これを降圧均圧工程と呼ぶ。   Next, the pressurized valve main valve 2b is opened and the reduced pressure valve main valve 4b is closed while maintaining the state of the pressurizing valve main valve 2a and the pressure reducing valve main valve 4a, so that compressed air is supplied from the adsorption cylinder 8a and the compressor to the adsorption cylinder 8b. Is supplied. In the adsorption cylinder 8a, the oxygen-enriched gas is extracted from the product end and the compressed air is extracted from the raw material end, so that the pressure is reduced, the check valve is closed, and the supply of the oxygen-enriched gas to the product tank is stopped. This is called a step-down pressure equalization step.

一方、吸着筒8bに於いては吸着筒原料端からは圧縮空気が、製品端からは酸素濃縮ガスが流入して圧力が上昇する。これを昇圧均圧工程と呼ぶ。
その後は吸着筒8aと8bが交替して前述の工程を繰り返す。以上のようにして連続的に酸素濃縮ガスを製品ガスとして取り出すことができる。
On the other hand, in the adsorption cylinder 8b, compressed air flows in from the adsorption cylinder raw material end, and oxygen-enriched gas flows in from the product end, and the pressure rises. This is called a pressure equalizing step.
Thereafter, the suction cylinders 8a and 8b are replaced and the above-described steps are repeated. As described above, the oxygen-enriched gas can be continuously taken out as a product gas.

加圧弁及び減圧弁の構成は以下の通りである。加圧弁にはパイロット式ダイアフラム弁を用いている。前述の通り、加圧弁に於いては、パイロット空気供給口はバルブ入り口と同様にコンプレッサーの吐出口に接続され、パイロット空気排気口は大気開放されている。バルブ閉時はダイアフラム上方の空間の圧力はバルブ入り口、すなわちコンプレッサー吐出口の圧力と等しくなり、ばね力とダイアフラム上方空間の圧力による力の合計がバルブ入り口および出口の圧力による力の合計よりも大きくなりバルブは閉じる。バルブ開時は、ダイアフラム上方の空間は大気圧まで減圧されるのに対し、コンプレッサー吐出圧力および吸着筒の圧力は大気圧より十分高いので、バルブは開く。   The configuration of the pressurizing valve and the pressure reducing valve is as follows. A pilot diaphragm valve is used as the pressurizing valve. As described above, in the pressurizing valve, the pilot air supply port is connected to the discharge port of the compressor similarly to the valve inlet, and the pilot air exhaust port is open to the atmosphere. When the valve is closed, the pressure in the space above the diaphragm is equal to the pressure at the valve inlet, that is, the compressor outlet, and the sum of the force due to the spring force and the pressure above the diaphragm is greater than the sum of the forces due to the pressure at the valve inlet and outlet. The valve becomes closed. When the valve is opened, the space above the diaphragm is reduced to atmospheric pressure, while the compressor discharge pressure and the pressure of the adsorption cylinder are sufficiently higher than atmospheric pressure, so the valve opens.

減圧弁に関しても同様な構成をとっているが、パイロットガス排気口21はコンプレッサー1と吸気サイレンサー12を繋ぐコンプレッサー空気吸入流路に接続されている。通常のパイロット式電磁弁に於いては前述の通りパイロットガス排出口21はガス出口18に接続、または大気解放されているが、このような通常の構成では減圧弁主弁4が開き、吸着筒8が減圧されて大気圧に近くなると、ガス入り口圧Pinおよびガス出口圧Poutがパイロットガス排出圧Plとほぼ等しくなり、ダイアフラムを押し上げる力が失われて主弁4が閉じてしまう。そのため、吸着筒の圧力が一定の圧力まで下がった時点で吸着筒をそれ以上減圧することができなくなる。そのため、吸着剤に吸着された窒素を十分に排出することができなくなり、製品ガスの酸素濃度が低下する。   The pressure reducing valve has the same configuration, but the pilot gas exhaust port 21 is connected to a compressor air intake passage that connects the compressor 1 and the intake silencer 12. In a normal pilot type solenoid valve, the pilot gas discharge port 21 is connected to the gas outlet 18 or released to the atmosphere as described above. In such a normal configuration, the pressure reducing valve main valve 4 is opened and the adsorption cylinder is opened. When 8 is reduced to near atmospheric pressure, the gas inlet pressure Pin and the gas outlet pressure Pout become substantially equal to the pilot gas discharge pressure Pl, and the force for pushing up the diaphragm is lost and the main valve 4 is closed. Therefore, when the pressure in the adsorption cylinder is lowered to a certain pressure, the adsorption cylinder cannot be further depressurized. Therefore, nitrogen adsorbed by the adsorbent cannot be exhausted sufficiently, and the oxygen concentration of the product gas is lowered.

これを回復するためには、コンプレッサーの吐出圧を上昇させ、吸着剤の最大の吸着量を増やすか、コンプレッサーの供給流量を上昇させ、吸着筒に送る酸素分子の数を増やす必要があり、いずれも消費電力増大に繋がる。   In order to recover this, it is necessary to increase the discharge pressure of the compressor and increase the maximum adsorption amount of the adsorbent or increase the supply flow rate of the compressor and increase the number of oxygen molecules sent to the adsorption cylinder. Leads to an increase in power consumption.

それに対して、本実施例ではパイロットガス排気口21はコンプレッサー1と吸気サイレンサー12を繋ぐコンプレッサー空気吸入流路に接続されている。通常、吸気サイレンサーの目的はコンプレッサーの吸気音を減少させることにあり、その原理は適当な流路抵抗をコンプレッサー空気吸入口との間に設けることによりコンプレッサーの吸気流量を平滑化するものである。そのために、コンプレッサーと吸気サイレンサーの間の空気吸入流路はわずかな陰圧になっている。その圧力は通常大気圧と殆ど同じ圧力から-10kPa程度までの間であるが、主弁がダイアフラム型のものであればその程度の圧力で十分ダイアフラムを駆動することができる。
流路抵抗として、吸気サイレンサーの他、防塵用吸気フィルター、流路絞り手段等を用いることも可能である。
On the other hand, in this embodiment, the pilot gas exhaust port 21 is connected to a compressor air intake passage connecting the compressor 1 and the intake silencer 12. Usually, the purpose of the intake silencer is to reduce the intake noise of the compressor, and its principle is to smooth the intake flow rate of the compressor by providing an appropriate flow path resistance between the compressor air intake port. Therefore, the air suction flow path between the compressor and the intake silencer has a slight negative pressure. The pressure is usually between about the same pressure as the atmospheric pressure and about -10 kPa. However, if the main valve is a diaphragm type, the diaphragm can be sufficiently driven with such a pressure.
As the flow path resistance, it is possible to use a dust-proof intake filter, a flow path throttle means, etc. in addition to the intake silencer.

以上のような発明により、圧力スイング吸着型酸素濃縮器に於いて、酸素濃縮プロセスの性能を大きく左右する排気弁の圧力損失を低減し、電磁弁の消費電力とコンプレッサーの消費電力を同時に低減する事が可能となり、従来の装置よりさらに低消費電力の圧力スイング吸着型酸素濃縮器が実現可能となる。   By the invention as described above, in the pressure swing adsorption type oxygen concentrator, the pressure loss of the exhaust valve that greatly affects the performance of the oxygen concentration process is reduced, and the power consumption of the solenoid valve and the power consumption of the compressor are simultaneously reduced. This makes it possible to realize a pressure swing adsorption oxygen concentrator with lower power consumption than conventional devices.

本発明の圧力スイング吸着型酸素濃縮器の実施態様を示すフロー構成図。The flow block diagram which shows the embodiment of the pressure swing adsorption type oxygen concentrator of this invention. 従来の圧力スイング吸着型酸素濃縮器の実施態様を示すフロー構成図。The flow block diagram which shows the embodiment of the conventional pressure swing adsorption type oxygen concentrator. ダイアフラム型パイロット弁の構成図。The block diagram of a diaphragm type pilot valve. パイロット弁がoff状態におけるダイアフラム弁の構成図。The block diagram of a diaphragm valve in case a pilot valve is an OFF state. パイロット弁がon状態におけるダイアフラム弁の構成図。The block diagram of the diaphragm valve in case a pilot valve is an ON state.

Claims (5)

少なくとも、窒素を酸素より優先的に吸着する吸着剤を収容した1本以上の吸着筒と、大気を空気吸入口より取り入れ、該吸着筒に圧縮された原料空気を供給する空気圧縮供給手段と、該吸着筒への空気の供給、排気を切り替えるためのガス流路切替手段とを有し、該空気圧縮供給手段から該切替手段を通じて該吸着筒に原料空気を供給し、該吸着筒内部を加圧して該供給空気中の窒素を該吸着剤に吸着させ、吸着されなかった酸素を製品ガスとして取り出す吸着工程、該吸着筒内部を該切替手段を通じて排気し、該吸着剤に吸着した窒素を脱着させて排出する脱着工程を繰り返し行うことにより、空気中の酸素を濃縮して取り出す圧力スイング吸着型酸素濃縮器に於いて、該切替手段がパイロット式電磁弁であり、パイロット空気の排出圧力を大気圧より低い圧力で排気するパイロット空気排気機構を備えることを特徴とする圧力スイング吸着型酸素濃縮器。   At least one adsorption cylinder containing an adsorbent that preferentially adsorbs nitrogen over oxygen; air compression supply means for taking in air from an air inlet and supplying compressed air into the adsorption cylinder; A gas flow path switching means for switching supply and exhaust of air to the adsorption cylinder, supplying raw air to the adsorption cylinder from the air compression supply means through the switching means, and adding the inside of the adsorption cylinder The adsorption step of adsorbing nitrogen in the supply air to the adsorbent and taking out unadsorbed oxygen as product gas, exhausting the inside of the adsorption cylinder through the switching means, and desorbing nitrogen adsorbed on the adsorbent In the pressure swing adsorption type oxygen concentrator that concentrates and extracts oxygen in the air by repeatedly performing the desorption step of discharging, the switching means is a pilot type solenoid valve, and the discharge pressure of the pilot air A pressure swing adsorption type oxygen concentrator comprising a pilot air exhaust mechanism that exhausts air at a pressure lower than atmospheric pressure. 該空気圧縮供給手段の原料空気取り入れ口に空気流入量を制限する流路抵抗手段を備え、該パイロット空気排気機構が、該パイロット式電磁弁のパイロット空気排出流路と該流路抵抗手段と該空気圧縮供給手段の間の空気吸入流路内とを接続する流路であることを特徴とする請求項1記載の圧力スイング吸着型酸素濃縮器。   The raw air intake port of the air compression supply means is provided with flow path resistance means for limiting the amount of air inflow, and the pilot air exhaust mechanism includes a pilot air discharge flow path of the pilot solenoid valve, the flow path resistance means, 2. The pressure swing adsorption type oxygen concentrator according to claim 1, wherein the pressure swing adsorption oxygen concentrator is a flow path connecting the inside of the air suction flow path between the compressed air supply means. 該流路抵抗手段が、該空気吸入口から放出される騒音を低減するための騒音低減手段であることを特徴とする請求項2記載の圧力スイング吸着型酸素濃縮器。   3. The pressure swing adsorption type oxygen concentrator according to claim 2, wherein the flow path resistance means is noise reduction means for reducing noise emitted from the air inlet. 該パイロット式電磁弁の主弁がダイアフラム型であることを特徴とする請求項1〜3の何れかに記載の圧力スイング吸着型酸素濃縮器。   The pressure swing adsorption type oxygen concentrator according to any one of claims 1 to 3, wherein a main valve of the pilot type solenoid valve is a diaphragm type. 該排出圧力が、ゲージ圧にして0KPa未満−10kPa以上であることを特徴とする請求項1〜4の何れかに記載の圧力スイング吸着型酸素濃縮器。   The pressure swing adsorption type oxygen concentrator according to any one of claims 1 to 4, wherein the discharge pressure is a gauge pressure of less than 0 KPa and -10 kPa or more.
JP2007072467A 2007-03-20 2007-03-20 Pressure swing adsorption oxygen concentrator Expired - Fee Related JP4799454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072467A JP4799454B2 (en) 2007-03-20 2007-03-20 Pressure swing adsorption oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072467A JP4799454B2 (en) 2007-03-20 2007-03-20 Pressure swing adsorption oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2008229493A true JP2008229493A (en) 2008-10-02
JP4799454B2 JP4799454B2 (en) 2011-10-26

Family

ID=39902927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072467A Expired - Fee Related JP4799454B2 (en) 2007-03-20 2007-03-20 Pressure swing adsorption oxygen concentrator

Country Status (1)

Country Link
JP (1) JP4799454B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200387A (en) * 2011-03-25 2012-10-22 Fujikura Rubber Ltd Oxygen tank unit for oxygen concentrator
JP2013220979A (en) * 2012-04-18 2013-10-28 Air Water Inc Oxygen concentrator and pilot valve unit used therefor
US20150251126A1 (en) * 2012-10-16 2015-09-10 Nano-Porous Solutions Limited Pressure swing adsorption apparatus
CN109534295A (en) * 2018-12-27 2019-03-29 贵安新区华旭科技开发有限公司 A kind of Portable oxygen-preparing mechanism oxygen control method and control circuit
CN111646434A (en) * 2020-07-10 2020-09-11 慨迩医疗科技(成都)有限公司 Molecular sieve bed exhaust end cover of integrated stop valve for portable oxygen generator
CN112569443A (en) * 2020-11-16 2021-03-30 尚铁军 Medical oxygen generator with low oxygen supply interval and oxygen generation method
CN112969859A (en) * 2018-11-09 2021-06-15 Smc 株式会社 Flow rate controller and driving device provided with same
WO2022186175A1 (en) * 2021-03-02 2022-09-09 帝人ファーマ株式会社 Oxygen concentration apparatus, control method, and control program
CN109534295B (en) * 2018-12-27 2024-04-26 贵安新区华旭科技开发有限公司 Oxygen production control method and control circuit of portable oxygen generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140619A (en) * 1985-12-12 1987-06-24 Teijin Ltd Oxygen enricher
JP2005111015A (en) * 2003-10-09 2005-04-28 Terumo Corp Oxygen concentrator
JP2006062932A (en) * 2004-08-30 2006-03-09 Ngk Spark Plug Co Ltd Oxygen concentrator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140619A (en) * 1985-12-12 1987-06-24 Teijin Ltd Oxygen enricher
JP2005111015A (en) * 2003-10-09 2005-04-28 Terumo Corp Oxygen concentrator
JP2006062932A (en) * 2004-08-30 2006-03-09 Ngk Spark Plug Co Ltd Oxygen concentrator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200387A (en) * 2011-03-25 2012-10-22 Fujikura Rubber Ltd Oxygen tank unit for oxygen concentrator
JP2013220979A (en) * 2012-04-18 2013-10-28 Air Water Inc Oxygen concentrator and pilot valve unit used therefor
US20150251126A1 (en) * 2012-10-16 2015-09-10 Nano-Porous Solutions Limited Pressure swing adsorption apparatus
US9480945B2 (en) * 2012-10-16 2016-11-01 Nano-Purification Solutions Ltd Pressure swing adsorption apparatus
CN112969859B (en) * 2018-11-09 2024-03-26 Smc 株式会社 Flow controller and driving device provided with same
CN112969859A (en) * 2018-11-09 2021-06-15 Smc 株式会社 Flow rate controller and driving device provided with same
CN109534295A (en) * 2018-12-27 2019-03-29 贵安新区华旭科技开发有限公司 A kind of Portable oxygen-preparing mechanism oxygen control method and control circuit
CN109534295B (en) * 2018-12-27 2024-04-26 贵安新区华旭科技开发有限公司 Oxygen production control method and control circuit of portable oxygen generator
CN111646434A (en) * 2020-07-10 2020-09-11 慨迩医疗科技(成都)有限公司 Molecular sieve bed exhaust end cover of integrated stop valve for portable oxygen generator
CN111646434B (en) * 2020-07-10 2024-04-05 慨迩医疗科技(成都)有限公司 Molecular sieve bed exhaust end cover of integrated stop valve for portable oxygen generator
CN112569443A (en) * 2020-11-16 2021-03-30 尚铁军 Medical oxygen generator with low oxygen supply interval and oxygen generation method
CN112569443B (en) * 2020-11-16 2022-12-13 上海扶弘康复设备有限公司 Medical oxygen generator with low oxygen supply interval and oxygen generation method
JP7454100B2 (en) 2021-03-02 2024-03-21 帝人ファーマ株式会社 Oxygen concentrator, control method and control program
JPWO2022186175A1 (en) * 2021-03-02 2022-09-09
WO2022186175A1 (en) * 2021-03-02 2022-09-09 帝人ファーマ株式会社 Oxygen concentration apparatus, control method, and control program

Also Published As

Publication number Publication date
JP4799454B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4799454B2 (en) Pressure swing adsorption oxygen concentrator
JP2008238076A (en) Pressure swing adsorption type oxygen concentrator
JP6198646B2 (en) Pressure fluctuation adsorption type hydrogen production method
US8945278B2 (en) Method and apparatus for concentrating ozone gas
JPWO2020196491A5 (en)
CN106512646B (en) Method for oxygen concentration and device with function of removing condensed water
JP5226282B2 (en) Oxygen concentrator
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JP7064835B2 (en) Gas separator
JP5007610B2 (en) Oxygen concentrator design method
JP4739662B2 (en) Oxygen concentrator
JP2005312766A (en) Oxygen enricher
JP4798076B2 (en) Oxygen concentrator
JPH11267439A (en) Gas separation and gas separator for performing same
JP4594223B2 (en) Nitrogen gas generator
JP4673440B1 (en) Target gas separation and recovery method
JP7037040B2 (en) Low oxygen concentration air supply device
JP4685662B2 (en) Gas separation method and apparatus used therefor
JP7454100B2 (en) Oxygen concentrator, control method and control program
JP2012110824A (en) Psa device
JP4750380B2 (en) Oxygen concentrator
JP2006061636A (en) Oxygen concentrator
JP3764370B2 (en) Gas concentrator
JPH0731826A (en) Gas concentrator
JPH0938443A (en) Gas separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4799454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees