JP4685662B2 - Gas separation method and apparatus used therefor - Google Patents

Gas separation method and apparatus used therefor Download PDF

Info

Publication number
JP4685662B2
JP4685662B2 JP2006056252A JP2006056252A JP4685662B2 JP 4685662 B2 JP4685662 B2 JP 4685662B2 JP 2006056252 A JP2006056252 A JP 2006056252A JP 2006056252 A JP2006056252 A JP 2006056252A JP 4685662 B2 JP4685662 B2 JP 4685662B2
Authority
JP
Japan
Prior art keywords
blower
stage
adsorption
blowers
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006056252A
Other languages
Japanese (ja)
Other versions
JP2006272325A (en
JP2006272325A5 (en
Inventor
篤 宮本
勝 池田
貴彦 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2006056252A priority Critical patent/JP4685662B2/en
Publication of JP2006272325A publication Critical patent/JP2006272325A/en
Publication of JP2006272325A5 publication Critical patent/JP2006272325A5/ja
Application granted granted Critical
Publication of JP4685662B2 publication Critical patent/JP4685662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、圧力真空スイング吸着(Pressure Vacuum Swing Adsorption、以下「PVSA」という)方式によるガス分離方法およびそれに用いる装置に関するものである。   The present invention relates to a gas separation method by a pressure vacuum swing adsorption (hereinafter referred to as “PVSA”) method and an apparatus used therefor.

従来から、空気等の混合ガスから酸素ガス等を分離するガス分離方法として、PVSA方式によるガス分離方法がよく用いられている。このガス分離方法を用いた酸素ガス発生装置は、一般に、2基の吸着塔と、原料空気供給用の単段式ルーツ型ブロワ(以下「原空ブロワ」という)と、減圧再生用の単段式ルーツ型ブロワ(以下「真空ブロワ」という)とから構成されており、基本的には、つぎの3つの工程を2つのサイクルで行うようにしている(図14参照)。すなわち、原料空気(N2 +O2 )を原空ブロワで圧縮して一方の吸着塔に供給しこの一方の吸着塔の吸着剤に窒素(N2 )を選択的に吸着させ、吸着しづらい酸素(O2 )を製品ガスとして取り出す吸着分離工程と、一方の吸着塔を真空ブロワにより減圧排気してこの一方の吸着塔の吸着剤に吸着している窒素を脱着させる減圧再生工程と、製品ガスの一部と大気を使って一方の吸着塔を大気圧付近まで昇圧させる復圧工程とからなり、2つのサイクル(1つのサイクルに、復圧工程と吸着分離工程とが組み込まれている)で、上記3つの工程をこの順で繰り返し行うようにしている。また、他方の吸着塔でも、2つのサイクルで上記3つの工程を所定の順で(この順は、一方の吸着塔の順に対応し、減圧再生工程,復圧工程,吸着分離工程の順となる)繰り返し行うようにしている。 Conventionally, as a gas separation method for separating oxygen gas or the like from a mixed gas such as air, a gas separation method based on the PVSA method is often used. In general, an oxygen gas generator using this gas separation method has two adsorption towers, a single-stage roots blower for supplying raw air (hereinafter referred to as “raw air blower”), and a single-stage for decompression regeneration. It is composed of a roots type blower (hereinafter referred to as “vacuum blower”), and basically the following three steps are performed in two cycles (see FIG. 14). That is, the raw air (N 2 + O 2 ) is compressed by an original blower and supplied to one adsorption tower, and nitrogen (N 2 ) is selectively adsorbed to the adsorbent of this one adsorption tower, which is difficult to adsorb. An adsorption separation step of taking out (O 2 ) as a product gas, a vacuum regeneration step of evacuating one of the adsorption towers by a vacuum blower and desorbing nitrogen adsorbed on the adsorbent of the one adsorption tower, and a product gas And a return pressure step that raises one adsorption tower to near atmospheric pressure using the atmosphere, and in two cycles (the return pressure step and the adsorption separation step are incorporated in one cycle) The above three steps are repeated in this order. In the other adsorption tower, the above three steps are performed in two cycles in a predetermined order (this order corresponds to the order of the one adsorption tower, followed by the decompression regeneration step, the decompression step, and the adsorption separation step). ) Repeatedly.

また、減圧再生用として、2段式ルーツ型ブロワが多く用いられている。この場合には、容量の異なる2台の真空ブロワを用意し、減圧再生工程において、まず、容量の大きい真空ブロワのみで減圧排気したのち、圧縮比が高くなってきた時点で、両真空ブロワを直列に繋いだ状態で減圧排気しているため、単段式ブロワを使用したときよりも減圧再生圧力を低くすることができる(例えば、特許文献1参照)。   Further, a two-stage roots type blower is often used for decompression regeneration. In this case, two vacuum blowers with different capacities are prepared, and in the decompression regeneration process, first, after evacuating only with a vacuum blower having a large capacity, the vacuum blowers are turned on when the compression ratio becomes high. Since decompression is performed while being connected in series, decompression regeneration pressure can be made lower than when a single-stage blower is used (see, for example, Patent Document 1).

また、PVSA方式によるガス分離方法において、1塔式の(すなわち、吸着塔が1基である)場合には、原料空気供給用と減圧再生用との双方を兼用する単段式ルーツ型ブロワだけを用いることも行われている。このものでは、2基の吸着塔を用いたものに比べ、製造費をコストダウンすることができ、製品が安価になる。   Further, in the gas separation method based on the PVSA method, in the case of a single tower type (that is, one adsorption tower), only a single-stage roots type blower that serves both as a raw air supply and a decompression regeneration is used. Is also used. In this case, the manufacturing cost can be reduced and the product becomes cheaper than that using two adsorption towers.

このようなものとして、図15に示すような、単一床圧力変化式吸着システム及び方法が提案されている。このシステムは、単一吸着床31と供給ブロワー/真空ブロワー兼用ブロワーユニット32等を備え、加圧/生成物回収のプロセスでは、ブロワーユニット32を通して単一吸着床31に原料空気を供給し、真空排気およびパージのプロセスでは、単一吸着床31内の気体をブロワーユニット32を通して大気に放出するようにしている(例えば、特許文献2参照)。
特開平10−296034号公報 特開平7−96128号公報
As such, a single bed pressure change adsorption system and method as shown in FIG. 15 has been proposed. This system includes a single adsorption bed 31 and a supply blower / vacuum blower unit 32 and the like. In the pressurization / product recovery process, raw air is supplied to the single adsorption bed 31 through the blower unit 32, and vacuum is supplied. In the exhaust and purge processes, the gas in the single adsorption bed 31 is discharged to the atmosphere through the blower unit 32 (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 10-296034 JP-A-7-96128

しかしながら、上記のように、2段式ルーツ型ブロワは、減圧再生用として用いられているが、吸着分離用としては用いられていないのが実情である。また、1塔式とし、単段式ルーツ型ブロワで原料空気供給用と減圧再生用との双方を兼用させる場合には、単段式ルーツ型ブロワの圧縮比が大きくなると、単段式ルーツ型ブロワに対する負荷が大きくなり、消費動力が増加する。一方、消費動力の低減を目指す場合には、原料空気供給時に圧力を低くし(すなわち、吸着塔内の加圧時の圧力を低くし)、減圧再生時に圧力を高くする(すなわち、吸着塔内の減圧時の圧力を高くする)必要があるが、上記加圧時の圧力を低くすると、吸着塔内の吸着剤の吸着圧力が低くなり、一方、上記減圧時に圧力を高くすると、上記吸着剤の再生圧力が高くなる。その結果、加圧時の吸着圧力と減圧時の再生圧力との圧力差が小さくなり、その分吸着剤の有効吸着量(この有効吸着量とは、吸着分離工程終了時に吸着剤に吸着しているガス量と減圧再生工程終了時に吸着剤に吸着しているガス量との差を意味している)が小さくなり、吸着剤を多量に充填する必要が生じる。また、単段式ルーツ型ブロワでは、設定圧力を機器仕様圧力の最大付近に設定しているため、運転に必要な消費動力も大きくなる。   However, as described above, the two-stage roots type blower is used for decompression regeneration, but is not actually used for adsorption separation. In addition, when a single-stage roots blower is used for both raw air supply and decompression regeneration, the single-stage roots type blower increases when the compression ratio of the single-stage roots blower increases. The load on the blower increases and power consumption increases. On the other hand, when aiming to reduce power consumption, the pressure is lowered when the raw material air is supplied (that is, the pressure during pressurization in the adsorption tower is lowered), and the pressure is increased during decompression regeneration (ie, inside the adsorption tower). However, if the pressure at the time of pressurization is reduced, the adsorption pressure of the adsorbent in the adsorption tower is lowered. On the other hand, if the pressure at the time of depressurization is increased, the adsorbent is reduced. The regeneration pressure increases. As a result, the pressure difference between the adsorption pressure at the time of pressurization and the regeneration pressure at the time of depressurization becomes small, and the effective adsorption amount of the adsorbent (this effective adsorption amount is absorbed by the adsorbent at the end of the adsorption separation process) This means a difference between the amount of gas present and the amount of gas adsorbed to the adsorbent at the end of the decompression regeneration process), and a large amount of adsorbent needs to be filled. Further, in the single-stage roots type blower, the set pressure is set near the maximum of the device specification pressure, so that the power consumption required for operation increases.

本発明は、このような事情に鑑みなされたもので、消費動力を低減させることができ、吸着分離,減圧再生の効率を上げて吸着剤の有効吸着量を大きくすることができるガス分離方法およびそれに用いる装置の提供をその目的とする。   The present invention has been made in view of such circumstances, a gas separation method capable of reducing power consumption, increasing the effective adsorption amount of the adsorbent by increasing the efficiency of adsorption separation and decompression regeneration, and The purpose is to provide a device used for the above.

上記の目的を達成するため、本発明は、圧力真空スイング吸着方式によるガス分離方法であって、原料ガス供給用ブロワと減圧再生用ブロワとの双方を兼用する複数段式ブロワを用い、吸着分離工程および減圧再生工程において、上記複数段式ブロワの段のブロワの圧縮比が所定の圧縮比より小さいときには、上記複数段式ブロワの段のブロワを並列運転し、上記複数段式ブロワの段のブロワの圧縮比が上記所定の圧縮比より大きくなると、上記複数段式ブロワの段のブロワを直列運転するようにしたガス分離方法を第1の要旨とし、圧力真空スイング吸着方式によるガス分離装置であって、特定ガスを選択的に吸着する吸着剤を充填した吸着塔と、吸着分離工程において上記吸着塔に原料ガスを供給する原料ガス供給路と、減圧再生工程において上記吸着塔を減圧して排気する排気路とを備え、上記原料ガス供給路に、原料空気供給用ブロワと減圧再生用ブロワとの双方を兼用する複数段式ブロワを配設した流路を設け、この流路で上記排気路の一部を兼用し、上記流路を、上記複数段式ブロワの段のブロワを並列に接続する並列状態と、上記複数段式ブロワの段のブロワを直列に接続する直列状態とに切り換え可能に構成し、吸着分離工程および減圧再生工程において、上記複数段式ブロワの段のブロワの圧縮比が所定の圧縮比より小さい状態では、上記流路を並列状態にし、上記複数段式ブロワの段のブロワの圧縮比が上記所定の圧縮比より大きい状態では、上記流路を直列状態するように構成したガス分離装置を第2の要旨とする。 In order to achieve the above object, the present invention is a gas separation method based on a pressure vacuum swing adsorption method, using a multistage blower that serves both as a source gas supply blower and a decompression regeneration blower, and performs adsorption separation. in step and vacuum regeneration step, the compression ratio of the blower of each stage of said plurality stage blower when less than the predetermined compression ratio, the blower of each stage of said plurality stage blowers operated in parallel, the plurality stage blowers When the compression ratio of each stage of the blower is larger than the predetermined compression ratio, the first aspect is a gas separation method in which the blowers of each stage of the multistage blower are operated in series. A gas separation device, an adsorption tower filled with an adsorbent that selectively adsorbs a specific gas, a raw material gas supply path for supplying the raw material gas to the adsorption tower in the adsorption separation step, A flow path provided with a multistage blower that serves as both a raw air supply blower and a reduced pressure regeneration blower in the raw material gas supply path. the provided, also serves as a part of the exhaust path in the flow path, the flow path, and a parallel state to connect the blower of each stage of said plurality stage blowers in parallel, each stage of said plurality stage blowers In the adsorption separation process and the decompression regeneration process, in the state where the blower compression ratio of each stage of the multistage blower is smaller than a predetermined compression ratio, the flow is the road parallel state, in the state the compression ratio is larger than the predetermined compression ratio of the blower of each stage of said plurality stage blower, a gas separation apparatus which is configured to the flow path in series state the second aspect And

すなわち、本発明のガス分離方法は、圧力真空スイング吸着方式によるガス分離方法であり、原料ガス供給用ブロワと減圧再生用ブロワとの双方を兼用する複数段式ブロワを用いるようにしている。そして、吸着分離工程および減圧再生工程において、上記複数段式ブロワの段のブロワの圧縮比が所定の圧縮比より小さいときには、上記複数段式ブロワの段のブロワを並列運転し、上記複数段式ブロワの段のブロワの圧縮比が上記所定の圧縮比より大きくなると、上記複数段式ブロワの段のブロワを直列運転するようにしている。このように、本発明のガス分離方法では、吸着分離工程において、上記複数段式ブロワの段のブロワの圧縮比が所定の圧縮比より小さいときには、上記複数段式ブロワの段のブロワを並列運転することにより、吸着塔内に供給する原料空気量を増大させ、短時間の運転で、吸着塔内の加圧時の圧力を高くすることができる。ついで、上記複数段式ブロワの段のブロワの圧縮比が上記所定の圧縮比より大きくなると、上記複数段式ブロワの段のブロワを直列運転することにより、小さな動力で吸着圧力を高くし、減圧再生圧力を低くすることができる。一方、減圧再生工程においても、上記複数段式ブロワの段のブロワの圧縮比が所定の圧縮比より小さいときには、上記複数段式ブロワの段のブロワを並列運転することにより、吸着塔からの排気量を増大させ、短時間の運転で、吸着塔内の減圧時の圧力を低くすることができる。 That is, the gas separation method of the present invention is a gas separation method based on a pressure vacuum swing adsorption method, and a multistage blower that serves both as a source gas supply blower and a decompression regeneration blower is used. Then, in the adsorptive separation step and the vacuum regeneration step, when the compression ratio of the blower of each stage of said plurality stage blower is smaller than a predetermined compression ratio is operated in parallel with the blower of each stage of said plurality stage blower, said plurality the compression ratio of the blower of each stage of the stage blower is greater than the predetermined compression ratio, so that series operated blower of each stage of said plurality stage blower. Thus, in the gas separation method of the present invention, in the adsorptive separation step, when the compression ratio of the blower of each stage of said plurality stage blower is smaller than a predetermined compression ratio, the blower of each stage of said plurality stage blowers By operating in parallel, the amount of raw material air supplied into the adsorption tower can be increased, and the pressure at the time of pressurization in the adsorption tower can be increased in a short time operation. Next, when the compression ratio of each stage of the multistage blower becomes larger than the predetermined compression ratio, the suction pressure is increased with small power by operating the blowers of each stage of the multistage blower in series. The decompression regeneration pressure can be lowered. On the other hand, also in the vacuum regeneration step, when the compression ratio of the blower of each stage of said plurality stage blower is smaller than a predetermined compression ratio, by parallel operation of the blower of each stage of said plurality stage blowers, from the adsorption tower The amount of exhaust gas in the adsorption tower can be increased, and the pressure during decompression in the adsorption tower can be lowered by a short time operation.

また、上記加圧時の圧力が高くなると、吸着塔内の吸着剤の吸着圧力も高くなるうえ(160kPa以上)、上記減圧時の圧力が低くなると、上記吸着剤の再生圧力が低くなり(40kPa以下)、その結果、加圧時の吸着圧力と減圧時の再生圧力との圧力差が大きくなり、その分吸着剤の有効吸着量が増大し、吸着剤の充填量を削減することができる。また、上記並列運転と直列運転の時間を調整することで、ブロワ能力(原料空気の供給量および消費動力)の調整が可能となり、この点からも、消費動力を低減化することができる。このような本発明は、1塔式の場合に、好適に用いられ、つぎの効果を奏する。すなわち、通常、2塔式もしくはそれ以上の吸着塔を備えるガス分離装置においては、原空ブロワと真空ブロワとを個別に要し、真空ブロワによる減圧再生工程の時間により運転サイクルが決定されている。そのため、原空ブロワの能力、例えば容量の大きさは、先に真空ブロワの能力により決定された運転サイクルにより決定されている。これに対し、1塔式のガス分離装置においては、原空ブロワと真空ブロワとが兼用されており、原空ブロワによる吸着分離工程と真空ブロワによる減圧再生工程とが他の影響を受けない。そのため、各工程において並列運転から直列運転への切替時間および各々の運転時間を適宜設定することで、最適な吸着圧力および減圧再生圧力を設定することができる。一方、本発明のガス分離装置によっても、上記の優れた効果を奏する。   Further, when the pressure at the time of pressurization increases, the adsorption pressure of the adsorbent in the adsorption tower also increases (160 kPa or more), and when the pressure at the time of depressurization decreases, the regeneration pressure of the adsorbent decreases (40 kPa). As a result, the pressure difference between the adsorption pressure at the time of pressurization and the regeneration pressure at the time of depressurization increases, and the effective adsorption amount of the adsorbent increases correspondingly, and the filling amount of the adsorbent can be reduced. Further, by adjusting the time between the parallel operation and the serial operation, it is possible to adjust the blower capacity (the supply amount of raw material air and the power consumption), and from this point, the power consumption can be reduced. The present invention is suitably used in the case of a single tower type, and has the following effects. That is, normally, in a gas separation apparatus having a two-column type or higher adsorption tower, an original blower and a vacuum blower are separately required, and the operation cycle is determined by the time of the decompression regeneration process by the vacuum blower. . Therefore, the capacity of the raw air blower, for example, the capacity is determined by the operation cycle previously determined by the capacity of the vacuum blower. On the other hand, in the single-column gas separation apparatus, the original empty blower and the vacuum blower are used together, and the adsorption separation process using the original empty blower and the decompression regeneration process using the vacuum blower are not affected by other influences. Therefore, the optimal adsorption pressure and reduced pressure regeneration pressure can be set by appropriately setting the switching time from parallel operation to series operation and the respective operation times in each step. On the other hand, the gas separation device of the present invention also exhibits the above excellent effects.

なお、本発明では、上記所定の圧縮比は、加圧時には、1.30〜1.60に設定され、好適には、1.40程度に設定されており、減圧時には、1.42〜2.45に設定され、好適には、1.65程度に設定されている。上記所定の圧縮比が加圧時に1.60を、減圧時に2.45を上回る場合には、ブロワへの負荷が大きくなり、消費動力が増大するという問題があり、加圧時に1.30を、減圧時に1.42を下回る場合には、ブロワの原料空気供給量もしくは排気ガス量が低下するため、製品発生量が減少するという問題がある。また、本発明において、「複数段式ブロワを用い」とは、複数台の単段式ブロワを用いる場合だけではなく、2段式一体型ブロワ(もしくは、複数段式一体型ブロワ)のように、1台で2段式ブロワ(もしくは、複数段式ブロワ)として作用するものを用いる場合や、単段式ブロワと2段式一体型ブロワ(もしくは、複数段式一体型ブロワ)とを組み合わせて用いる場合をも含むものである。   In the present invention, the predetermined compression ratio is set to 1.30 to 1.60 during pressurization, preferably about 1.40, and 1.42 to 2 during decompression. .45, and preferably about 1.65. When the predetermined compression ratio exceeds 1.60 at the time of pressurization and exceeds 2.45 at the time of depressurization, there is a problem that the load on the blower increases and the power consumption increases. If the pressure is lower than 1.42 at the time of decompression, the amount of raw material air supplied to the blower or the amount of exhaust gas is reduced, which causes a problem that the amount of product generated is reduced. Further, in the present invention, “using a multi-stage blower” is not limited to the case of using a plurality of single-stage blowers, as in a two-stage integral blower (or a multi-stage integral blower). When using a single unit that acts as a two-stage blower (or a multi-stage blower), or combining a single-stage blower and a two-stage integral blower (or a multi-stage integral blower) The case where it is used is also included.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。ただし、本発明は、この実施の形態に限定されるわけではない。   Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to this embodiment.

図1は本発明のガス分離装置の一実施の形態を示している。この実施の形態では、ガス分離装置として、1塔式のPVSA方式による酸素ガス発生装置が用いられている。図において、1,2は2段式ルーツ型ブロワであり、容量の大きい第1ブロワ1と容量の小さい第2ブロワ2とで構成されている。3は1基の吸着塔であり、原料空気中の窒素ガス(特定ガス)を選択的に吸着する吸着剤(図示せず)が充填されている。4は吸着塔3より回収した酸素富化ガスを貯める均圧塔であり、減圧再生工程を終了した吸着塔3に回収した酸素富化ガスを供給し吸着塔3を復圧する作用をする。5は吸着塔3から取り出した製品酸素ガスを貯める製品塔である。   FIG. 1 shows an embodiment of the gas separation apparatus of the present invention. In this embodiment, a single-column PVSA system oxygen gas generator is used as the gas separator. In the figure, reference numerals 1 and 2 denote two-stage roots type blowers, which are composed of a first blower 1 having a large capacity and a second blower 2 having a small capacity. Reference numeral 3 denotes one adsorption tower, which is filled with an adsorbent (not shown) that selectively adsorbs nitrogen gas (specific gas) in the raw material air. 4 is a pressure equalizing tower for storing the oxygen-enriched gas recovered from the adsorption tower 3, and acts to restore the pressure of the adsorption tower 3 by supplying the recovered oxygen-enriched gas to the adsorption tower 3 that has finished the decompression regeneration process. Reference numeral 5 denotes a product tower for storing product oxygen gas taken out from the adsorption tower 3.

6は外部から原料空気を導入する第1開閉弁6a付き原料空気導入路であり、7,8は原料空気導入路6から分岐する分岐路であり、第1分岐路7に第1ブロワ1,第1逆止弁9が原料空気の流れの上流側からこの順で配設されている。また、第2分岐路8に第2逆止弁10,第2ブロワ2が上記上流側からこの順で配設されている。11は第1分岐路7のブロワ逆止弁間部分(第1ブロワ1と第1逆止弁9との間の部分)と第2分岐路8のブロワ逆止弁間部分(第2ブロワ2と第2逆止弁10との間の部分)とを連結する第2開閉弁11a付き連結路である。12は上記両分岐路7,8が合流する合流路であり、第3開閉弁13a付き原料空気用接続路13を介して吸着塔3の入口路14に接続している。15は上記入口路14の端部(原料空気の流れの上流側の端部)と第1分岐路7のブロワ上流側部分(第1ブロワ1の上流側部分)とを接続する第4開閉弁15a付き排気用接続路である。16は合流路12の端部(原料空気の流れの下流側の端部)から延びる第5開閉弁16a付き放出路である。   Reference numeral 6 denotes a raw material air introduction path with a first on-off valve 6a for introducing the raw material air from the outside, and reference numerals 7 and 8 denote branch paths branched from the raw material air introduction path 6. The first branch path 7 has a first blower 1, The first check valve 9 is arranged in this order from the upstream side of the flow of raw material air. A second check valve 10 and a second blower 2 are disposed in the second branch path 8 in this order from the upstream side. 11 is a portion between the blower check valves of the first branch passage 7 (a portion between the first blower 1 and the first check valve 9) and a portion between the blower check valves of the second branch passage 8 (the second blower 2). And a portion between the second check valve 10 and the second check valve 10). Reference numeral 12 denotes a combined flow path where both the branched paths 7 and 8 are joined, and is connected to the inlet path 14 of the adsorption tower 3 via the raw air connection path 13 with the third on-off valve 13a. 15 is a fourth on-off valve that connects the end portion of the inlet passage 14 (the upstream end portion of the flow of raw material air) and the blower upstream portion of the first branch passage 7 (upstream portion of the first blower 1). 15a is an exhaust connection path. Reference numeral 16 denotes a discharge path with a fifth on-off valve 16a extending from the end of the combined flow path 12 (end on the downstream side of the flow of raw material air).

17は吸着塔3の出口路であり、18は上記出口路17から延びる第3逆止弁19,第6開閉弁18a付き酸素ガス取出路である。20は製品塔5から延びる酸素ガス流路であり、酸素ガス取出路18の弁間部分(第3逆止弁19と第6開閉弁18aとの間の部分)に接続している。21は均圧塔4から延びる第7開閉弁21a付き酸素ガス導入路であり、上記出口路17に接続している。   Reference numeral 17 denotes an outlet path of the adsorption tower 3, and 18 denotes an oxygen gas extraction path with a third check valve 19 and a sixth on-off valve 18 a extending from the outlet path 17. Reference numeral 20 denotes an oxygen gas flow path extending from the product tower 5, and is connected to a portion between the oxygen gas extraction passage 18 (a portion between the third check valve 19 and the sixth on-off valve 18 a). Reference numeral 21 denotes an oxygen gas introduction path with a seventh on-off valve 21 a extending from the pressure equalizing tower 4, and is connected to the outlet path 17.

上記の構成において、吸着分離工程を行う場合には、図2に示すように、第1,第3,第6開閉弁6a,13a,18aを開弁し、第2,第4,第5,第7開閉弁11a,15a,16a,21aを閉弁する。これにより、両ブロワ1,2が並列に接続した状態になり、両ブロワ1,2がともに負荷運転を行い(両ブロワ1,2がともに原料ガス供給用として運転され)、原料空気導入路6から原料空気を導入し、両分岐路7,8、合流路12、原料空気用接続路13、入口路14を経由して吸着塔3に供給する(この並列運転は、両ブロワ1,2の圧縮比が1.4以下であるときに行われる)。そして、両ブロワ1,2の並列運転による原料空気の供給により、吸着塔3内の圧力が上昇し、両ブロワ1,2の圧縮比が大きくなる(1.4以上になる)と、図3に示すように、自動的に第2開閉弁11aを開弁する。これにより、両ブロワ1,2が直列に接続した状態になり、両ブロワ1,2がともに負荷運転を行い、原料空気導入路6から導入した原料空気を、第1分岐路7,連結路11,第2分岐路8,合流路12,原料空気用接続路13,入口路14を経由して吸着塔3に供給することを行う。   In the above configuration, when the adsorption separation step is performed, as shown in FIG. 2, the first, third, and sixth on-off valves 6a, 13a, and 18a are opened, and the second, fourth, fifth, The seventh on-off valves 11a, 15a, 16a and 21a are closed. As a result, both the blowers 1 and 2 are connected in parallel, both the blowers 1 and 2 perform the load operation (both the blowers 1 and 2 are operated for supplying the raw material gas), and the raw material air introduction path 6 Is fed to the adsorption tower 3 via both branch paths 7 and 8, the combined flow path 12, the feed air connection path 13, and the inlet path 14 (this parallel operation is performed in both the blowers 1 and 2. Performed when the compression ratio is 1.4 or less). When the raw air is supplied by the parallel operation of both blowers 1 and 2, the pressure in the adsorption tower 3 rises and the compression ratio of both blowers 1 and 2 increases (becomes 1.4 or more). As shown, the second on-off valve 11a is automatically opened. As a result, both the blowers 1 and 2 are connected in series. Both the blowers 1 and 2 perform the load operation, and the raw air introduced from the raw air introduction path 6 is supplied to the first branch path 7 and the connection path 11. , The second branch path 8, the combined path 12, the feed air connection path 13, and the inlet path 14 are supplied to the adsorption tower 3.

一方、減圧排気を行う場合には、図4に示すように、第4〜第6開閉弁15a,16a,18aを開弁し、第1〜第3,第7開閉弁6a,11a,13a,21aを閉弁する。これにより、両ブロワ1,2が並列に接続した状態になり、両ブロワ1,2がともに負荷運転を行い(両ブロワ1,2がともに減圧再生用として運転され)、吸着塔3内を入口路14、排気用接続路15、両分岐路7,8、合流路12、放出路16を介して減圧排気する(この並列運転は、両ブロワ1,2の圧縮比が1.65以下であるときに行われる)。そして、両ブロワ1,2の並列運転による減圧排気により、吸着塔3内の圧力が下降し、両ブロワ1,2の圧縮比が大きくなる(1.65以上になる)と、図5に示すように、自動的に第2開閉弁11aを開弁する。これにより、両ブロワ1,2が直列に接続した状態になり、両ブロワ1,2がともに負荷運転を行い、吸着塔3内を入口路14,排気用接続路15,第1分岐路7,連結路11,第2分岐路8,合流路12、放出路16を介して減圧排気することを行う。   On the other hand, when performing decompression exhaust, as shown in FIG. 4, the 4th-6th on-off valve 15a, 16a, 18a is opened, and the 1st-3rd, 7th on-off valve 6a, 11a, 13a, 21a is closed. As a result, both blowers 1 and 2 are connected in parallel, both blowers 1 and 2 perform load operation (both blowers 1 and 2 are operated for decompression regeneration), and the inside of the adsorption tower 3 is entered. Exhaust pressure is reduced through the passage 14, the exhaust connection passage 15, both branch passages 7 and 8, the combined passage 12, and the discharge passage 16 (in this parallel operation, the compression ratio of the blowers 1 and 2 is 1.65 or less. Sometimes done). Then, when the pressure in the adsorption tower 3 is reduced by the reduced pressure exhaustion by the parallel operation of both the blowers 1 and 2 and the compression ratio of both the blowers 1 and 2 is increased (above 1.65), it is shown in FIG. As described above, the second on-off valve 11a is automatically opened. As a result, both the blowers 1 and 2 are connected in series, both the blowers 1 and 2 perform load operation, and the inside of the adsorption tower 3 is connected to the inlet path 14, the exhaust connection path 15, the first branch path 7, Vacuum exhaust is performed through the connection path 11, the second branch path 8, the combined path 12, and the discharge path 16.

なお、図2〜図5において、第1〜第7開閉弁6a,11a,13a,15a,16a,18a,21aのうち、黒く塗りつぶしているものは、閉弁しており、黒く塗りつぶしていないものは、開弁していることを示している。また、各路6〜8,11〜18,20,21のうち、太線で表しているものは、ガスが流通しており、細線で表しているものは、ガスが流通していないことを示している。後述する図6〜図13においても、同様である。   2 to 5, among the first to seventh on-off valves 6a, 11a, 13a, 15a, 16a, 18a, and 21a, those that are painted black are closed and are not painted black. Indicates that the valve is open. Moreover, among the paths 6-8, 11-18, 20, and 21, the ones represented by thick lines indicate that gas is circulating, and the ones represented by thin lines indicate that no gas is circulating. ing. The same applies to FIGS. 6 to 13 described later.

上記のように、この実施の形態では、両ブロワ1,2を用い、吸着分離工程および減圧再生工程において、両ブロワ1,2の圧縮比が小さいときには、並列運転を行い、両ブロワ1,2の圧縮比が大きいときには、直列運転を行っている。このため、加圧時の圧力が高くなって吸着剤の吸着圧力を高くすることができ、また、減圧時の圧力が低くなって吸着剤の再生圧力低くすることができる。その結果、吸着圧力と再生圧力との圧力差が大きくなり、吸着剤の有効吸着量(窒素の)を増大することができる。しかも、両ブロワ1,2の圧縮比が大きいときには、直列運転を行っており、これにより、消費動力を低減させることができる。 As described above, in this embodiment, when both the blowers 1 and 2 are used and the compression ratio of both the blowers 1 and 2 is small in the adsorption separation process and the decompression regeneration process, the two blowers 1 and 2 are operated in parallel. When the compression ratio is large, series operation is performed. For this reason, the pressure at the time of pressurization can be increased and the adsorption pressure of the adsorbent can be increased, and the pressure at the time of depressurization can be decreased and the regeneration pressure of the adsorbent can be decreased. As a result, the pressure difference between the adsorption pressure and the regeneration pressure increases, and the effective adsorption amount (nitrogen) of the adsorbent can be increased. In addition, when the compression ratios of the blowers 1 and 2 are large, series operation is performed, thereby reducing power consumption.

図6〜図13は上記実施の形態と同様構造のガス分離装置(1塔式のPVSA方式による酸素ガス発生装置)を用いて行われるガス分離方法の一例を示している。   6 to 13 show an example of a gas separation method performed using a gas separation device (one-column type PVSA type oxygen gas generator) having the same structure as that of the above embodiment.

この例のガス分離方法では、まず、並列吸着分離工程(図6参照)を行う。この並列吸着分離工程では、上記実施の形態の吸着分離工程と同様に、第1,第3,第6開閉弁6a,13a,18aを開弁し、第2,第4,第5,第7開閉弁11a,15a,16a,21aを閉弁する。これにより、両ブロワ1,2が並列に接続した状態になり、両ブロワ1,2がともに負荷運転を行い(両ブロワ1,2がともに原料ガス供給用として運転され)、原料空気導入路6から原料空気を導入し、両分岐路7,8、合流路12、原料空気用接続路13、入口路14を経由して吸着塔3に供給する(この並列運転は、両ブロワ1,2の圧縮比が1.4以下であるときに行われる)。このように、両ブロワ1,2を並列運転した状態で吸着塔3に原料空気を供給することで、原料空気の供給量を増大し、短時間で吸着塔3内の圧力を高めることができる。一方、製品塔5に貯めた製品酸素ガスを酸素ガス取出路18から取り出す。   In the gas separation method of this example, first, a parallel adsorption separation step (see FIG. 6) is performed. In this parallel adsorption separation step, the first, third, and sixth on-off valves 6a, 13a, and 18a are opened to provide the second, fourth, fifth, and seventh as in the adsorption separation step of the above embodiment. The on-off valves 11a, 15a, 16a, 21a are closed. As a result, both the blowers 1 and 2 are connected in parallel, both the blowers 1 and 2 perform the load operation (both the blowers 1 and 2 are operated for supplying the raw material gas), and the raw material air introduction path 6 Is fed to the adsorption tower 3 via both branch paths 7 and 8, the combined flow path 12, the feed air connection path 13, and the inlet path 14 (this parallel operation is performed in both the blowers 1 and 2. Performed when the compression ratio is 1.4 or less). Thus, by supplying raw material air to the adsorption tower 3 in a state where both the blowers 1 and 2 are operated in parallel, the supply amount of raw material air can be increased and the pressure in the adsorption tower 3 can be increased in a short time. . On the other hand, the product oxygen gas stored in the product tower 5 is taken out from the oxygen gas take-out path 18.

そして、両ブロワ1,2の並列運転による原料空気の供給により、吸着塔3内のガス圧力が上昇し、両ブロワ1,2の圧縮比が大きくなる(1.4以上になる)と、図7に示すように、自動的に第2開閉弁11aを開弁し、直列吸着分離工程を行う。この工程では、両ブロワ1,2が直列に接続した状態になり、原料空気導入路6から導入した原料空気を、第1分岐路7,連結路11,第2分岐路8,合流路12,原料空気用接続路13,入口路14を経由して吸着塔3に供給する。このように、両ブロワ1,2を直列運転した状態で吸着塔3に原料空気を供給することで、小さな動力で吸着塔3内の吸着剤の吸着圧力を高めることができる。また、第3逆止弁19は、並列吸着分離工程もしくは直列吸着分離工程において(通常は、並列吸着分離工程において)、製品塔5内のガス圧力が吸着塔3内のガス圧力より低くなったときに開弁し、吸着塔3内の製品酸素ガスを製品塔5もしくは酸素ガス取出路18に取り出す。   When the raw material air is supplied by the parallel operation of the blowers 1 and 2, the gas pressure in the adsorption tower 3 rises and the compression ratio of the blowers 1 and 2 increases (1.4 or more). As shown in FIG. 7, the second on-off valve 11a is automatically opened to perform the serial adsorption separation process. In this step, both the blowers 1 and 2 are connected in series, and the raw air introduced from the raw air introduction path 6 is supplied to the first branch path 7, the connection path 11, the second branch path 8, the combined path 12, The raw material air is supplied to the adsorption tower 3 via the connection path 13 and the inlet path 14. Thus, by supplying raw material air to the adsorption tower 3 in a state where both the blowers 1 and 2 are operated in series, the adsorption pressure of the adsorbent in the adsorption tower 3 can be increased with small power. In the third check valve 19, the gas pressure in the product tower 5 is lower than the gas pressure in the adsorption tower 3 in the parallel adsorption separation process or the serial adsorption separation process (usually in the parallel adsorption separation process). The valve is sometimes opened, and the product oxygen gas in the adsorption tower 3 is taken out to the product tower 5 or the oxygen gas take-out path 18.

一方、減圧排気を行う場合には、まず、回収工程を行う(図8参照)。この回収工程では、第4〜第7開閉弁15a,16a,18a,21aを開弁し、第1〜第3開閉弁6a,11a,13aを閉弁する。これにより、両ブロワ1,2が並列に接続した状態になり、両ブロワ1,2がともに負荷運転を行い(両ブロワ1,2がともに減圧再生用として運転され)、吸着塔3内を入口路14、排気用接続路15、両分岐路7,8、合流路12、放出路16を介して減圧排気する(この並列運転は、両ブロワ1,2の圧縮比が1.65以下であるときに行われる)。一方、吸着塔3に残存している製品酸素ガスを酸素ガス導入路21を介して均圧塔4に回収し、製品酸素ガスの回収率を高め、製品塔5に貯めた製品酸素ガスを酸素ガス取出路18から取り出す。   On the other hand, when performing vacuum exhaust, a recovery process is first performed (see FIG. 8). In this collection step, the fourth to seventh on-off valves 15a, 16a, 18a, and 21a are opened, and the first to third on-off valves 6a, 11a, and 13a are closed. As a result, both blowers 1 and 2 are connected in parallel, both blowers 1 and 2 perform load operation (both blowers 1 and 2 are operated for decompression regeneration), and the inside of the adsorption tower 3 is entered. Exhaust pressure is reduced through the passage 14, the exhaust connection passage 15, both branch passages 7 and 8, the combined passage 12, and the discharge passage 16 (in this parallel operation, the compression ratio of the blowers 1 and 2 is 1.65 or less. Sometimes done). On the other hand, the product oxygen gas remaining in the adsorption tower 3 is recovered in the pressure equalizing tower 4 through the oxygen gas introduction path 21 to increase the recovery rate of the product oxygen gas, and the product oxygen gas stored in the product tower 5 is converted into oxygen. Take out from the gas outlet 18.

ついで、並列減圧再生工程を行う(図9参照)。この並列再生工程では、図8に示す状態から第7開閉弁21aを閉弁し、製品酸素ガスの回収を止める。一方、吸着塔3内の減圧排気を継続する。これにより、並列減圧再生工程の開始時には、両ブロワ1,2を並列運転した状態で減圧排気を行い、吸着塔3からの排気量を増大し、短時間で吸着塔3内の圧力を低くすることができる。   Next, a parallel decompression regeneration process is performed (see FIG. 9). In this parallel regeneration step, the seventh on-off valve 21a is closed from the state shown in FIG. 8, and the recovery of the product oxygen gas is stopped. On the other hand, the vacuum exhaust in the adsorption tower 3 is continued. Thereby, at the start of the parallel decompression regeneration step, decompression exhaust is performed with both blowers 1 and 2 operating in parallel, the exhaust amount from the adsorption tower 3 is increased, and the pressure in the adsorption tower 3 is lowered in a short time. be able to.

そして、両ブロワ1,2の並列運転による減圧排気により、吸着塔3内のガス圧力が下降し、両ブロワ1,2の圧縮比が大きくなる(1.65以上になる)と、図10に示すように、自動的に第2開閉弁11aを開弁し、直列減圧再生工程を行う。この工程では、両ブロワ1,2が直列に接続した状態になり、吸着塔3内を入口路14,排気用接続路15,第1分岐路7,連結路11,第2分岐路8,合流路12、放出路16を介して減圧排気する。このように、両ブロワ1,2を直列運転した状態で減圧排気することで、小さな動力で吸着塔3内の吸着剤の減圧再生圧力を低くすることができる。   When the gas pressure in the adsorption tower 3 is lowered by the reduced pressure exhaustion due to the parallel operation of the blowers 1 and 2 and the compression ratio of the blowers 1 and 2 is increased (becomes 1.65 or more), FIG. As shown, the second on-off valve 11a is automatically opened to perform the series decompression regeneration process. In this step, both blowers 1 and 2 are connected in series, and the inside of the adsorption tower 3 is connected to the inlet path 14, the exhaust connection path 15, the first branch path 7, the connection path 11, the second branch path 8, and the merge. Vacuum exhaust is performed via the passage 12 and the discharge passage 16. In this way, the reduced pressure regeneration pressure of the adsorbent in the adsorption tower 3 can be lowered with a small power by exhausting the reduced pressure while both the blowers 1 and 2 are operated in series.

つぎに、均圧工程を行う(図11参照)。この均圧工程では、図10に示す状態から第7開閉弁21aを開弁し、回収工程で均圧塔4に回収した酸素リッチガス(製品酸素ガス)を吸着塔3内に復圧用ガスとして導入し、製品酸素ガスの回収率を高める。   Next, a pressure equalizing step is performed (see FIG. 11). In this pressure equalization process, the seventh on-off valve 21a is opened from the state shown in FIG. 10, and the oxygen rich gas (product oxygen gas) recovered in the pressure equalization tower 4 in the recovery process is introduced into the adsorption tower 3 as a pressure-reducing gas. And increase the recovery rate of product oxygen gas.

つぎに、リンス工程を行う(図12参照)。このリンス工程では、第1,第5,第6開閉弁6a,16a,18aを開弁し、第2〜第4,第7開閉弁11a,13a,15a,21aを閉弁する。これにより、両ブロワ1,2が並列に接続した状態になり、両ブロワ1,2がともに無負荷運転を行い、原料空気を原料空気導入路6から導入し、両分岐路7,8、合流路12、放出路16を経由して大気に放出する。このようにして両分岐路7,8、合流路12、放出路16内に残留している窒素リッチガスを原料空気に置換する。   Next, a rinsing step is performed (see FIG. 12). In this rinsing step, the first, fifth and sixth on-off valves 6a, 16a and 18a are opened, and the second to fourth and seventh on-off valves 11a, 13a, 15a and 21a are closed. As a result, both the blowers 1 and 2 are connected in parallel, both the blowers 1 and 2 perform no-load operation, the raw air is introduced from the raw air introduction path 6, the two branch paths 7 and 8 are merged It emits to the atmosphere via the path 12 and the discharge path 16. In this way, the nitrogen-rich gas remaining in the branch paths 7 and 8, the combined flow path 12, and the discharge path 16 is replaced with the raw material air.

そののち、復圧工程(図13参照)を行う。この復圧工程では、図12に示す状態から第3開閉弁13aを開弁し、両ブロワ1,2がともに負荷運転を行い(両ブロワ1,2が、並列に接続した状態で、ともに原料ガス供給用として運転され)、原料空気導入路6から導入した原料空気を両分岐路7,8、合流路12、原料空気用接続路13、入口路14を経由して吸着塔3に供給し、吸着塔3を復圧する。また、大気を放出路16から合流路12に導入し、原料空気用接続路13、入口路14を経由して吸着塔3に供給し、大気によっても吸着塔3を復圧する。また、これまでの回収工程〜復圧工程で、第3逆止弁19は閉弁している。   After that, a decompression step (see FIG. 13) is performed. In this return pressure step, the third on-off valve 13a is opened from the state shown in FIG. 12, and both the blowers 1 and 2 are operated for load (both the blowers 1 and 2 are connected in parallel, The raw material air introduced from the raw material air introduction path 6 is supplied to the adsorption tower 3 via both branch paths 7 and 8, the combined flow path 12, the raw material air connection path 13, and the inlet path 14. Then, the adsorption tower 3 is decompressed. Further, the atmosphere is introduced from the discharge path 16 into the combined flow path 12 and supplied to the adsorption tower 3 via the raw air connection path 13 and the inlet path 14, and the adsorption tower 3 is also decompressed by the atmosphere. Further, the third check valve 19 is closed in the recovery process to the pressure recovery process so far.

この例のガス分離方法でも、上記実施の形態と同様の作用・効果を奏する。   The gas separation method of this example also has the same operations and effects as the above embodiment.

つぎに、本発明の実施例および比較例を説明する。   Next, examples and comparative examples of the present invention will be described.

[実施例および比較例]
図6〜図13に示す例において、下記の装置を用い、実施例では、吸着分離工程と減圧再生工程との双方において、並列運転と直列運転との切り替えを行い、比較例1では、上記双方において並列運転のみを行い、比較例2では、吸着分離工程において並列運転のみを行い、減圧再生工程において並列運転と直列運転との切り替えを行った。
[Examples and Comparative Examples]
In the examples shown in FIGS. 6 to 13, the following apparatus is used. In the example, switching between parallel operation and series operation is performed in both the adsorption separation process and the decompression regeneration process. In Comparative Example 2, only parallel operation was performed in the adsorption separation process, and switching between parallel operation and series operation was performed in the decompression regeneration process.

上記の装置では、吸着塔3として、吸着塔口径:600A(内径:609.6mm)、吸着剤充填高さ:1359mm、吸着剤充填量:240kgであるものを用いた。また、容量:0.9m3 の均圧槽4を用い、容量:1.5m3 の製品槽5を用いた。また、ブロワ1,2として、型式:2段式一体型ルーツ型ブロワ、風量:17.5m3 /min at40℃大気圧(2段式一体型ルーツ型ブロワの並列運転時)、モーター容量:30kWのものを用い、吸着圧力(最大),減圧再生圧力(最小),電力原単位等を測定した。その測定結果を表1に示す。この表1では、運転条件として、ブロワ1,2の電流値が100Aを越えないように運転サイククの調整を実施している。また、ΔPは、吸着圧力(最大)−減圧再生圧力(最小)の値である。また、製品発生量,電力原単位の、「Nm3 」は「m3 (Normal)」を示している。 In the above apparatus, the adsorption tower 3 having an adsorption tower diameter of 600 A (inner diameter: 609.6 mm), an adsorbent filling height: 1359 mm, and an adsorbent filling amount: 240 kg was used. Further, a pressure equalizing tank 4 having a capacity of 0.9 m 3 was used, and a product tank 5 having a capacity of 1.5 m 3 was used. In addition, as blowers 1 and 2, model: two-stage integrated roots type blower, air volume: 17.5 m 3 / min at 40 ° C. atmospheric pressure (during parallel operation of two-stage integrated roots type blower), motor capacity: 30 kW Were used to measure adsorption pressure (maximum), decompression regeneration pressure (minimum), and power consumption. The measurement results are shown in Table 1. In Table 1, the operation cycle is adjusted so that the current values of the blowers 1 and 2 do not exceed 100 A as the operation conditions. ΔP is a value of adsorption pressure (maximum) −reduced pressure regeneration pressure (minimum). In addition, “Nm 3 ” of the amount of product generated and the unit of electric power indicates “m 3 (Normal)”.

Figure 0004685662
Figure 0004685662



上記の表1から明らかなように、ΔPの値は、実施例の方が両比較例1,2よりも高くなっており、吸着剤の吸着圧力が高くなっていることが判る。また、電力原単位の値は、実施例の方が両比較例1,2よりも低くなっており、消費動力が低減していることが判る。   As apparent from Table 1 above, the value of ΔP is higher in the example than in both comparative examples 1 and 2, and it can be seen that the adsorption pressure of the adsorbent is higher. Moreover, the value of the power consumption rate is lower in the example than in both comparative examples 1 and 2, indicating that the power consumption is reduced.

本発明のガス分離装置の一実施の形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the gas separation apparatus of this invention. 上記ガス分離装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the said gas separation apparatus. 上記ガス分離装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the said gas separation apparatus. 上記ガス分離装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the said gas separation apparatus. 上記ガス分離装置の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the said gas separation apparatus. 本発明のガス分離方法の一例を示す説明図である。It is explanatory drawing which shows an example of the gas separation method of this invention. 上記ガス分離方法を示す説明図である。It is explanatory drawing which shows the said gas separation method. 上記ガス分離方法を示す説明図である。It is explanatory drawing which shows the said gas separation method. 上記ガス分離方法を示す説明図である。It is explanatory drawing which shows the said gas separation method. 上記ガス分離方法を示す説明図である。It is explanatory drawing which shows the said gas separation method. 上記ガス分離方法を示す説明図である。It is explanatory drawing which shows the said gas separation method. 上記ガス分離方法を示す説明図である。It is explanatory drawing which shows the said gas separation method. 上記ガス分離方法を示す説明図である。It is explanatory drawing which shows the said gas separation method. 2基の吸着塔を用いた場合の工程説明図である。It is process explanatory drawing at the time of using two adsorption towers. 従来例を示す構成図である。It is a block diagram which shows a prior art example.

符号の説明Explanation of symbols

1,2 ブロワ
1, 2 blower

Claims (4)

圧力真空スイング吸着方式によるガス分離方法であって、原料ガス供給用ブロワと減圧再生用ブロワとの双方を兼用する複数段式ブロワを用い、吸着分離工程および減圧再生工程において、上記複数段式ブロワの段のブロワの圧縮比が所定の圧縮比より小さいときには、上記複数段式ブロワの段のブロワを並列運転し、上記複数段式ブロワの段のブロワの圧縮比が上記所定の圧縮比より大きくなると、上記複数段式ブロワの段のブロワを直列運転するようにしたことを特徴とするガス分離方法。 A gas separation method using a pressure vacuum swing adsorption method, wherein a multistage blower that serves both as a source gas supply blower and a decompression regeneration blower is used, and in the adsorption separation process and the decompression regeneration process, the multiple stage blower is used. when the compression ratio of the blower of each stage is smaller than the predetermined compression ratio, and parallel operation blower of each stage of said plurality stage blower, the compression the compression ratio of the blower of each stage of said plurality stage blowers is the predetermined A gas separation method characterized in that when the ratio exceeds the ratio, the blowers of each stage of the multistage blower are operated in series. 圧力真空スイング吸着方式が1塔式である請求項1記載のガス分離方法。   The gas separation method according to claim 1, wherein the pressure vacuum swing adsorption method is a single tower type. 圧力真空スイング吸着方式によるガス分離装置であって、特定ガスを選択的に吸着する吸着剤を充填した吸着塔と、吸着分離工程において上記吸着塔に原料ガスを供給する原料ガス供給路と、減圧再生工程において上記吸着塔を減圧して排気する排気路とを備え、上記原料ガス供給路に、原料空気供給用ブロワと減圧再生用ブロワとの双方を兼用する複数段式ブロワを配設した流路を設け、この流路で上記排気路の一部を兼用し、上記流路を、上記複数段式ブロワの段のブロワを並列に接続する並列状態と、上記複数段式ブロワの段のブロワを直列に接続する直列状態とに切り換え可能に構成し、吸着分離工程および減圧再生工程において、上記複数段式ブロワの段のブロワの圧縮比が所定の圧縮比より小さい状態では、上記流路を並列状態にし、上記複数段式ブロワの段のブロワの圧縮比が上記所定の圧縮比より大きい状態では、上記流路を直列状態するように構成したことを特徴とするガス分離装置。 A gas separation device using a pressure vacuum swing adsorption method, an adsorption tower filled with an adsorbent that selectively adsorbs a specific gas, a raw material gas supply path for supplying the raw material gas to the adsorption tower in the adsorption separation step, and a reduced pressure An exhaust passage for depressurizing and exhausting the adsorption tower in the regeneration step, and a flow in which a multistage blower that serves both as a feed air supply blower and a decompression regeneration blower is disposed in the feed gas supply passage. the road provided, also serves as a part of the exhaust path in the flow path, the flow path, and a parallel state to connect the blower of each stage of said plurality stage blowers in parallel, each stage of said plurality stage blowers In the state where the compression ratio of the blowers in each stage of the multistage blower is smaller than a predetermined compression ratio in the adsorption separation process and the decompression regeneration process, the above - described blower is connected in series. Side by side The state, in a state compression ratio is larger than the predetermined compression ratio of the blower of each stage of said plurality stage blower, gas separation apparatus characterized by being configured to the flow path in series state. 圧力真空スイング吸着方式が1塔式である請求項3記載のガス分離装置。   The gas separator according to claim 3, wherein the pressure vacuum swing adsorption system is a single tower type.
JP2006056252A 2005-03-03 2006-03-02 Gas separation method and apparatus used therefor Active JP4685662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006056252A JP4685662B2 (en) 2005-03-03 2006-03-02 Gas separation method and apparatus used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005059336 2005-03-03
JP2006056252A JP4685662B2 (en) 2005-03-03 2006-03-02 Gas separation method and apparatus used therefor

Publications (3)

Publication Number Publication Date
JP2006272325A JP2006272325A (en) 2006-10-12
JP2006272325A5 JP2006272325A5 (en) 2009-02-26
JP4685662B2 true JP4685662B2 (en) 2011-05-18

Family

ID=37207565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006056252A Active JP4685662B2 (en) 2005-03-03 2006-03-02 Gas separation method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4685662B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695553B2 (en) * 2006-06-30 2010-04-13 Praxair Technology, Inc. Twin blowers for gas separation plants
KR101506026B1 (en) 2009-12-24 2015-03-25 스미토모 세이카 가부시키가이샤 Double vacuum pump apparatus, gas purification system provided with double vacuum pump apparatus, and exhaust gas vibration suppressing device in double vacuum pump apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142431A (en) * 1980-03-10 1981-11-06 Siemens Ag Pressure sensor
JPS63182016A (en) * 1987-01-23 1988-07-27 Kuraray Chem Kk Separation of multi-component mixed gas
JPH06142431A (en) * 1992-11-06 1994-05-24 Res Dev Corp Of Japan Production of oxygen of high purity
JPH10296034A (en) * 1997-04-24 1998-11-10 Daido Hoxan Inc Vacuum-pump exhausting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142431A (en) * 1980-03-10 1981-11-06 Siemens Ag Pressure sensor
JPS63182016A (en) * 1987-01-23 1988-07-27 Kuraray Chem Kk Separation of multi-component mixed gas
JPH06142431A (en) * 1992-11-06 1994-05-24 Res Dev Corp Of Japan Production of oxygen of high purity
JPH10296034A (en) * 1997-04-24 1998-11-10 Daido Hoxan Inc Vacuum-pump exhausting system

Also Published As

Publication number Publication date
JP2006272325A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
JP5917169B2 (en) Nitrogen-enriched gas production method, gas separation method, and nitrogen-enriched gas production apparatus
EP0914857A1 (en) System and method for the vacuum pressure swing adsorption
US7300497B2 (en) Gas separating method
JP4799454B2 (en) Pressure swing adsorption oxygen concentrator
JP4685662B2 (en) Gas separation method and apparatus used therefor
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JP6033228B2 (en) Method and apparatus for vacuum pressure swing adsorption with temporary storage
JP4673440B1 (en) Target gas separation and recovery method
JP3378949B2 (en) Pressure fluctuation type air separation device and operation method thereof
JP7122191B2 (en) Gas separation device, gas separation method, nitrogen-enriched gas production device, and nitrogen-enriched gas production method
JP2013544637A5 (en)
JP3121286B2 (en) Vacuum pump exhaust system
JP3889125B2 (en) Gas separation method
JPH07330306A (en) Generation of oxygen by pressure change adsorption separation method
JPH0938443A (en) Gas separator
JP2001212419A (en) Method and device for pressure variable adsorption oxygen manufacture
JP3895037B2 (en) Low pressure oxygen enrichment method
JP3073061B2 (en) Gas separation device
JP2002028429A (en) Gas separating method
JP2919858B2 (en) Gas separation device
JPH11179133A (en) Production of concentrated oxygen
JPH08108030A (en) Method for reducing power consumption of vacuum pump in pressure swing adsorption method
JP2005040677A (en) Gas separating apparatus and operation method therefor
JP2002204918A (en) Gas concentrator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250