JPH04109821A - Fault section isolating system for distribution line employing intelligent slave station - Google Patents

Fault section isolating system for distribution line employing intelligent slave station

Info

Publication number
JPH04109821A
JPH04109821A JP2225410A JP22541090A JPH04109821A JP H04109821 A JPH04109821 A JP H04109821A JP 2225410 A JP2225410 A JP 2225410A JP 22541090 A JP22541090 A JP 22541090A JP H04109821 A JPH04109821 A JP H04109821A
Authority
JP
Japan
Prior art keywords
section
ground fault
slave station
switch
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2225410A
Other languages
Japanese (ja)
Other versions
JP3041632B2 (en
Inventor
Takehiro Hayashi
林 武博
Ryoichi Tsuruoka
良一 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENKI SEIZO KK
Kyushu Electric Power Co Inc
Original Assignee
KYUSHU DENKI SEIZO KK
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENKI SEIZO KK, Kyushu Electric Power Co Inc filed Critical KYUSHU DENKI SEIZO KK
Priority to JP2225410A priority Critical patent/JP3041632B2/en
Publication of JPH04109821A publication Critical patent/JPH04109821A/en
Application granted granted Critical
Publication of JP3041632B2 publication Critical patent/JP3041632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Abstract

PURPOSE:To perform isolation of fault section and automatic reverse transmission to all sound sections on load side by a system wherein a remote control slave station for locating fault point opens a section switch instantaneously upon receiving information from ground fault sensors in adjoining sections and a normal open switching point slave station detects power interruption due to opening of the section switch to throw in a normal open switch instantaneously. CONSTITUTION:Upon occurrence of ground fault in a pole 7 connected with a sensor 2:22. a ground fault direction detecting relay 1-4 detects ground fault occurring on a distribution line 9. On the other hand, information is broadcasted from the ground fault direction detecting relay 1-4 to slave stations. The sensor 2-22 detects the ground fault and which is notified to #2 slave station 2-20 and #3 slave station 2-30. The #2 and #3 slave stations 2-20, 2-30 recognize occurrence of ground fault in #2 section and opens section switches 3-2, 3-3 immediately. A slave station 5 connected with a section switch 4 for communication throws in the section switch 4 immediately. Consequently, isolation is carried out through a method principally suitable to the purpose of system and a highly reliable logical system can be configured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高圧配電線地絡事故における事故区間の除去
及び健全区間の送電法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for removing faulty sections and transmitting power to healthy sections in high-voltage distribution line ground fault accidents.

(従来の技術) 第3図は従来の配電線保護システムの構成を示したもの
である。第3図において、31は変電所の主変圧器、3
2は回路遮断器(CB)、33ないし36は区分開閉器
(SW)、37ないし40は開閉器の投入電圧を発生す
るまでにある遅延時間を有する遅延投入動作機構(以下
、DMと略記する)である。
(Prior Art) FIG. 3 shows the configuration of a conventional distribution line protection system. In Figure 3, 31 is the main transformer of the substation;
2 is a circuit breaker (CB), 33 to 36 are section switches (SW), and 37 to 40 are delayed closing operation mechanisms (hereinafter abbreviated as DM) that have a certain delay time before generating the closing voltage of the switch. ).

次に、第3図の如く構成された配電線保護システムの動
作について説明する。各区分開閉器33゜34、35.
36はそれぞれ対応するDM37ないしDM40からの
投入電圧により入状態を保持している。
Next, the operation of the distribution line protection system configured as shown in FIG. 3 will be explained. Each section switch 33° 34, 35.
36 are maintained in the on state by the applied voltage from the corresponding DM37 to DM40.

今、#3区間に地絡事故が発生した場合、変電所の保護
リレー(図示せず)が地絡を検出し回路遮断器32を動
作させ回路を遮断する。と同時に、各区分開閉器33〜
36は配電線が無電圧になることでDM37〜DM40
からの投入電圧を失い、切状態となる。一定時間復回路
遮断器32は自動投入されるが、各DMには投入電圧を
発生するまでの遅延時間(×時間)が設定されており、
回路遮断器32の自動投入から#3区間が再充電される
まで(再度#3区間の配′R線地路によって回路遮断器
が動作して回路が遮断されるまで)数十秒の時間差を伴
う。この時間により、操作員は#3区間が事故区間であ
ることを認識することができる。
If a ground fault occurs in section #3, a protection relay (not shown) in the substation will detect the ground fault and operate the circuit breaker 32 to interrupt the circuit. At the same time, each section switch 33~
36 is DM37~DM40 due to no voltage on the distribution line.
It loses the input voltage and becomes OFF. The return circuit breaker 32 is automatically closed for a certain period of time, but each DM is set with a delay time (x time) until it generates a closing voltage.
There is a time difference of several tens of seconds from when the circuit breaker 32 is automatically turned on until the #3 section is recharged (until the circuit breaker is operated again by the R wire grounding in the #3 section and the circuit is cut off). Accompany. This time allows the operator to recognize that section #3 is an accident section.

その後回路遮断器32は再び投入されるが、前回回路遮
断器32の自動投入後# I D M37及び#2DM
38は対応する区分開閉器33及び34投入後、定時間
(7時間)内に回路遮断器32が再遮断動作しなかった
ので投入機能がロック(Yロック)されていないが、#
3DM39は区分開閉器35が投入後−定時間(7時間
)内に回路遮断器32が再遮断動作したことを検出して
投入機能がロック(Yロック)されているため区分開閉
器35は投入されず、結果的に事故区間より電源側のみ
の送電が再開される。
After that, the circuit breaker 32 is closed again, but after the automatic closing of the circuit breaker 32 last time, #ID M37 and #2DM
No. 38 indicates that the closing function is not locked (Y-locked) because the circuit breaker 32 did not shut off again within a certain period of time (7 hours) after closing the corresponding section switches 33 and 34, but #
The 3DM 39 detects that the circuit breaker 32 has operated to disconnect again within a certain period of time (7 hours) after the sectional switch 35 is closed, and the closing function is locked (Y-lock), so the sectional switch 35 is not closed. As a result, power transmission only from the power source side from the accident section was resumed.

その後事故区間より負荷側区間を送電するため、操作員
が他回線との常開開閉器41を遠隔制御もしくは手動で
投入する。また、事故区間については、巡視点検により
事故発生箇所の発見と復旧を行う。
Thereafter, in order to transmit power from the accident section to the load side section, the operator closes the normally open switch 41 connected to other lines by remote control or manually. Additionally, in the accident section, patrol inspections will be carried out to discover the accident location and restore the area.

上記従来の方式では、健全区間は最低2回停電し、事故
区間の負荷側については、操作員の判断により手動で復
旧されるので送電まで更に時間を要した。また、事故箇
所については、区分開閉器内の全ての電柱及び電柱間に
ついて原因調査を行う必要があった。このような問題点
を解決するため、各電柱毎に設置された地絡センサによ
る事故検出機能により、事故箇所が事故箇所センサー事
故点標定用子局−親局を経由して通知され、事故箇所が
電柱単位で特定できるのみならず、制御用計算機が変電
所保護継電器の動作情報とセンサ情報との総合判定によ
り、事故区間の切離し、かつ負荷側健全区間を逆送する
ため開閉器操作手順を瞬時に作成し、親局を介して、開
閉器制御指令を子局に対して行い、結果的に回路遮断器
による回路遮断に至らず事故区間を除去するようにした
計算機を用いた事故区間切離しシステムがある。
In the conventional system described above, the power was cut off at least twice in the healthy section, and the load side in the faulty section was manually restored based on the judgment of the operator, so it took more time to transmit power. In addition, it was necessary to investigate the cause of the accident at all utility poles within the sectional switch and between the utility poles. In order to solve these problems, an accident detection function using a ground fault sensor installed on each utility pole will notify the accident location via the accident location sensor fault point locating slave station - master station, Not only can this be determined for each utility pole, but also the control computer can make a comprehensive judgment based on the operation information of the substation protection relay and the sensor information, and determine the switch operation procedure to disconnect the fault section and reverse the load-side healthy section. Fault section isolation using a computer that can be created instantly, sends switch control commands to slave stations via the master station, and eliminates the fault section without causing the circuit to be interrupted by the circuit breaker. There is a system.

(発明が解決しようとする課題) しかしながら、計算機を用いた事故区間切離しシステム
を構築するためには、配電線系の接続ルート情報や現在
状態、各区間に供給すべき電力や、各配電線の供給能力
を把握した大型制御用計算機が必要で、かつ、短時間に
変電所情報伝送装置、標定用子局と情報伝送を行うため
の高速通信網が必要となる。また、手順作成には区分開
閉器の現在状態(入/切)を正確に把握する必要があり
、開閉器が100%遠隔制御化されていない地域では情
報の欠落により正確な手順を作成する事が困難な場合も
ある。その地間閉器制御指令が計算機−親局−子局間で
伝送される為の通信時間により1事故当りの制御台数に
も制限がある。
(Problem to be solved by the invention) However, in order to construct an accident section isolation system using a computer, it is necessary to know the connection route information and current status of the distribution line system, the power to be supplied to each section, and the information on each distribution line. A large-scale control computer that knows the supply capacity is required, and a high-speed communication network is required to quickly transmit information to substation information transmission equipment and local location stations. In addition, in order to create procedures, it is necessary to accurately understand the current status of the sectional switch (on/off), and in areas where switches are not 100% remotely controlled, it is difficult to create accurate procedures due to lack of information. may be difficult. There is also a limit to the number of control units per accident due to the communication time required for transmitting the ground switch control command between the computer, master station, and slave station.

本発明は、このような従来の問題を解決するものであり
、大規模なシステムを構築することなく、切離し子局を
中心として簡単な原理で確実な配電線事故区間切離しシ
ステムを提供することを目的とするものである。
The present invention solves these conventional problems, and aims to provide a reliable distribution line fault section isolation system based on a simple principle centered on the isolation slave station without constructing a large-scale system. This is the purpose.

(課題を解決するための手段) 本発明は、上記目的を達成するために、配電線事故区間
切離しシステムは、 ■地路センサ、 ■標定機能・切離し機能、及び停電監視機能・融通機能
を有する事故点標定用遠隔制御子局、■ポーリング監視
、制御の他に、地絡情報伝送装置からのフィーダ地絡情
報を全子局に通報する機能を有する親局、 ■変電所に設置され、地絡継電器の条件でフィーダ単位
地絡情報を親局装置へ伝送する地絡情報伝送装置、 より構成され、事故点標定用遠隔制御子局は、隣接する
区間内の地絡センサの検出情報により区分開閉器を即座
に開放し、常開開閉点子局は開放に伴う停電を検出し、
常開開閉器を即座に投入することで、事故区間の切離し
と、負荷側健全区間の自動逆送処理を行うことができる
ようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a power distribution line accident section isolation system that has: ■ ground sensor; ■ orientation function/isolation function; and power outage monitoring function/accommodation function. A remote control slave station for fault point locating; ■A master station that has the function of not only polling monitoring and control but also reporting feeder ground fault information from the ground fault information transmission device to all slave stations; It consists of a ground fault information transmission device that transmits ground fault information for each feeder to the master station device under the conditions of the fault relay, and the remote control slave station for fault point location is classified based on the detection information of the ground fault sensor in the adjacent section. The switch is immediately opened, and the normally open/closed slave station detects the power outage caused by the opening.
By immediately turning on the normally open switch, it is possible to disconnect the faulty section and automatically reverse feed the healthy section on the load side.

(作 用) したがって本発明によって、制御用計算機及び高速伝送
路を用いることなく、従来の計算機を用いたシステムと
ほぼ同等の機能を果す事故区間切離しシステムが構築出
来る。
(Function) Therefore, according to the present invention, it is possible to construct an accident section isolation system that performs almost the same function as a conventional computer-based system without using a control computer or a high-speed transmission line.

(実施例) 第1図は本発明の一実施例の構成を示すものである。第
1図において、1は変電所であり、内部に配電線に供給
する電力を遮断する回路遮断器1−1と、地絡電流を検
出する零相電流変流器1−2と、接地用変圧器1−3と
、地絡方向検出リレー1−4を備えている。2は区間対
応に区分開閉器と対応して設けられた各柱地絡検出シス
テムであり、対応する区間の電柱対応の地絡検出用セン
サと、親局11及び対応する区分開閉器3との間で情報
をやりとりする子局を有する。3は各柱地絡検出システ
ム2と対応して設けられ、フィーダを開閉する区分開閉
器、4は他のフィーダとの間を連絡する連絡用区分開閉
器、5は連絡用区分開閉器4を制御する子局、6は情報
伝送路(CL)、7は電柱、8は各電柱7に対応する接
地線、9は配電線である。
(Embodiment) FIG. 1 shows the configuration of an embodiment of the present invention. In Fig. 1, 1 is a substation, which includes a circuit breaker 1-1 that cuts off the power supplied to the distribution line, a zero-phase current transformer 1-2 that detects ground fault current, and a grounding substation. It includes a transformer 1-3 and a ground fault direction detection relay 1-4. Reference numeral 2 denotes a ground fault detection system for each pole, which is installed in correspondence with the sectional switch for each section, and includes a ground fault detection sensor for the utility pole in the corresponding section, a master station 11, and a corresponding sectional switch 3. It has slave stations that exchange information between them. Reference numeral 3 indicates a section switch which is provided corresponding to each pole ground fault detection system 2 and opens and closes the feeder, 4 is a communication section switch which communicates with other feeders, and 5 indicates a communication section switch 4. A slave station to be controlled, 6 an information transmission line (CL), 7 utility poles, 8 a grounding line corresponding to each utility pole 7, and 9 a power distribution line.

第2図は第1図の実施例における地絡発生時のフローチ
ャートを示したものである。
FIG. 2 shows a flowchart when a ground fault occurs in the embodiment of FIG. 1.

次に上記実施例の動作について、第1図および第2図を
参照して説明する。
Next, the operation of the above embodiment will be explained with reference to FIGS. 1 and 2.

通常の配電系統では、変電所1の母線(BUS)から回
路遮断器1−1を通して配電線9に電力を供給している
。この配電線9には区分開閉器3−1(SWI)、3−
2(SW2)、3−3(SW3)、3−4(SW4)が
設置されており#1区間、#2区間。
In a normal power distribution system, power is supplied from a bus bar (BUS) of a substation 1 to a power distribution line 9 through a circuit breaker 1-1. This distribution line 9 has section switches 3-1 (SWI), 3-
2 (SW2), 3-3 (SW3), and 3-4 (SW4) are installed in #1 section and #2 section.

#3区間、#4区間に区分されている。健全な送電状態
では区分開閉器3−1〜3−4は全部投入されており配
電線9の全区間に電力が供給されている。
It is divided into section #3 and section #4. In a healthy power transmission state, all the section switches 3-1 to 3-4 are turned on, and power is supplied to all sections of the power distribution line 9.

また、連絡用区分開閉器4は開放されている。Moreover, the communication division switch 4 is open.

今、#2区間のセンサ2−22が接続されている電柱7
に地絡事故が発生(Sl)すると、変電所1の地絡方向
検出リレー1−4は、この配電線9に地絡事故が発生し
たことを検出し、回路遮断器1−1を遮断させるべく指
令を出す動作を開始する。
Telephone pole 7 to which sensor 2-22 of section #2 is now connected
When a ground fault occurs (Sl), the ground fault direction detection relay 1-4 of the substation 1 detects that a ground fault has occurred in the distribution line 9, and shuts off the circuit breaker 1-1. Start issuing commands.

一方、地絡方向検出リレー1−4の動作の情報は親局1
1を経由して配電線内子局に一斉通報される(S2.S
3)。またセンサ2−22は、地絡を検出し#2区間を
挾む#2子局2−20.#3子局を2−30へ通知する
(S4)。#2子局2−20.#3子局2−30は、前
記地絡方向検出リレー1−4動作の一斉通報受信と、セ
ンサ2−22からの検出情報により、確実に#2区間内
で地絡が発生した事を認識し区分開閉器3−2(SW2
)、3−3(SW3)を直ちに開放する(S5)。#3
区間、#4区間はこれにより停電する事になるが連絡用
区分開閉器(SWT)4に接続される子局5は事故配電
線側が無電圧になることと、前記地絡方向検出リレー1
4の1斉通報受信により直ちに連絡用区分開閉器4を投
入する(S6)。
On the other hand, information on the operation of the ground fault direction detection relay 1-4 is transmitted to the master station 1.
1 to all slave stations in the distribution line (S2.S
3). Further, the sensor 2-22 detects a ground fault and the #2 slave station 2-20. #3 Notify the slave station 2-30 (S4). #2 slave station 2-20. The #3 slave station 2-30 reliably recognizes that a ground fault has occurred within the #2 section by receiving the simultaneous notification of the operation of the ground fault direction detection relay 1-4 and the detection information from the sensor 2-22. Sectional switch 3-2 (SW2
), 3-3 (SW3) is immediately opened (S5). #3
This will result in a power outage in section #4, but the slave station 5 connected to the communication section switch (SWT) 4 will have no voltage on the fault distribution line side and the ground fault direction detection relay 1
Upon receiving the simultaneous notification of 4, the communication section switch 4 is immediately turned on (S6).

(発明の効果) 本発明は、上記実施例から明らかなように、地絡が発生
した区間をそれを挾む区分開閉器が切離し、また、それ
により発生した停電区間に対しては、開放中でかつ片方
向側は充電されている開閉器が自ら投入して送電を行う
という極めてシステムの目的に原理的に適応した方法で
切離しを行うので論理に矛盾がなく信頼性が高いシステ
ムが構築できる。また、制御用計算機及び高速伝送路を
使用しないため、従来に比べてシステムは安価に構成で
き設置スペースも問題にならない。
(Effects of the Invention) As is clear from the above-mentioned embodiments, the present invention has the advantage that the section switch in which the ground fault has occurred is disconnected, and the section where the power outage has occurred as a result is disconnected. Moreover, on one side, the charged switch connects itself and transmits power, and disconnection is performed in a method that is ideally suited to the purpose of the system, making it possible to construct a highly reliable system with no logical contradictions. . Furthermore, since a control computer and high-speed transmission line are not used, the system can be constructed at a lower cost than in the past, and installation space is not an issue.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における配電線事故区間切離
しシステム構成図、第2図は第1図の実施例における地
絡発生時の動作フローチャート、第3図は従来の配電保
護方式のシステム構成図である。 1・・・変電所、  1−1・・・回路遮断器、  1
−2・・・零相電流変流器、  ■−3・・・接地用変
圧器、  1−4・・・地絡方向検出リレー  2(2
−1,2−2,2−3,2−4)・・・各柱地絡検出シ
ステム、  2−1O・・・#1子局、 2−20・・
・#2子局、  2−30・・・#3子局、  2−4
0・・・#4子局、  2−11. 2−12.2−1
3゜2−21.2−22. 2−23. 2−31..
2−32.2−33. 2−41.2−42. 2−4
3・・・地絡検出センサ、 3(3−1,3−2,3−
3,3−4)・・・区公開閉器、 4・・・連絡用区分
開閉器、5・・・子局T、 6・・・情報伝送路、 7
・・・電柱、 8・・・接地線、  9・・・配電線、
11・・・親局、 31・・・主変圧器、 32・・・
回路遮断器、 33.34.35.36・・・区分開閉
器、37、38.39.40・・・遅延投入動作機構、
41・・・常開開閉器。
Fig. 1 is a diagram showing the configuration of a distribution line fault section isolation system according to an embodiment of the present invention, Fig. 2 is an operation flowchart when a ground fault occurs in the embodiment of Fig. 1, and Fig. 3 is a system of a conventional power distribution protection method. FIG. 1... Substation, 1-1... Circuit breaker, 1
-2... Zero-phase current current transformer, ■-3... Grounding transformer, 1-4... Earth fault direction detection relay 2 (2
-1, 2-2, 2-3, 2-4)...Each pillar ground fault detection system, 2-1O...#1 slave station, 2-20...
・#2 slave station, 2-30...#3 slave station, 2-4
0...#4 slave station, 2-11. 2-12.2-1
3゜2-21.2-22. 2-23. 2-31. ..
2-32.2-33. 2-41.2-42. 2-4
3... Ground fault detection sensor, 3 (3-1, 3-2, 3-
3,3-4)...District public switch, 4...Communication section switch, 5...Slave station T, 6...Information transmission path, 7
...Electric pole, 8...Grounding wire, 9...Distribution line,
11... Master station, 31... Main transformer, 32...
Circuit breaker, 33.34.35.36... Sectional switch, 37, 38.39.40... Delay closing operation mechanism,
41...Normally open switch.

Claims (1)

【特許請求の範囲】[Claims] 高圧配電線路の地絡事故発生時、各電柱に設置された地
絡センサからの地絡発生通知と変電所地絡継電器情報の
論理積条件により制御用電算機が事故区間を判定し、事
故発生区間を挾む区分開閉器を開放し、事故区間より負
荷側区間を、他配電線常開(常時開放)開閉器を投入す
ることにより逆送を行う事故区間切離しシステムにおい
て、事故発生区間を挾む区分開閉器に対応して設置され
る子局自体が、地絡センサからの通知と、変電所地絡継
電器情報の論理積条件により、直接前記区分開閉器を開
放させ、それにより停電が発生する負荷側区間について
は常開開閉器に対応して設置された子局が瞬時停電を検
出し直接前記常開開閉器を投入させるようにしたことを
特徴とするインテリジェント子局を用いた配電線事故区
間切離しシステム。
When a ground fault occurs on a high-voltage distribution line, the control computer determines the fault section based on the logical product of the ground fault notification from the ground fault sensor installed on each utility pole and the substation ground fault relay information, and the fault occurs. In the accident section isolation system, the section where the accident occurred is separated by opening the division switch that sandwiches the section, and then reversing the load side section from the accident section by turning on the normally open (normally open) switch of the other distribution line. The slave station installed corresponding to the sectional switch directly opens the sectional switch based on the notification from the ground fault sensor and the AND condition of the substation ground fault relay information, which causes a power outage. A distribution line using an intelligent slave station, characterized in that for a load-side section where a normally open switch is connected, a slave station installed corresponding to a normally open switch detects an instantaneous power outage and directly closes the normally open switch. Accident section separation system.
JP2225410A 1990-08-29 1990-08-29 Distribution line accident section separation method Expired - Lifetime JP3041632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225410A JP3041632B2 (en) 1990-08-29 1990-08-29 Distribution line accident section separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225410A JP3041632B2 (en) 1990-08-29 1990-08-29 Distribution line accident section separation method

Publications (2)

Publication Number Publication Date
JPH04109821A true JPH04109821A (en) 1992-04-10
JP3041632B2 JP3041632B2 (en) 2000-05-15

Family

ID=16828937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225410A Expired - Lifetime JP3041632B2 (en) 1990-08-29 1990-08-29 Distribution line accident section separation method

Country Status (1)

Country Link
JP (1) JP3041632B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464535A (en) * 1987-09-03 1989-03-10 Chubu Electric Power Distribution line automating device
JPH0227272A (en) * 1988-07-18 1990-01-30 Kyushu Electric Power Co Inc Apparatus for detecting earth of transmission/ distribution line
JPH02106131A (en) * 1988-10-13 1990-04-18 Energy Support Corp Protection and coordination system for distribution line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464535A (en) * 1987-09-03 1989-03-10 Chubu Electric Power Distribution line automating device
JPH0227272A (en) * 1988-07-18 1990-01-30 Kyushu Electric Power Co Inc Apparatus for detecting earth of transmission/ distribution line
JPH02106131A (en) * 1988-10-13 1990-04-18 Energy Support Corp Protection and coordination system for distribution line

Also Published As

Publication number Publication date
JP3041632B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
EP0554553B1 (en) Method of and system for disconnecting faulty distribution line section from power distribution line
CN102037630B (en) Feeder automation system and method for operating the same
US9362738B2 (en) Intelligent control system for high-voltage switch and control method thereof
JPH11313438A (en) Fault protection device for power distribution system
CN105974267B (en) A kind of small current grounding fault positioning system and its method based on IEC 61850
CN105655879A (en) Voltage arranging mode of bus merging unit double configuration of 110 kV system in intelligent substation double-bus wiring mode
JPH04109821A (en) Fault section isolating system for distribution line employing intelligent slave station
JP2956596B2 (en) Fault detection device for distribution system
JP3141806B2 (en) Automatic distribution line switchgear
JP3075740B2 (en) Accident point separation device
JPH01136528A (en) Remote control of distribution line
JPS63287321A (en) Fault section detecting/separating device for distribution line
JPS598426Y2 (en) System monitoring display check device
JPH04331416A (en) Ground fault protection system for distribution line
JPS587815Y2 (en) Remote monitoring and control equipment for power distribution lines
JPH07250441A (en) Distributing-line monitoring and controlling system and control method thereof
JPH03215118A (en) Separation of faulty section of distribution line
JPH1032924A (en) Device for sectionalizing faulty section of power distribution system
JPH02231921A (en) Ground fault point isolating system for distribution line
JPH03215119A (en) Separation of faulty section of distribution line
JPH0393426A (en) Automatic recovery system for power system
JPH09233685A (en) Distribution line section switch controller
JPS63287322A (en) Relay for detecting ground fault section in distribution line
JPH0324129B2 (en)
JPH04190645A (en) Automation device for distribution line

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11