JPH04108672A - Method for calcining ceramic tube - Google Patents

Method for calcining ceramic tube

Info

Publication number
JPH04108672A
JPH04108672A JP2227852A JP22785290A JPH04108672A JP H04108672 A JPH04108672 A JP H04108672A JP 2227852 A JP2227852 A JP 2227852A JP 22785290 A JP22785290 A JP 22785290A JP H04108672 A JPH04108672 A JP H04108672A
Authority
JP
Japan
Prior art keywords
crucible
firing
ceramic tube
temp
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2227852A
Other languages
Japanese (ja)
Other versions
JP2610702B2 (en
Inventor
Makoto Kato
誠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2227852A priority Critical patent/JP2610702B2/en
Publication of JPH04108672A publication Critical patent/JPH04108672A/en
Application granted granted Critical
Publication of JP2610702B2 publication Critical patent/JP2610702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE:To eliminate defective articles due to cracking with a simple and economical process by discharging the decomposed gas into a kiln from the contact surface between the open end of a crucible and base, and then heating the ceramic tube to the calcining temp. CONSTITUTION:The ceramic tube is calcined in a kiln in conformity to a heat curve shown in the figure. Namely, the tube is slowly heated at the rate of 70 deg.C/hr to point A (600 deg.C) which is the degreasing temp. and degreased. After the decomposed gas in a crucible 1 is discharged, the tube is heated in the kiln at the rate of 150 deg.C/hr to point D (1620 deg.C) which is the calcining temp., kept at that temp. for 30min and calcined. The sintered tube is then cooled to ordinary temp. at the rate of 100-500 deg.C/hr, and the product is taken out. Consequently, a series of the processes from the degreasing stage to calcining stage are carried out in the same kiln with only the temp. controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は脱脂処理も併せて行なうことができるセラミッ
クス管の焼成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for firing ceramic tubes that can also be subjected to degreasing treatment.

(従来の技術) 成形助剤として有機質バインダーを使用し、成形したセ
ラミックス管成形体を雰囲気保護の下で焼成し、製造す
る場合、通常本焼成前に脱脂工程を必要とし脱脂炉で脱
脂後本焼成炉にて焼成し、セラミックス管が製造されて
きた。例えば一端が閉じられ、他端が開口した有底円筒
状のβ−アルミナ管は、ナトリウム−硫黄電池や熱電変
換装置のナトリウムイオン伝導用固体電解質管あるいは
SOxセンサー用固体電解質管等に用いられており、そ
の焼成方法としてクルーシブルと称されるセラミックス
製保護管内においてアルカリ雰囲気下で焼成する方法が
知られている。そして、この場合、焼成後のβ−アルミ
ナ管の嵩密度の低下を防止する必要性からβ−アルミナ
管成形体中の有機性バインダーを分解・燃焼する脱脂処
理を前工程で行なう必要があった。
(Prior art) When an organic binder is used as a forming aid and the formed ceramic tube molded body is fired in a protected atmosphere and manufactured, a degreasing step is usually required before the main firing. Ceramic tubes have been manufactured by firing in a firing furnace. For example, a bottomed cylindrical β-alumina tube with one end closed and the other open is used for solid electrolyte tubes for sodium ion conduction in sodium-sulfur batteries and thermoelectric conversion devices, solid electrolyte tubes for SOx sensors, etc. As a firing method, a method of firing in an alkaline atmosphere in a ceramic protective tube called a crucible is known. In this case, in order to prevent a decrease in the bulk density of the β-alumina tube after firing, it was necessary to perform a degreasing process in the previous process to decompose and burn the organic binder in the β-alumina tube formed body. .

ところが、この脱脂処理をクルーシブル内で行うと発生
するバインダーの分解ガスでクルーシブル内が還元雰囲
気となりバインダーの分解が不充分となって、本焼成で
β−アルミナの密度低下を生しるため前記クルーシブル
内で脱脂処理を行なうことができず、クルーシブルを用
いない別の窯で行なわれており処理工程が複雑化するう
えに、設備費等がかかって経済的でないという問題点が
あり、また脱脂処理後の窯出しの際の急冷却及び窯出し
作業時のハンドリング等によりβ−アルミナ管にクラッ
クが生じて不良品を発生させるという問題点もあった。
However, when this degreasing treatment is performed inside the crucible, the binder decomposition gas generated creates a reducing atmosphere inside the crucible, making the binder insufficiently decomposed and causing a decrease in the density of β-alumina during the main firing. Degreasing cannot be carried out in-house, and is carried out in a separate kiln that does not use a crucible, which complicates the processing process and increases equipment costs, making it uneconomical. There is also the problem that cracks occur in the β-alumina tube due to rapid cooling during subsequent kiln removal and handling during kiln removal, resulting in defective products.

(発明が解決しようとする課B) 本発明は上記のような従来の問題点を解決して、脱脂処
理を別の窯で行なうことなく焼成処理と併せて行なうこ
とができて、処理工程が簡単かつ経済的であるとともに
従来のようにクラックによる不良品を発生させることも
ないセラミックス管の焼成方法を提供することを目的と
して完成されたものである。
(Problem B to be Solved by the Invention) The present invention solves the above-mentioned conventional problems, and allows degreasing treatment to be performed in conjunction with firing treatment without using a separate kiln, thereby simplifying the treatment process. This method was completed with the aim of providing a method for firing ceramic tubes that is simple and economical and does not produce defective products due to cracks, unlike conventional methods.

(課題を解決するための手段) 上記の課題を解決するためになされた本発明は、焼成炉
内においてベース上を覆うクルーシブル内で倒立させた
セラミックス管成形体を焼成するセラミックス管の焼成
方法において、成形助荊である有機質バインダーの脱脂
処理温度において分解したガスがクルーシブル内に充満
したら、更に急加熱したのち急冷却してクルーシブルの
内圧を焼成炉の内圧よりも十分高くして両回圧の圧力差
によって分解ガスをクルーシブルの開口端とへ一スとの
接触面から焼成炉内へ放出させ、その後、本焼成温度ま
で加熱してセラミックス管成形体を焼成することを特徴
とするものである。
(Means for Solving the Problems) The present invention, which has been made to solve the above problems, provides a ceramic tube firing method in which a ceramic tube molded body is fired inverted in a crucible that covers a base in a firing furnace. When the crucible is filled with gas decomposed at the degreasing temperature of the organic binder used for molding, it is further rapidly heated and then rapidly cooled to make the internal pressure of the crucible sufficiently higher than the internal pressure of the firing furnace to reduce the pressure at both times. The method is characterized in that the decomposed gas is released into the firing furnace from the contact surface between the open end of the crucible and the heel by a pressure difference, and then heated to the main firing temperature to fire the ceramic tube molded body. .

(実施例) 次に、本発明を図示の実施例について詳細に説明する。(Example) Next, the present invention will be described in detail with reference to the illustrated embodiments.

図中(1)は図示しない焼成炉内にセットされるベース
(2)を覆って内部に焼成用空間を形成するクルーシブ
ルであり、該クルーシブル(1)およびベース(2)は
、MgO、スピネル、アルミナなどからなるセラミック
ス製品であり、このベース(2)には前記クルーシブル
(1)の内部においてベース(2)上にセットしてβ−
アルミナ管平成体(4)を倒立保持させるために用いる
β−アルミナ管成形体(4)と同材質からなる共素地台
(5)が載置されている。
In the figure, (1) is a crucible that covers a base (2) set in a firing furnace (not shown) to form a firing space inside, and the crucible (1) and base (2) are made of MgO, spinel, This is a ceramic product made of alumina, etc., and the base (2) has β-
A common substrate base (5) made of the same material as the β-alumina tube molded body (4) used for holding the alumina tube flat body (4) upside down is mounted.

このように構成されたものは、焼成炉内において第2図
の実線に示したようなヒートカーブで焼成処理を行えば
、まず、70°C/hrの割合で脱脂処理温度であるA
点(600°C)まで緩やかに加熱昇温する段階におい
て脱脂処理が行なわれ、β−アルミナ管成形体(4)中
の水分および有機バインダー成分がこの加熱により分解
・燃焼して分解ガスがクルーシブル(1)の内部に充満
することとなる。このようにして脱脂処理が終了したな
らば、次に、400℃/hrの割合でB点(1000℃
)まで急加熱した後、ただちに400℃/hrの割合で
0点(600℃)まで急冷却を行えば、まず、急加熱の
段階において前記クルーシブル(1)の内圧すなわち内
部に充満しているバインダーの分解ガスの圧力および焼
成炉の内圧が十分高められるが、これに続く急冷却の段
階においては焼成炉の内圧が雰囲気温度の低下に伴って
即座に低下するものの、クルーシブル(1)の内圧は該
クルーシブル(])内の温度低下が焼成炉の雰囲気温度
の低下に比べて迩かに小さいので殆ど内圧低下が見られ
ず、この結果、焼成炉の内圧とクルーシブル(1)の内
圧との間に大きな圧力差が生ずることとなり、高圧状態
にあるクルーシブル(1)内の分解ガスがクルーシブル
(1)の開口端とベースとの接触面から低圧状態にある
焼成炉内へ自然に放出される。クルーシブル(1)内に
は分解ガスが殆ど存在しない状態となる。なお、クルー
シブル(1)内のβ−アルミナ管成形体(4)の内部に
充満しているバインダーの分解ガスもβ−アルミナ管成
形体(4)が仮焼によりポーラスであるためβ−アルミ
ナ管成形体(4)を通過して、β−アルミナ管成形体(
4)の外部へ放出され更に焼成炉内へと放出される。こ
の場合、β−アルミナ管成形体(4)の開口端にガスの
流通を良くする切欠部を設けたり、共素地台(5)にガ
ス抜き孔を設けてβ−アルミナ管成形体(4)の内部の
ガスとβ−アルミナ管成形体(4)の外部のガスを連通
状態にすると好ましい。このようにしてクルーシブル(
1)内の分解ガスの放出が終了したならば、焼成炉内温
度を本焼成温度となるように、まず、150℃/hrの
割合でD点(1620″C)まで昇温後30分間保持す
ることによりβ−アルミナ管成形体(4)の本焼成を行
えば、β−アルミナ管成形体(4)および共素地台(5
)の焼結による収縮が12oo’c〜1400°Cにお
いて急激に発生すると同時に、NazOやMgOの蒸発
が活発化することとなり、バインダーの分解ガスに代わ
ってNa2O等の蒸気によってアルカリ雰囲気に保持さ
れた状態で焼結が行なわれることとなる。このようにし
て焼結処理が行なわれた後は、100〜500’C/h
rの割合で常温まで冷却して製品を取り出せばよいもの
で、脱脂処理工程から本焼成工程までの一連の工程を同
一の焼成炉内において温度コントロールだけで行うこう
ができる。なお、第2図において破線は前記急加熱およ
び急冷却を300’C/hrの割合で行った場合を示し
、−点鎖線は200°C/hrの割合で行った場合を示
しており、その他については同一の条件のヒートカーブ
を示すものである。このようにして得られたβ−アルミ
ナ管の嵩密度をアルキメデス法(溶媒はエチルアルコー
ル)により測定した結果は下表に示すとおりである。
With this structure, if the firing process is performed in the firing furnace according to the heat curve shown by the solid line in Figure 2, the degreasing temperature A will be reached at a rate of 70°C/hr.
Degreasing treatment is carried out at the stage where the temperature is slowly heated to a temperature of 600°C, and the moisture and organic binder components in the β-alumina tube molded body (4) are decomposed and burned by this heating, and the decomposed gas becomes crucible. (1) will be filled with the inside. Once the degreasing process has been completed in this way, next, the temperature at point B (1000°C
), and then immediately rapidly cooled down to point 0 (600°C) at a rate of 400°C/hr, the internal pressure of the crucible (1), that is, the binder filled inside, will be reduced during the rapid heating stage. The pressure of the cracked gas and the internal pressure of the calcining furnace are sufficiently increased. However, in the subsequent rapid cooling stage, the internal pressure of the calcining furnace immediately decreases as the ambient temperature decreases, but the internal pressure of the crucible (1) remains unchanged. Since the temperature drop inside the crucible () is much smaller than the drop in the ambient temperature of the firing furnace, there is almost no drop in internal pressure, and as a result, the difference between the internal pressure of the firing furnace and the internal pressure of the crucible (1) A large pressure difference is generated, and the cracked gas in the crucible (1), which is under high pressure, is naturally released from the contact surface between the open end of the crucible (1) and the base into the firing furnace, which is under low pressure. Almost no decomposed gas exists in the crucible (1). Note that the decomposition gas of the binder filling the inside of the β-alumina tube molded body (4) in the crucible (1) is also caused by the β-alumina tube because the β-alumina tube molded body (4) is porous due to calcination. After passing through the molded body (4), the β-alumina tube molded body (
4) is discharged to the outside and further discharged into the firing furnace. In this case, a notch is provided at the open end of the β-alumina pipe molded body (4) to improve gas flow, or a gas vent hole is provided in the common substrate base (5) to form a β-alumina pipe molded body (4). It is preferable that the gas inside the β-alumina tube molded body (4) be in communication with the gas outside the β-alumina tube molded body (4). In this way, the Crucible (
1) Once the decomposition gas has been released, the temperature inside the firing furnace is raised to the main firing temperature at a rate of 150°C/hr to point D (1620″C) and held for 30 minutes. By performing the main firing of the β-alumina tube molded body (4), the β-alumina tube molded body (4) and the common base plate (5) are fired.
) contraction due to sintering occurs rapidly at 1200°C to 1400°C, and at the same time, the evaporation of NazO and MgO becomes active, and the binder is maintained in an alkaline atmosphere by vapors such as Na2O instead of decomposed gas. Sintering will be performed in this state. After the sintering process is carried out in this way, the
The product can be taken out after being cooled to room temperature at a rate of r, and a series of steps from the degreasing process to the main firing process can be performed in the same firing furnace by temperature control alone. In addition, in FIG. 2, the broken line shows the case where the rapid heating and rapid cooling were performed at a rate of 300°C/hr, the - dotted line shows the case where the rapid cooling was performed at a rate of 200°C/hr, and other shows the heat curve under the same conditions. The bulk density of the β-alumina tube thus obtained was measured by the Archimedes method (the solvent was ethyl alcohol), and the results are shown in the table below.

上表によれば本発明方法により得られたβ−アルミナ管
の嵩密度は、脱脂処理を別の炉で処理した後に焼成炉に
移して本焼成を行った従来方法により得られたβ−アル
ミナ管の平均密度3.25g/Cm’  (n =50
本)と同等であることが確認された。また、本発明方法
により得られたβ−アルミナ管にはクラックの発生はな
(すべて良品であったなお、分解ガスがクルーシブル内
に充満したのち急加熱、急冷却せずに分解ガスをクルー
シブル内に残存させたまま焼結処理を行なった場合にお
けるβ−アルミナ管の嵩密度は平均密度が3.0g/c
m’(n=10本)であり、本発明方法により得られた
ものと比較して品質が悪いもので、本発明方法が優れた
ものであることが確認できた。
According to the above table, the bulk density of the β-alumina tube obtained by the method of the present invention is higher than that of β-alumina obtained by the conventional method in which the degreasing process is performed in a separate furnace and then transferred to the firing furnace for main firing. Average density of the tube 3.25 g/Cm' (n = 50
It was confirmed that it is equivalent to the book). In addition, there were no cracks in the β-alumina tubes obtained by the method of the present invention (all of them were good products). The average bulk density of the β-alumina tube when sintered while remaining in the
m' (n=10 pieces), and the quality was poorer than that obtained by the method of the present invention, confirming that the method of the present invention is superior.

本発明の技術は単独窯、連続炉等に適用でき、また、電
気炉、オイル焚燃焼炉、ガス焚燃焼炉及びこれらの混成
炉等に適用できる。
The technology of the present invention can be applied to a single kiln, a continuous furnace, etc., and can also be applied to an electric furnace, an oil-fired combustion furnace, a gas-fired combustion furnace, a hybrid furnace thereof, etc.

(発明の効果) 以上の説明からも明らかなように、本発明においては、
従来は別の炉で脱脂処理したうえ焼成炉に移して本焼成
していたのに比べ、脱脂処理がら本焼成に至る一連の工
程を焼成温度のコントロールのみにより同一の焼成炉内
にセットされた同一のクルーシブル内で行なうことがで
きるので、処理が簡単かつ経済的となるとともに余分な
搬送工程もなく、また、従来法により得られた製品と嵩
密度も変わることがないうえにクラックの発生も確実に
防止できて不良品の発生を確実に防止できるという優れ
た効果がある。
(Effect of the invention) As is clear from the above explanation, in the present invention,
In the past, products were degreased in a separate furnace and then transferred to a firing furnace for final firing, but now the series of processes from degreasing to final firing are set in the same firing furnace, with only the firing temperature controlled. Since it can be carried out in the same crucible, processing is simple and economical, there is no extra transport process, and the bulk density is the same as that of products obtained by conventional methods, and cracks do not occur. This has the excellent effect of reliably preventing the occurrence of defective products.

従って、本発明は従来のセラミックス管焼成上の問題点
を一掃したセラミックス管の焼成方法として、産業の発
展に寄与するところは極めて大である。
Therefore, the present invention greatly contributes to the development of industry as a ceramic tube firing method that eliminates the problems associated with conventional ceramic tube firing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例における脱脂処理工程時の
状態を示す断面図、第2図は焼成処理時のヒートカーブ
を示すグラフである。 (1):クルーシブル、(2)二ベース、(4):β−
アルミナ管成形体、(5):共素地台。
FIG. 1 is a sectional view showing the state during the degreasing process in an embodiment of the method of the present invention, and FIG. 2 is a graph showing the heat curve during the baking process. (1): Crucible, (2) Bibase, (4): β-
Alumina tube molded body, (5): Co-base base.

Claims (1)

【特許請求の範囲】[Claims] 焼成炉内においてベース上を覆うクルーシブル内で倒立
させたセラミックス管成形体を焼成するセラミックス管
の焼成方法において、成形助剤である有機質バインダー
の脱脂処理温度において分解したガスがクルーシブル内
に充満したら、更に急加熱したのち急冷却してクルーシ
ブルの内圧を焼成炉の内圧よりも十分高くして両内圧の
圧力差によって分解ガスをクルーシブルの開口端とベー
スとの接触面から焼成炉内へ放出させ、その後、本焼成
温度まで加熱してセラミックス管成形体を焼成すること
を特徴とするセラミックス管の焼成方法。
In a ceramic tube firing method in which an inverted ceramic tube molded body is fired in a crucible that covers the base in a firing furnace, when the crucible is filled with gas decomposed at the degreasing temperature of the organic binder, which is a forming aid, Furthermore, after rapid heating, the crucible is rapidly cooled to make the internal pressure of the crucible sufficiently higher than the internal pressure of the firing furnace, and the decomposition gas is released into the firing furnace from the contact surface between the open end of the crucible and the base due to the pressure difference between the two internal pressures, A method for firing a ceramic tube, comprising: thereafter heating the ceramic tube molded body to a main firing temperature to fire the ceramic tube molded body.
JP2227852A 1990-08-28 1990-08-28 Ceramic tube firing method Expired - Lifetime JP2610702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2227852A JP2610702B2 (en) 1990-08-28 1990-08-28 Ceramic tube firing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2227852A JP2610702B2 (en) 1990-08-28 1990-08-28 Ceramic tube firing method

Publications (2)

Publication Number Publication Date
JPH04108672A true JPH04108672A (en) 1992-04-09
JP2610702B2 JP2610702B2 (en) 1997-05-14

Family

ID=16867384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2227852A Expired - Lifetime JP2610702B2 (en) 1990-08-28 1990-08-28 Ceramic tube firing method

Country Status (1)

Country Link
JP (1) JP2610702B2 (en)

Also Published As

Publication number Publication date
JP2610702B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JPH04108672A (en) Method for calcining ceramic tube
JPH04108671A (en) Method for calcining ceramic tube
KR101360630B1 (en) Improved method for debindering ceramic honeycombs
JP2005069668A (en) Baking container for silicon nitride-based ceramic
JPH1064488A (en) Baking method for insulation container
JP3812227B2 (en) Manufacturing method of ceramic parts
JPH06221764A (en) Device for heat treatment and its heat-treated object
JP2550848Y2 (en) Sagger for ceramic firing
JP2014001082A (en) Carbonizing and baking method, and carbonized and baked product
JPH04302991A (en) Vessel for baking ceramics
JP2000119068A (en) Degreasing/burning implement for aluminum nitride molded form
JP2003124054A (en) Method of manufacturing laminated ceramic electronic part
JPH05262569A (en) Firing of formed ceramic material containing oxide having high vapor pressure
KR20020033525A (en) SiC-BASED JIG FOR HEAT TREATMENT
JP2771416B2 (en) Beta alumina tube firing method
JPH04198062A (en) Method for sintering ceramics and sintering tool used for the method
JPH09255438A (en) Burning of ceramic formed article and burning apparatus
CN115093203A (en) Preparation method of carbon-based aluminum oxide composite material
JPH0474768A (en) Calcining method and calcination jig
JPH0268488A (en) Cordierite type functionally gradient materials
RU2266269C2 (en) Method of heat treatment of blanks made from glass ceramics
JP3298283B2 (en) Method for firing aluminum nitride substrate
JPH04285062A (en) Production of beta-alumina tube
JPH05118763A (en) Pressurized vacuum furnace
JPH0664094U (en) Electric heating furnace with separate heating chamber