JPH0410804A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPH0410804A
JPH0410804A JP11298590A JP11298590A JPH0410804A JP H0410804 A JPH0410804 A JP H0410804A JP 11298590 A JP11298590 A JP 11298590A JP 11298590 A JP11298590 A JP 11298590A JP H0410804 A JPH0410804 A JP H0410804A
Authority
JP
Japan
Prior art keywords
stage
fet
noise
amplifier
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11298590A
Other languages
Japanese (ja)
Inventor
Nobuo Shiga
信夫 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11298590A priority Critical patent/JPH0410804A/en
Publication of JPH0410804A publication Critical patent/JPH0410804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To obtain a high yield while keeping high performance and low noise characteristic by selecting the gate length of a FET used for a 1st stage of a low noise multi-stage amplifier for microwave shorter than the gate length of a FET used for a post-stage. CONSTITUTION:A FET 10 of a 1st stage consists of a source electrode 11, a gate electrode 12 and a drain electrode 13. Moreover, a FET 20 (30, 40) of a 2nd (and succeeding) stage consists of a source electrode 21(31, 41), a gate electrode 22(32, 42) and a drain electrode 23(33, 43) respectively. Then the length of the gate electrode 12 of the FET 10 of the 1st stage is selected shorter than the length of the gate electrodes 22, 32, 42 respectively. Thus, the yield is improved and low noise multi-stage amplifier is attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は衛星通信システム等の受信装置に用いられる低
雑音増幅用のマイクロ波集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microwave integrated circuit for low-noise amplification used in a receiving device such as a satellite communication system.

〔従来の技術〕[Conventional technology]

マイクロ波用低雑音増幅器は、所望の利得を得るために
多段構成となっているのが一般的である。
Microwave low-noise amplifiers generally have a multi-stage configuration in order to obtain a desired gain.

また、低雑音化を図るために、各段におけるFET(@
界効果トランジスタ)のゲート長をできるだけ短くして
いる。
In addition, in order to reduce noise, FETs (@
The gate length of the field effect transistor (field effect transistor) is kept as short as possible.

第5図はゲート長と雑音指数との関係を示すものである
。FETの雑音指数はゲート長が0. 3〜0.5μm
以上・ではゲート長に比例し、それ以下ではおおむねゲ
ート長の対数に比例することが知られている。従ってゲ
ート長が短いほど雑音指数は小さい。
FIG. 5 shows the relationship between gate length and noise figure. The noise figure of FET is 0.0 when the gate length is 0. 3-0.5μm
It is known that above and below it is proportional to the gate length, and below that it is approximately proportional to the logarithm of the gate length. Therefore, the shorter the gate length, the lower the noise figure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、ゲート長を短くすればするほど、製造ばらつき
が大きくなり、歩留まりが劣化するといった問題がある
。FETの製造における生産性の低下は、製造コストの
上昇につながるため極カ避けなければならない。特に、
0.1μm〜0.25μmの短いゲートの加工は電子ビ
ーム露光装置が必要だが、この電子ビーム露光装置の生
産性は光学露光装置に比べてかなり低い。しがち、多段
増幅器においては、各段の歩留りの積が増幅器全体とし
ての歩留りになるので、FETの歩留りの悪さは相乗的
にきいてくる。
However, there is a problem that the shorter the gate length is, the greater the manufacturing variation becomes, and the yield deteriorates. A decrease in productivity in the manufacture of FETs must be avoided as much as possible because it leads to an increase in manufacturing costs. especially,
Processing short gates of 0.1 μm to 0.25 μm requires an electron beam exposure device, but the productivity of this electron beam exposure device is considerably lower than that of an optical exposure device. In multi-stage amplifiers, the product of the yields of each stage is often the yield of the amplifier as a whole, so the poor yield of FETs is compounded.

本発明の課題は、このような問題点を解消することにあ
る。
An object of the present invention is to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明はなされたものであ
り、高性能な低雑音特性を保持したまま高い製造歩留り
を期待できる低雑音多段増幅器を有する集積回路装置で
ある。詳しくは、マイクロ波用低雑音多段増幅器の初段
に用いられているFETのゲート長が後段に用いられて
いるFETのゲート長よりも短いものである。
In order to solve the above problems, the present invention has been made, and is an integrated circuit device having a low-noise multi-stage amplifier that can be expected to have a high manufacturing yield while maintaining high-performance low-noise characteristics. Specifically, the gate length of the FET used in the first stage of the low-noise multistage microwave amplifier is shorter than the gate length of the FET used in the latter stage.

〔作用〕[Effect]

マイクロ波用低雑音多段増幅器においては、全雑音指数
に占める初段の雑音指数の割合が大きい。
In a low-noise multi-stage microwave amplifier, the noise figure of the first stage accounts for a large proportion of the total noise figure.

従って、初段のFETのゲート長が短くその雑音指数が
小さい本発明におけるマイクロ波用低雑音多段増幅器は
、全体としての雑音指数が小さい。
Therefore, the low-noise multi-stage amplifier for microwaves according to the present invention, in which the first stage FET has a short gate length and a small noise figure, has a small noise figure as a whole.

しかも、後段のFETのゲート長は比較的長めなので歩
留りが良好であり、集積回路装置全体としての歩留りも
高い。
Moreover, since the gate length of the FET in the subsequent stage is relatively long, the yield is good, and the yield of the integrated circuit device as a whole is also high.

〔実施例〕〔Example〕

本発明の実施例を、添付図面の第1図〜第4図を参照し
て説明する。
Embodiments of the present invention will be described with reference to FIGS. 1 to 4 of the accompanying drawings.

第2図は一本実施例における低雑音多段増幅器を示す回
路図であり、第1図は各段のFETのレイアウトをモデ
ル化して図示したものである。実際のFETのパターン
は第4図に示す通り、ゲート幅に比べてゲート長が極端
に短い構造となっている。第4図におけるFETは、ソ
ース電極71、ゲート電極72、ドレイン電極73から
構成されている。
FIG. 2 is a circuit diagram showing a low-noise multi-stage amplifier in this embodiment, and FIG. 1 is a modeled illustration of the layout of FETs in each stage. As shown in FIG. 4, the actual FET pattern has a structure in which the gate length is extremely short compared to the gate width. The FET in FIG. 4 is composed of a source electrode 71, a gate electrode 72, and a drain electrode 73.

第1図に示すように、半導体基板1上に4個のFETが
配置されている。初段のFETl0は、ソース電極11
、ゲート電極12、ドレイン電極13から構成されてい
る。第2段以降のFET20.30.40もそれぞれ、
ソース電極21.31.41、ゲート電極22.32.
42、ドレイン電極23.33.43から構成されてい
る。
As shown in FIG. 1, four FETs are arranged on a semiconductor substrate 1. The first stage FETl0 has a source electrode 11
, a gate electrode 12, and a drain electrode 13. The FETs 20, 30, and 40 from the second stage onwards are also respectively,
Source electrode 21.31.41, gate electrode 22.32.
42, and drain electrodes 23, 33, and 43.

各々のFETのゲート長はゲート電極12が0.2μm
1ゲート電極22.32.42が0.5μmである。
The gate length of each FET is 0.2 μm for the gate electrode 12.
One gate electrode 22, 32, 42 is 0.5 μm.

この実施例の特徴的なことは、ここで初段のFETl0
のゲート電極12は、後段のFETのゲート電極22、
ゲート電極32、ゲート電極42に比べてゲート長が短
いということである。このゲート電極12によって本実
施例である低雑音多段増幅器の低雑音化が図られている
The characteristic feature of this embodiment is that the first stage FET10
The gate electrode 12 of is the gate electrode 22 of the subsequent FET,
This means that the gate length is shorter than that of the gate electrode 32 and the gate electrode 42. This gate electrode 12 helps to reduce the noise of the low-noise multi-stage amplifier of this embodiment.

次に本発明をするために行った考察について述べろ。Next, describe the considerations made to develop the present invention.

まず多段増幅器の低雑音化について考察する。First, let's consider reducing noise in multistage amplifiers.

n段のFETをつないだ多段増幅器の雑音指数N F 
Tは、 NF  −NF  + (NF2−1)/G、+ (N
    I F  −1)/G1G2+・・・・・・+(NF、−1
)/G1 G2・・’ n−1 となる。ここでこれらの式で用いられる各変数はそれぞ
れ以下の通りである。
Noise figure N F of a multistage amplifier that connects n stages of FETs
T is NF −NF + (NF2-1)/G, + (N
I F -1)/G1G2+...+(NF, -1
)/G1 G2...' n-1. The variables used in these formulas are as follows.

NF  z 全雑音指数 NF  : 初段の雑音指数 NF  : 第2段の雑音指数 NF  : 第3段の雑音指数 NF  : 第n段の雑音指数 G1   : 初段の利得 G2  : 第2段の利得 G3  : 第3段の利得 G   ; 第n−1段の利得 n−1 ところで各FETの利得G SG SG3、・・・G 
 はそれぞれ通常は10.0以上の値を持つ。
NF z Total noise figure NF : First stage noise figure NF : Second stage noise figure NF : Third stage noise figure NF : Nth stage noise figure G1 : First stage gain G2 : Second stage gain G3 : th Gain G of 3rd stage; Gain n-1 of n-1th stage By the way, gain G of each FET SG SG3,...G
each usually has a value of 10.0 or more.

従ってこれらの利得を分母に持つ第2項以降の各項の値
は第1項に比べて非常に小さく第2項以降の値はほとん
ど無視される。そして第1項の雑音指数NF  の値に
よって全雑音指数N F Tがほぼ決定される。
Therefore, the values of the second and subsequent terms having these gains as denominators are much smaller than the first term, and the values of the second and subsequent terms are almost ignored. The total noise figure NFT is approximately determined by the value of the first term noise figure NF.

つまり初段のFETのゲート長を短くするだけで、全F
ETの雑音指数を十分に低く抑えることができる。
In other words, by simply shortening the gate length of the first stage FET, the total FET
The noise figure of ET can be kept sufficiently low.

次に多段増幅器の歩留りについて考察する。前述したよ
うに多段増幅器の低雑音化を図るには、初段のFETの
ゲート長を短くすればよい。しかしこのときの利得は、
多段増幅器の全FETのゲート長を短くした場合に比べ
て低い。その理由は、各FETの利得はゲート長が長い
ほど低くなるがらである。従って全FETのゲート長を
短くした多段増幅器と同等の利得を、初段のFETのゲ
ート長だけを短くした多段増幅器で得ようとすれば、F
ETの段数を増やさなければならない。しがしFETの
数を増やすと歩留りが低下する。そこで利得を低下させ
ないために行うFETの段数の増加と歩留りの関係につ
いて次の例を用いて考察する。
Next, we will consider the yield of multistage amplifiers. As mentioned above, in order to reduce the noise of a multistage amplifier, the gate length of the first stage FET can be shortened. However, the gain in this case is
This is lower than when the gate lengths of all FETs in a multistage amplifier are shortened. The reason for this is that the gain of each FET decreases as the gate length increases. Therefore, if you try to obtain the same gain as a multistage amplifier where the gate lengths of all FETs are shortened, but with a multistage amplifier where only the gate length of the first stage FET is shortened, the FET
We need to increase the number of ET stages. Increasing the number of FETs reduces yield. Therefore, the relationship between increasing the number of FET stages to prevent the gain from decreasing and yield will be discussed using the following example.

第3図(a)は従来より用いられている一般的な低雑音
多段増幅器5oの例である。低雑音多段増幅器50は3
個の増幅器51.52.53で構成されており、各増幅
器におけるFETのゲート長はいずれも0.2μmであ
る。また第3図(b)は本発明の実施例であり、低雑音
多段増幅器5゜と同じ利得を持つ低雑音多段増幅器6o
の例である。低雑音多段増幅器6oでは、初段増幅器6
1にゲート長0.2μmのFETが用いられ、第2段以
降の増幅器62.63.64には、ゲート長が初段のF
ETより長い0.5μmのFETが用いられている。
FIG. 3(a) is an example of a conventionally used general low-noise multistage amplifier 5o. The low noise multistage amplifier 50 has three
The FET gate length of each FET in each amplifier is 0.2 μm. FIG. 3(b) shows an embodiment of the present invention, in which a low noise multistage amplifier 6o has the same gain as the low noise multistage amplifier 5o.
This is an example. In the low noise multistage amplifier 6o, the first stage amplifier 6
A FET with a gate length of 0.2 μm is used for the amplifier 62, 63, and 64 in the second and subsequent stages.
A 0.5 μm FET, which is longer than the ET, is used.

この2つの例において、増幅器51.52.53.61
に用いられているFETの歩留りをal、増幅器62.
63.64に用いられているFETの歩留りをa とす
ると、低雑音多段増幅器50の歩留りはα13、低雑音
多段増幅器6゜の歩留りはα α  となる。
In these two examples, amplifier 51.52.53.61
al, the yield of the FET used in the amplifier 62.
If the yield of the FET used in 63.64 is a, then the yield of the low-noise multi-stage amplifier 50 is α13, and the yield of the low-noise multi-stage amplifier 6° is α α.

従って、この実施例では、 αlα2 〉α13 2/3 パ・ α2〉αI の関係が成り立てば、利得を低下させることなく所望の
歩留りを確保することができることになる。
Therefore, in this embodiment, if the relationship αlα2>α13 2/3 pa・α2>αI holds true, the desired yield can be secured without reducing the gain.

α2がα1に対してどの程度太きいがは、プロセスや製
造設備に依存するため一概に言えないが、製造(微細加
工)の困難さとの点において2倍以上の差はあると考え
られる。従って現状の製造技術によると十分に上式を満
足する。
Although it is difficult to say for sure how thick α2 is compared to α1 since it depends on the process and manufacturing equipment, it is thought that there is a difference of more than twice in terms of the difficulty of manufacturing (microfabrication). Therefore, the current manufacturing technology sufficiently satisfies the above equation.

なお、低雑音多段増幅器の最終段のFETについては、
ゲート長が長い方が出力インピーダンスが安定するので
好ましい。特に最終段のゲート長が1〜1.2μm程度
あれば、FETの安定指数Kが1より大きくなり、性能
が安定する。逆にFETの安定指数Kが1より小さいデ
バイスでは、マツチングが取りに<<、またデバイスの
バラツキに対してインピーダンス特性が大きく変化する
ために、歩留りを下げる一つの要因になっている。
Regarding the FET in the final stage of the low-noise multi-stage amplifier,
A longer gate length is preferable because the output impedance is more stable. In particular, if the final stage gate length is approximately 1 to 1.2 μm, the stability index K of the FET will be greater than 1, and the performance will be stable. On the other hand, in devices where the stability index K of the FET is smaller than 1, matching is particularly difficult, and the impedance characteristics change greatly in response to device variations, which is one of the factors that lowers the yield.

そこで最終段のFETの安定指数がKが1より大きくな
るーように本発明に係る低雑音多段増幅器を設計すれば
、出力インピーダンスが安定する。
Therefore, if the low-noise multi-stage amplifier according to the present invention is designed so that the stability index K of the final stage FET is greater than 1, the output impedance will be stabilized.

〔発明の効果〕〔Effect of the invention〕

本発明に基づくマイクロ波用低雑音多段増幅器であれば
、雑音指数が低く高性能な増幅器が実現される。また製
造し易い構造であるので、歩留りが高く経済的である。
The low-noise multistage amplifier for microwaves based on the present invention realizes a high-performance amplifier with a low noise figure. Furthermore, since the structure is easy to manufacture, the yield is high and it is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のマイクロ波用低雑音多段増幅
器を示す斜視図、第2図は本発明の実施例のマイクロ波
用低雑音多段増幅器の回路図、第3図は従来例と実施例
を比較する回路図、第4図はFETのパターン例を示す
平面図、第5図はゲート長と雑音指数との関係を示す図
である。 1・・・半導体基板、11・・・FETIのソース電極
、12・・FETIのゲート電極、13・・・FETI
のドレイン電極、21・・・FET2のソース電極、2
2・・・FET2のゲート電極、23・・・FET2の
ドレイン電極、31・・・FET3のソース電極、32
・・・FET3のゲート電極、33・・・FET3のド
レイン電極、41・・・FET4のソース電極、42・
・・FET4のゲート電極、43・・・FET4のドレ
イン電極。 代理人弁理士   長谷用  芳  樹間      
   塩    1)   辰   也4足釆倒と笑姥
例の比較 第3 図 FETのパターン伜す
FIG. 1 is a perspective view showing a low-noise multi-stage amplifier for microwaves according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a low-noise multi-stage amplifier for microwaves according to an embodiment of the present invention, and FIG. 3 is a conventional example. FIG. 4 is a plan view showing an example of a FET pattern, and FIG. 5 is a diagram showing the relationship between gate length and noise figure. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 11... Source electrode of FETI, 12... Gate electrode of FETI, 13... FETI
drain electrode of 21...source electrode of FET2, 2
2... Gate electrode of FET2, 23... Drain electrode of FET2, 31... Source electrode of FET3, 32
...Gate electrode of FET3, 33...Drain electrode of FET3, 41...Source electrode of FET4, 42.
...Gate electrode of FET4, 43...Drain electrode of FET4. Representative Patent Attorney Yoshiki Hasejo
Salt 1) Comparison of Tatsuya's four-legged arrangement and the laughing example Figure 3 FET pattern

Claims (1)

【特許請求の範囲】 1、マイクロ波用低雑音多段増幅器を含む集積回路装置
において、前記マイクロ波用低雑音多段増幅器の初段に
用いられているFETのゲート長が後段に用いられてい
るFETのゲート長よりも短いことを特徴とする集積回
路装置。 2、マイクロ波用低雑音多段増幅器の最終段に用いられ
ているFETはその安定指数Kが1以上となるゲート長
であることを特徴とする請求項1記載の集積回路装置。
[Claims] 1. In an integrated circuit device including a low-noise multi-stage microwave amplifier, the gate length of the FET used in the first stage of the low-noise multi-stage microwave amplifier is equal to the gate length of the FET used in the subsequent stage. An integrated circuit device characterized by being shorter than the gate length. 2. The integrated circuit device according to claim 1, wherein the FET used in the final stage of the low-noise multi-stage amplifier for microwaves has a gate length such that its stability index K is 1 or more.
JP11298590A 1990-04-27 1990-04-27 Integrated circuit device Pending JPH0410804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11298590A JPH0410804A (en) 1990-04-27 1990-04-27 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11298590A JPH0410804A (en) 1990-04-27 1990-04-27 Integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0410804A true JPH0410804A (en) 1992-01-16

Family

ID=14600525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11298590A Pending JPH0410804A (en) 1990-04-27 1990-04-27 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0410804A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154837A (en) * 1997-09-18 1999-06-08 Sanyo Electric Co Ltd Semiconductor device, semiconductor integrated circuit and high frequency processing circuit
WO2002056368A1 (en) * 2000-12-27 2002-07-18 Hitachi, Ltd High-frequency power amplifier and radio communication device
WO2008047693A1 (en) * 2006-10-18 2008-04-24 Nsc Co., Ltd. Low noise amplifier
JP2016019068A (en) * 2014-07-07 2016-02-01 株式会社東芝 High frequency amplifier
JP2017183862A (en) * 2016-03-29 2017-10-05 株式会社エヌエフ回路設計ブロック Current amplification device for photoelectric conversion element
JP2018503310A (en) * 2014-12-16 2018-02-01 レオナルド・エムダブリュ・リミテッドLeonardo MW Ltd Integrated circuits and methods of manufacture
WO2022118560A1 (en) * 2020-12-04 2022-06-09 株式会社村田製作所 Power amplifier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154837A (en) * 1997-09-18 1999-06-08 Sanyo Electric Co Ltd Semiconductor device, semiconductor integrated circuit and high frequency processing circuit
WO2002056368A1 (en) * 2000-12-27 2002-07-18 Hitachi, Ltd High-frequency power amplifier and radio communication device
JPWO2002056368A1 (en) * 2000-12-27 2004-05-20 株式会社ルネサステクノロジ High frequency power amplifier and wireless communication device
WO2008047693A1 (en) * 2006-10-18 2008-04-24 Nsc Co., Ltd. Low noise amplifier
JP2016019068A (en) * 2014-07-07 2016-02-01 株式会社東芝 High frequency amplifier
JP2018503310A (en) * 2014-12-16 2018-02-01 レオナルド・エムダブリュ・リミテッドLeonardo MW Ltd Integrated circuits and methods of manufacture
JP2017183862A (en) * 2016-03-29 2017-10-05 株式会社エヌエフ回路設計ブロック Current amplification device for photoelectric conversion element
WO2022118560A1 (en) * 2020-12-04 2022-06-09 株式会社村田製作所 Power amplifier

Similar Documents

Publication Publication Date Title
TWI225729B (en) Improved variable gain amplifier
US6424132B1 (en) Adding a laplace transform zero to a linear integrated circuit for frequency stability
US6420932B1 (en) Variable offset amplifier circuit
US5412235A (en) Monolithic integrated circuit including gate bias transistor controlling the gate bias applied to an amplifying transistor
JPH0410804A (en) Integrated circuit device
JPH0257722B2 (en)
US6326842B1 (en) Variable gain amplifying apparatus which can change a gain during an operation
US5172074A (en) Low noise multi-stage type amplifier
JPS63219210A (en) Fet amplifier
US7199661B1 (en) Variable gain amplification using Taylor expansion
EP0701747B1 (en) D.c. bias current compensation circuit for a nonlinear amplifier
US6657489B1 (en) Operational amplifier circuit with improved feedback factor
US5160984A (en) Amplifying feedback FET semiconductor element
EP0043699B1 (en) Operational amplifier
JPH051646B2 (en)
US5239208A (en) Constant current circuit employing transistors having specific gate dimensions
JPS5923609A (en) Microwave low-noise amplifier
US4746875A (en) Differential amplifier using N-channel insulated-gate field-effect transistors
JP2834168B2 (en) Distributed amplifier
JPS62221210A (en) Variable gain control amplifier
JPH0435210A (en) Low noise multi-stage amplifier
JPS6218805A (en) Compound semiconductor amplifier circuit
JPS611104A (en) Multi-stage amplifier comprising monolithic integrated circuit
JPS59104807A (en) Semiconductor circuit
JP2594624B2 (en) Distributed amplifier