JPH04107879A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04107879A
JPH04107879A JP2225799A JP22579990A JPH04107879A JP H04107879 A JPH04107879 A JP H04107879A JP 2225799 A JP2225799 A JP 2225799A JP 22579990 A JP22579990 A JP 22579990A JP H04107879 A JPH04107879 A JP H04107879A
Authority
JP
Japan
Prior art keywords
region
area
extended drain
crosswise
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2225799A
Other languages
Japanese (ja)
Other versions
JP2599494B2 (en
Inventor
Seiki Yamaguchi
山口 誠毅
Hideo Kawasaki
川崎 英夫
Yuji Yamanishi
山西 雄司
Hiroshi Tanida
宏 谷田
Hiroyuki Shindo
裕之 進藤
Toshihiko Uno
宇野 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2225799A priority Critical patent/JP2599494B2/en
Publication of JPH04107879A publication Critical patent/JPH04107879A/en
Application granted granted Critical
Publication of JP2599494B2 publication Critical patent/JP2599494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent the deterioration of breakdown voltage by permitting the crosswise lengths of a PT area and an extended drain area to be longer than the crosswise length of the PT area in the part whose boundary is formed by a straight line and the crosswise length of the extended drain area. CONSTITUTION:For a transistor, the maximum value of the crosswise length L1 of a PT area 13 is permitted to be 44mum, and the maximum value of the crosswise length L2 of an extended drain area 12 to be 60mum at a part a drain area 12 is provided on the outer side of the source area 17 in a part X whose boundary between the source area 17 and a silicon substrate 11 and the boundary between the drain area 12 and the silicon substrate 11 are formed by curved lines on the surface. The crosswise length L1 of a PT area 13 in a part Y formed by straight line is 24mum(<L1) and the crosswise direction L4 of the extended drain area in the part Y is 40mum (<L2). As a result, the breakdown voltage is improved by 10% compared with the conventional structure whose crosswise direction La in the PT area is 24mum and the crosswise direction La of the extended drain area is 40mum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高耐圧横型MO8電界効果トランジスタに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high voltage lateral MO8 field effect transistor.

従来の技術 すなわち従来の高耐圧横型MO8電界効果トランジスタ
は第3図、第4図に示すようになっていた。−導電型(
P型)のシリコン基板1に、前記シリコン基板1とは逆
導電型(N型)の楕円リング状延長ドレイン領域2が設
けられ、かつ、前記延長ドレイン領域2の内部に包含さ
れるようにシリコン基板1と同一導電型(P型)の領域
(以下、FT領領域称する)3が形成され、さらに延長
ドレイン領域2内にはPT領域3と並置されるようにN
+のコンタクト領域4が形成され、この領域4はドレイ
ン電極5に接続されている。さらにシリコン基板1には
楕円リング状ゲート6を間にして延長ドレイン領域2と
相対するようにN+の楕円状ソース領域7が形成され、
この領域はソース電極8に接続されている。またゲート
6は電極9に接続されている。さらにこの従来の構造で
は、第3図に示すように、延長ドレイン領域2の長さL
aとPT領域3の横方向長さLbが、曲線で形成された
部分Aと、直線で形成された部分Bにおいて、同じにな
っている。
The conventional technology, that is, the conventional high voltage lateral MO8 field effect transistor is shown in FIGS. 3 and 4. −Conductivity type (
An elliptical ring-shaped extended drain region 2 of a conductivity type opposite to that of the silicon substrate 1 (N type) is provided on a silicon substrate 1 (P type), and a silicon A region (hereinafter referred to as FT region) 3 of the same conductivity type (P type) as the substrate 1 is formed, and an N region is formed in the extended drain region 2 so as to be juxtaposed with the PT region 3.
A + contact region 4 is formed, which region 4 is connected to the drain electrode 5 . Furthermore, an N+ elliptical source region 7 is formed on the silicon substrate 1 so as to face the extended drain region 2 with an elliptical ring-shaped gate 6 in between.
This region is connected to the source electrode 8. Further, the gate 6 is connected to an electrode 9. Furthermore, in this conventional structure, as shown in FIG.
a and the lateral length Lb of the PT region 3 are the same in the curved portion A and the straight portion B.

発明が解決しようとする課題 このような従来の構造では、MO8電界効果トランジス
タがオフしているとき、表面でのソース、ドレインの各
領域と基板との境界線が曲線で形成された部分Aでソー
ス領域の外債にドレイン領域が存在する部分では、前記
境界が直線で形成された部分Bに比べて、延長ドレイン
領域の空乏層がよく広がり、低いドレイン・ソース間電
圧でもって延長ドレイン領域2内部が空乏化してしまう
ものであった。このため、前記ソース領域7の外側にド
レイン領域が存在する部分Aでは耐圧が低くなるという
課題があった。
Problems to be Solved by the Invention In such a conventional structure, when the MO8 field effect transistor is off, the boundary line between the source and drain regions and the substrate on the surface is a curved portion A. In the part where the drain region exists outside the source region, the depletion layer of the extended drain region spreads more widely than in the part B where the boundary is formed with a straight line. was depleted. Therefore, there is a problem that the breakdown voltage is low in the portion A where the drain region exists outside the source region 7.

課題を解決するための手段 そこで、本発明では、この課題、すなわち耐圧低下を防
ぐために、表面でのソース、ドレインの各領域と基板と
の境界が曲線で形成された部分でソース領域の外側にド
レイン領域が存在する部分において、PT領領域延長ド
レイン領域の長さを長くする。
Means for Solving the Problems Therefore, in the present invention, in order to solve this problem, that is, to prevent a drop in breakdown voltage, the boundary between the source and drain regions and the substrate on the surface is curved, and the boundary between the source region and the substrate is formed outside the source region. In the portion where the drain region exists, the length of the PT region extension drain region is increased.

作   用 上記のような構造にすることにより、表面でのソース、
ドレインの各領域と基板との境界が jI線で形成され
た部分より、曲線で形成された部分において、延長ドレ
イン領域が低いドレイン・ソース間電圧で空乏化してし
まうことを防ぐことができる。その結果、耐圧低下を防
ぐことができる。
Effect By creating the structure as described above, the source on the surface,
It is possible to prevent the extended drain region from being depleted due to a low drain-source voltage in the curved portion than in the portion where the boundary between each region of the drain and the substrate is formed by the jI line. As a result, a decrease in breakdown voltage can be prevented.

実施例 以下、本発明の一実施例におけるNチャネル横型MOS
電界効果トランジスタについて第1図。
Example Below, an N-channel lateral MOS in an example of the present invention will be described.
Fig. 1 about a field effect transistor.

第2図とともに説明する。これら第1図、第2図におい
て、11はP型のシリコン基板、12は型の延長ドレイ
ン領域、13はこのドレイン領域12内に設けられたP
型のPTlIff域、14は同コンタクト領域、15は
ドレイン電極、16はゲート、17はソース領域、18
はソース電極、19はゲート電極である。なお、第1図
はシリコン酸化膜や、アルミ電極、パッシベーション膜
を除去したシリコン基板表面を示している。
This will be explained with reference to FIG. 1 and 2, 11 is a P-type silicon substrate, 12 is an extended drain region of the mold, and 13 is a P-type silicon substrate provided within this drain region 12.
PTlIff region of the type, 14 is the same contact region, 15 is the drain electrode, 16 is the gate, 17 is the source region, 18
is a source electrode, and 19 is a gate electrode. Note that FIG. 1 shows the surface of a silicon substrate from which a silicon oxide film, an aluminum electrode, and a passivation film have been removed.

このような本実施例のトランジスタでは、表面でのソー
ス17.ドレイン12の各領域とシリコン基板11との
境界が曲線で形成された部分Xでソース領域17の外側
にドレイン領域12が存在する部分における、PT領域
13の横方向長さLlの最大値を44μm、延長ドレイ
ン領域12の横方向長さL2の最大値を60μmとする
。また、直線で形成された部分YにおけるPT領域13
の横方向長さL3を24μm (< L 1 ) 、延
長ドレイン領域の横方向長さL4を40μm (< L
 2 )とする。その結果、すべての部分において、P
T領領域横方向長さLbを24μm、延長ドレイン領域
の横方向長さLaを40μmとした従来の構造に比べて
、耐圧を10%向上させることができた。
In the transistor of this embodiment, the source 17. The maximum value of the lateral length Ll of the PT region 13 in the portion X where the boundary between each region of the drain 12 and the silicon substrate 11 is formed by a curve and the drain region 12 exists outside the source region 17 is 44 μm. , the maximum value of the lateral length L2 of the extended drain region 12 is 60 μm. In addition, the PT region 13 in the portion Y formed by the straight line
The lateral length L3 of the extended drain region is 24 μm (< L 1 ), and the lateral length L4 of the extended drain region is 40 μm (< L 1 ).
2). As a result, in all parts, P
Compared to the conventional structure in which the lateral length Lb of the T region was 24 μm and the lateral length La of the extended drain region was 40 μm, the breakdown voltage could be improved by 10%.

発明の効果 以上のように、本発明では、表面でのソース。Effect of the invention As described above, in the present invention, the source on the surface.

ドレインの各領域と基板との境界が曲線で形成された部
分でソース領域の外側にドレイン領域が存在する部分に
おいて、PT領領域よび延長トレイン領域の横方向長さ
を、前記境界が直線で形成された部分におけるPT領領
域よび延長ドレイン領域の横方向長さに比べ長くするこ
とにより、従来課題であった耐圧低下を防止することが
できる。
In a portion where the boundary between each drain region and the substrate is a curved line and the drain region exists outside the source region, the lateral length of the PT region and the extended train region is determined by the boundary being a straight line. By making the PT region and the extended drain region longer in the lateral direction than the lateral length thereof, it is possible to prevent a decrease in breakdown voltage, which has been a problem in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるNチャネル横型MO
S電界効果トランジスタの平面図、第2図(a) 、 
(b)は第1図のA−A ’線およびB−B ゛線断面
図、第3図は従来の横型Mo5t界効果トランジスタの
平面図、第4文は同断面図である。 11・・・・・・シリコン基板、I2・旧・・延長ドレ
イン領域、13・・・・・・PT領領域Ll・・曲・P
T領領域横方向長さ、L2・・・・・・延長ドレイン領
域の横方向長さ、L3・・・・・・PT@域の横方向長
さ、L4・・・・・・延長ドレイン領域の横方向長さ。 代理人の氏名 弁理士 小鍛治 明はが2名第 図 12−−−dAKLイシ鳥看r4、 第 図 +1−一一シリコソ、1g +1−1長134ン凄肴r鴫、 1丁−・′へス々貴■啄 II−−−1ハス 5−MLイン 寥−一−・ノース
FIG. 1 shows an N-channel lateral MO in one embodiment of the present invention.
Plan view of S field effect transistor, Fig. 2(a),
(b) is a sectional view taken along lines AA' and B-B' in FIG. 1, FIG. 3 is a plan view of a conventional lateral Mo5t field effect transistor, and the fourth sentence is a sectional view of the same. 11...Silicon substrate, I2/Old...Extended drain region, 13...PT region Ll...Song/P
T area lateral length, L2...lateral length of extended drain area, L3...lateral length of PT@ area, L4...extended drain area lateral length. Name of agent: Patent attorney Kokaji Akihabara, 2 persons Fig. 12--dAKL Ishicho r4, Fig. +1-11 Shirikoso, 1g +1-1 length 134 inches, 1 cho-・' Hess Taka ■ Taku II ---1 Hass 5-ML In-1 North

Claims (1)

【特許請求の範囲】[Claims] 一導電型のシリコン基板に、前記シリコン基板とは逆導
電型の延長ドレイン領域とソース領域を設け、前記延長
ドレイン領域内にシリコン基板と同一導電型領域を形成
し、シリコン基板表面でのドレイン、ソースの各領域と
シリコン基板との境界線の全部または一部が曲線によっ
て形成されるとともに、前記延長ドレイン領域と延長ド
レイン領域内に形成された領域の横方向の長さを、表面
でのドレイン、ソースの各領域とシリコン基板との境界
線が直線で形成された部分よりも、曲線で形成された部
分でドレイン領域の外側にソース領域が存在する部分に
おいて、長くした半導体装置。
A silicon substrate of one conductivity type is provided with an extended drain region and a source region of a conductivity type opposite to that of the silicon substrate, a region of the same conductivity type as the silicon substrate is formed in the extended drain region, and a drain region on the surface of the silicon substrate is formed. All or part of the boundary line between each region of the source and the silicon substrate is formed by a curve, and the lateral length of the extended drain region and the region formed within the extended drain region is , a semiconductor device in which the boundary line between each region of the source and the silicon substrate is longer in the curved part where the source region is outside the drain region than in the straight part.
JP2225799A 1990-08-27 1990-08-27 Semiconductor device Expired - Fee Related JP2599494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225799A JP2599494B2 (en) 1990-08-27 1990-08-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225799A JP2599494B2 (en) 1990-08-27 1990-08-27 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH04107879A true JPH04107879A (en) 1992-04-09
JP2599494B2 JP2599494B2 (en) 1997-04-09

Family

ID=16834967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225799A Expired - Fee Related JP2599494B2 (en) 1990-08-27 1990-08-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2599494B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212842A (en) * 2011-03-23 2012-11-01 Toshiba Corp Semiconductor device
CN110299356A (en) * 2019-07-26 2019-10-01 宁波芯浪电子科技有限公司 A kind of electrostatic protection method for metal-oxide-semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212842A (en) * 2011-03-23 2012-11-01 Toshiba Corp Semiconductor device
CN110299356A (en) * 2019-07-26 2019-10-01 宁波芯浪电子科技有限公司 A kind of electrostatic protection method for metal-oxide-semiconductor

Also Published As

Publication number Publication date
JP2599494B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
KR910019260A (en) Semiconductor device and manufacturing method thereof
KR890004444A (en) MOS transistor
JPH04107879A (en) Semiconductor device
JPS6159666B2 (en)
KR900003963A (en) Semiconductor device
JPS61281554A (en) Mis type semiconductor device
JP3137840B2 (en) Semiconductor device
JPS62274778A (en) Semiconductor device
JP2978504B2 (en) MOS transistor
JPH04107870A (en) Semiconductor device
JPS61289665A (en) Semiconductor device
JPH021983A (en) Semiconductor integrated circuit device
JPH0373569A (en) Semiconductor integrated circuit
KR0170287B1 (en) Lay out method of buffer transistor
JPH0462875A (en) Semiconductor device
JPH088356B2 (en) Vertical field effect transistor
JPH01128465A (en) Semiconductor device with antistatic element
KR970053003A (en) High voltage transistor manufacturing method
JPH0750786B2 (en) Thin film transistor
KR970003962A (en) Manufacturing method of highly integrated transistor of semiconductor device
KR970054389A (en) MOSFET on Silicon on Insulator Structure
JPS6194365A (en) High withstanding-voltage mos field-effect semiconductor device
JPS60102755A (en) Semiconductor device and manufacture thereof
JPS61279176A (en) Mos field effect transistor
JPH03255673A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees