JPH04107418A - Automatic dimming method of microscope capable of simultaneous transmission and downward lighting observation - Google Patents

Automatic dimming method of microscope capable of simultaneous transmission and downward lighting observation

Info

Publication number
JPH04107418A
JPH04107418A JP22627590A JP22627590A JPH04107418A JP H04107418 A JPH04107418 A JP H04107418A JP 22627590 A JP22627590 A JP 22627590A JP 22627590 A JP22627590 A JP 22627590A JP H04107418 A JPH04107418 A JP H04107418A
Authority
JP
Japan
Prior art keywords
light
observation
transmitted
brightness
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22627590A
Other languages
Japanese (ja)
Other versions
JP3015082B2 (en
Inventor
Yutaka Takabayashi
高林 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2226275A priority Critical patent/JP3015082B2/en
Publication of JPH04107418A publication Critical patent/JPH04107418A/en
Application granted granted Critical
Publication of JP3015082B2 publication Critical patent/JP3015082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens

Abstract

PURPOSE:To eliminate the need to finely adjust the quantity of transmitted illumination light at the time of microscope switching by observing the brightness of a sample image with downward fluorescent light through a photodetecting element when a simultaneous observation mode is specified, and controlling a dimming member in an optical path of transmission lighting in a shutter closed state and adjusting brightness balance. CONSTITUTION:The mode is switched to the simultaneous observation mode with a mode indicating switch 28. When the signal of the simultaneous observation mode is inputted to a CPU 30, the measured value of the brightness of the downward fluorescent image photodetected by the photodetecting element 12 is read in the CPU 30 and data which are stored in a storage part 29 previously is read out to the CPU 30, which performs comparative arithmetic operation so that the brightness balance between the downward fluorescent light image and a transmitted observation image becomes proper. Then a controlled variable for dimming corresponding to the measured value of the photodetecting element 12 is determined and the dimming member 24 is driven with a control signal according to the controlled variable to reduce the quantity of transmission lighting cut off by a shutter 23 for transmitted light by a necessary quantity. Consequently, the need to adjust transmitted illumination light, etc., every time the observation mode is switched is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蛍光標本を透過照明光と落射照明光とで切換
え観察及び同時観察できるようにした落射型蛍光顕微鏡
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an epi-fluorescence microscope capable of observing a fluorescent specimen by switching between transmitted illumination light and epi-illumination light and simultaneously observing the fluorescent specimen.

〔従来の技術〕[Conventional technology]

従来、顕微鏡における蛍光標本としての細胞の観察は、
落射蛍光観察で行なわれている。しかし、蛍光観察だけ
では、蛍光を発している細胞の部位が標本全体のどこに
位置するかわかりにくい。そこで、蛍光観察では認識し
にくい全体形状を観察して細胞の蛍光を発している部位
を認識するため、透過照明光による位相差観察や微分干
渉観察が併用され、透過光観察と蛍光観察との切換え観
察や、或は落射蛍光像と透過光像とを重ねて観察する同
時観察が行われるようになってきた。
Traditionally, observation of cells as fluorescent specimens using a microscope is
This is done using epifluorescence observation. However, by observing fluorescence alone, it is difficult to determine where in the entire specimen the cells emitting fluorescence are located. Therefore, in order to observe the overall shape that is difficult to recognize with fluorescence observation and recognize the part of the cell that is emitting fluorescence, phase contrast observation using transmitted illumination light and differential interference observation are used in conjunction with transmitted light observation and fluorescence observation. Switching observation or simultaneous observation in which an epifluorescent image and a transmitted light image are observed in a superimposed manner has come to be performed.

落射蛍光像と透過光像との同時観察では、落射蛍光像の
方が暗いため、透過光による位相差像又は微分干渉像と
の明るさのバランスを調整する必要があり、最適な同時
観察のためには非常に微妙な調整か必要である。
In simultaneous observation of an epifluorescent image and a transmitted light image, since the epifluorescent image is darker, it is necessary to adjust the brightness balance with the phase contrast image or differential interference image of the transmitted light. This requires very delicate adjustments.

ところで従来、観察像の明るさの調整は、標本。By the way, conventionally, the brightness of the observed image was adjusted using the specimen.

検鏡法又は対物レンズの倍率を変えるたびに、透過照明
系の光源電圧を調整するか、又はNDフィルタを挿入す
ることによって行われてきた。
This has been done by adjusting the light source voltage of the transmitted illumination system or inserting an ND filter each time the microscopy method or the magnification of the objective lens is changed.

このような調光手段を備えた顕微鏡の一例として特開昭
54−71652号公報に記載されたものがある。この
顕微鏡の基本光学系を第3図に基づいて説明すると、図
中、ハロゲンランプ、タングステンランプ等の透過照明
用光源1から射出された照明光は、集光レンズ2で集光
され、リレーレンズ3を通って反射ミラー4で上方に反
射された後、コンデンサーレンズ5によって標本6を照
明する。照明光によって結像される透過標本像は対物レ
ンズ7で拡大され、分光用の傾斜プリズム8によって観
察し易い角度に曲げられて、接眼レンズ9を通して観察
される。又、傾斜プリズム8を直進して分割された光は
撮影用のフィルム面IOで結像されるが、フィルム面1
0へ到る途中でハーフミラ−11によって分割された一
部の光が、光量を検出するだめの受光素子12へ導かれ
る。
An example of a microscope equipped with such a light control means is described in Japanese Patent Laid-Open No. 71652/1983. The basic optical system of this microscope will be explained based on FIG. 3. In the figure, illumination light emitted from a transmitted illumination light source 1 such as a halogen lamp or a tungsten lamp is condensed by a condenser lens 2, and then is condensed by a relay lens. 3 and is reflected upward by a reflecting mirror 4, the specimen 6 is illuminated by a condenser lens 5. The transmitted specimen image formed by the illumination light is magnified by an objective lens 7, bent to an angle that is easy to observe by a spectroscopic tilting prism 8, and observed through an eyepiece lens 9. In addition, the light that passes straight through the tilted prism 8 and is divided is imaged on the photographing film surface IO, but the film surface 1
A part of the light that is split by the half mirror 11 on the way to zero is guided to the light receiving element 12 which detects the amount of light.

受光素子12で検出された光量は、予め設定されている
レベルと比較され、調光装置13によって光源1の光量
が変化せしめられることになる。
The amount of light detected by the light receiving element 12 is compared with a preset level, and the light amount of the light source 1 is changed by the light control device 13.

これによって対物レンズの切換え等に応じて最適な観察
光量で標本像の観察ができることになる。
This allows the specimen image to be observed with the optimum amount of observation light depending on the switching of the objective lens or the like.

又、受光素子によらずに対物レンズの切換えに応じて照
明光の光源の調光を行なうようにした装置として、特開
昭59−172618号や実開昭61−185025号
公報に記載されたものがある。
Furthermore, devices that control the light source of illumination light according to switching of the objective lens without depending on the light receiving element are described in Japanese Patent Laid-Open No. 59-172618 and Japanese Utility Model Application No. 61-185025. There is something.

又、実公昭60−37538号や実開昭6319810
号公報に記載された調光手段は、光電変換器等の受光素
子によって照明光の像面照度を検出し、受光素子の出力
に応じて透過照明光路中のフィルタ等光量減衰器によっ
て調光が行なわれるようにしている。更に、特開昭51
−172617号公報の装置は、対物レンズの切換えに
応じて同様に光量減衰器を用いて調光を行なうものであ
った。
Also, Utility Model Publication No. 60-37538 and Utility Model Application No. 6319810
The light adjustment means described in the publication detects the image plane illuminance of illumination light using a light receiving element such as a photoelectric converter, and adjusts the light intensity using a light amount attenuator such as a filter in the transmitted illumination optical path according to the output of the light receiving element. I'm trying to get it done. Furthermore, JP-A-51
The device disclosed in Japanese Patent No. 172,617 similarly uses a light attenuator to perform light adjustment in accordance with switching of the objective lens.

しかし、これらは何れも標本を照明している状態で、透
過光像の光量を測定して或いは対物レンズの切換えに応
じて透過照明光量を変化させるというものであり、或い
は落射蛍光像の光量を測定して落射照明光量を変化させ
るという自動調光手段である。何れにしても、一方の照
明光による観察時にのみ当該照明光による標本像の光量
を測定する等して照明光量を調節し、最適な光量で観察
できるというものである。
However, in all of these methods, the light intensity of the transmitted light image is measured while the specimen is illuminated, or the transmitted illumination light intensity is changed according to the switching of the objective lens, or the light intensity of the epifluorescent image is changed. This is an automatic light control means that measures and changes the amount of epi-illumination light. In any case, the amount of illumination light can be adjusted by measuring the amount of light of the specimen image caused by only one illumination light when observing with one of the illumination lights, and observation can be performed with the optimum light amount.

従−って、落射蛍光像と透過光像との同時観察時には、
観察者が標本像を観察しながら透過照明系の光源電圧を
調整するか又は透過照明光路中にNDフィルタを挿入す
ることによって、明るさのバランス調整を行なっていた
Therefore, when simultaneously observing an epifluorescent image and a transmitted light image,
The brightness balance has been adjusted by an observer adjusting the light source voltage of the transmitted illumination system while observing the sample image, or by inserting an ND filter into the transmitted illumination optical path.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、観察時には標本の位置決めや蛍光発光部位の特
定のために、落射蛍光観察から同時観察へ、又透過照明
観察(位相差観察、微分干渉観察)から同時観察へと観
察法を頻繁に変えることが多く、その度に観察者は観察
しながら明るさの調整をする必要かあり、煩雑である。
However, during observation, it is necessary to frequently change the observation method from epifluorescence observation to simultaneous observation, or from transmitted illumination observation (phase contrast observation, differential interference observation) to simultaneous observation, in order to position the specimen and identify the fluorescent site. There are many cases where the observer has to adjust the brightness while observing, which is cumbersome.

しかも落射蛍光観察時には励起光によって標本の蛍光染
色に退色が生じ易いので、標本に対する励起光の照射時
間を短くすることが重要であるが、この明るさのバラン
ス調整は非常に微妙で時間がかかるという問題がある。
Moreover, during epifluorescence observation, excitation light tends to cause fading of the fluorescent staining of the specimen, so it is important to shorten the irradiation time of the excitation light to the specimen, but adjusting the brightness balance is extremely delicate and time-consuming. There is a problem.

本発明はこのような課題に鑑みて、透過照明観察と落射
蛍光観察との同時観察時における明るさのバランス調整
を短時間で且つ簡単な操作で行なえ、標本の蛍光の退色
を抑制できるようにした、透過及び落射同時観察可能な
顕微鏡における自動調光方法を提供することを目的とす
る。
In view of these problems, the present invention has been developed to enable brightness balance adjustment during simultaneous observation of transmitted illumination observation and epifluorescence observation to be performed in a short time and with a simple operation, and to suppress fading of fluorescence of a specimen. An object of the present invention is to provide an automatic light control method in a microscope that enables simultaneous transmission and epi-illumination observation.

〔課題を解決するための手段及び作用〕本発明による透
過及び落射同時観察可能な顕微鏡における自動調光方法
は、透過照明による標本像と落射蛍光による標本像とを
重ね合わせて同時観察できるようにした顕微鏡において
、同時観察指定信号により、透過照明光路中のシャッタ
を閉にすると同時に落射照明光路中のシャッタを開状態
にして、落射蛍光による標本像の明るさを観察光路系に
配置された受光素子で測定し、測定値に対応して記憶部
から読み出されたデータに基づき、同時観察時における
透過照明による標本像の明るさが落射蛍光による標本像
の明るさとバランスするように、透過照明光路中に配置
された調光部側を制御した後、透過照明光路中のシャッ
タを開にするようにしたことを特徴とするものである。
[Means and effects for solving the problem] The automatic light adjustment method in a microscope capable of simultaneous transmission and epi-fluorescence observation according to the present invention enables simultaneous observation by superimposing a specimen image obtained by transmitted illumination and a specimen image obtained by epi-fluorescence. In the microscope, the simultaneous observation designation signal closes the shutter in the transmitted illumination optical path and opens the shutter in the epi-illumination optical path at the same time. Based on the data measured by the element and read out from the storage unit in accordance with the measured values, the transmitted illumination is adjusted so that the brightness of the specimen image by transmitted illumination during simultaneous observation is balanced with the brightness of the specimen image by epifluorescence. The present invention is characterized in that the shutter in the transmitted illumination optical path is opened after controlling the light control unit disposed in the optical path.

従って、同時観察時にはまず落射蛍光観察状態となって
落射蛍光による標本像の明るさが受光素子で測定され、
この測定値と記憶部のデータが比較演算されて透過照明
による標本像の明るさが落射照明による標本像の明るさ
とバランスするように調光部材が制御されて、シャッタ
が閉状態にある透過照明光路における標本像の明るさが
調整され、そしてこのシャッタが開になって、落射蛍光
による標本像と透過照明による標本像とを同時にしかも
互いにバランスのとれた明るさで観察することができる
Therefore, during simultaneous observation, the epifluorescence observation state is first entered, and the brightness of the specimen image due to epifluorescence is measured by the light receiving element.
This measured value and the data in the storage unit are compared and calculated, and the light control member is controlled so that the brightness of the specimen image by transmitted illumination is balanced with the brightness of the specimen image by epi-illumination. Transmitted illumination with the shutter in the closed state The brightness of the specimen image in the optical path is adjusted, and the shutter is opened, so that the epifluorescence specimen image and the transmitted illumination specimen image can be observed simultaneously with well-balanced brightness.

〔実施例〕〔Example〕

以下、本発明の好適な一実施例を第1図及び第2図に基
づいて説明するが、上述の第3図に示す従来技術と同様
の部分には同一の符号を用いてその説明を省略する。
Hereinafter, a preferred embodiment of the present invention will be described based on FIG. 1 and FIG. 2, but the same reference numerals will be used for the same parts as in the prior art shown in FIG. 3 above, and the explanation thereof will be omitted. do.

図中、15は標本6に照射するための水銀灯等の落射照
明用光源、16は落射照明光の集光レンズ、17.18
はリレーレンズ、19は励起フィルタ、20は観察光学
系において対物レンズ7と傾斜プリズム8との間に配置
されているダイクロイックミラーであり、これらは落射
照明系の一部を構成する。21は落射蛍光観察のための
照明光と標本から射出される蛍光とを分離して蛍光のみ
を透過させる吸収フィルタであり、励起フィルタ19、
ダイクロイックミラー20.吸収フィルタ21は落射蛍
光観察時には光路中に位置するが、透過照明観察時には
光路外に外されるようになっている。
In the figure, 15 is a light source for epi-illumination such as a mercury lamp for irradiating the specimen 6, 16 is a condensing lens for epi-illumination light, and 17.18
19 is a relay lens, 19 is an excitation filter, and 20 is a dichroic mirror disposed between the objective lens 7 and the tilted prism 8 in the observation optical system, and these constitute a part of the epi-illumination system. 21 is an absorption filter that separates the illumination light for epifluorescence observation from the fluorescence emitted from the specimen and transmits only the fluorescence; the excitation filter 19;
Dichroic mirror 20. The absorption filter 21 is located in the optical path during epifluorescence observation, but is removed from the optical path during transmitted illumination observation.

22は落射照明光路中の例えば集光レンズ16とリレー
レンズ17との間に配置される落射照明光用シャッタ、
23は透過照明光路中の例えば集光レンズ2とリレーレ
ンズ3との間に配置される透過照明光用シャッタであり
、これらシャッタ22.23は夫々後述の制御信号によ
って開閉作動させられて照明光を通過又は遮断させるこ
とができる。24は同じく透過照明光路中の例えば透過
光用シャッタ23に隣接配置されていて例えば連続的な
NDフィルタを回転又はスライドさせて透過光量を調節
する調光部材であり、透過光用シャッタ23と調光部材
24は単一の機構として構成することもできる。25.
26は透過照明光路中に夫々配置されていて透過位相差
観察又は透過微分干渉観察のためのリングスリット、ウ
ォラストンプリズムの位置を示すものである。
22 is a shutter for epi-illumination light disposed in the epi-illumination optical path, for example between the condenser lens 16 and the relay lens 17;
Reference numeral 23 denotes a shutter for transmitted illumination light disposed in the transmitted illumination optical path, for example, between the condenser lens 2 and the relay lens 3, and these shutters 22 and 23 are respectively opened and closed by control signals to be described later to release the illumination light. can be passed through or blocked. Reference numeral 24 denotes a light control member which is arranged adjacent to, for example, the transmitted light shutter 23 in the transmitted illumination optical path and adjusts the amount of transmitted light by rotating or sliding a continuous ND filter, for example, and is connected to the transmitted light shutter 23. The light member 24 can also be constructed as a single mechanism. 25.
Reference numerals 26 indicate the positions of ring slits and Wollaston prisms, which are arranged in the transmission illumination optical path for transmission phase contrast observation or transmission differential interference observation.

28は透過照明観察モード、落射蛍光観察モード及び透
過照明観察と落射蛍光観察との同時観察モードの何れか
を指定するモード指定スイッチ、29は受光素子12の
測定値と比較するべきデータが記憶されている記憶部で
あり、このデータは観察者が観察法、対物レンズの倍率
に合わせて任意に設定した、調光部材24で調光すべき
制御量を示すデータであり、或いは特開昭59−172
617号に示すように対物レンズの倍率9種類に関する
データ、透過照明系の開口絞り、コンデンサーレンズ、
フィルタ等に関するデータが入力されていてもよい。後
者の場合、これらのデータにより、対物レンズに応じて
透過照明観察の際に最適の明るさが設定されることにな
る。30は受光素子12の測定値とモート指定スイッチ
28の指定モードが入力され且つ両シャッタ22.23
と調光部材24を駆動させるための制御信号を演算出力
するCPUであり、受光素子12の測定値と記憶部29
のデータとを比較演算して落射蛍光像に対して透過光像
の明るさが適正にバランスするように制御量を決定し、
調光部材24を駆動させて透過照明光の光量を調整する
ようになっている。
Reference numeral 28 denotes a mode designation switch for specifying any of the transmitted illumination observation mode, epi-fluorescence observation mode, and simultaneous observation mode of transmitted illumination observation and epi-fluorescence observation, and 29 stores data to be compared with the measured value of the light receiving element 12. This data is data that is arbitrarily set by the observer according to the observation method and the magnification of the objective lens and indicates the control amount to be controlled by the light control member 24, or -172
As shown in No. 617, data regarding nine types of objective lens magnification, aperture stop of transmitted illumination system, condenser lens,
Data regarding filters, etc. may also be input. In the latter case, the optimal brightness for transmitted illumination observation is set according to the objective lens based on these data. Reference numeral 30 receives the measured value of the light receiving element 12 and the designated mode of the mote designation switch 28, and both shutters 22 and 23.
It is a CPU that calculates and outputs control signals for driving the light control member 24 and the measured values of the light receiving element 12 and the storage section 29.
The control amount is determined so that the brightness of the transmitted light image is appropriately balanced with respect to the epifluorescence image by comparing and calculating the data of
The amount of transmitted illumination light is adjusted by driving the light control member 24.

本実施例は上述のように構成されており、第3図に示す
フローチャートを参照して作用を説明する。
This embodiment is constructed as described above, and its operation will be explained with reference to the flowchart shown in FIG.

先ず電源が投入されると、透過照明用光源1と落射照明
用光源15か点灯する(ステップ101)。又、電源投
入時にはCPU30によって自動的に透過照明観察モー
ドに設定され、透過照明光用シャッタ23は開、落射照
明光用シャッタ22は閉に制御されている(ステップ1
o2)。この透過照明観察モードで標本6のピント合わ
せ、観察位置の決定が行われる。落射照明光路を閉状態
にしているのは、標本の蛍光の退色を防止するためであ
る。
First, when the power is turned on, the transmitted illumination light source 1 and epi-illumination light source 15 are turned on (step 101). Furthermore, when the power is turned on, the CPU 30 automatically sets the mode to the transmitted illumination observation mode, and controls the transmitted illumination light shutter 23 to open and the epi-illumination light shutter 22 to close (step 1).
o2). In this transmitted illumination observation mode, the specimen 6 is focused and the observation position is determined. The reason why the epi-illumination optical path is closed is to prevent fading of the fluorescence of the specimen.

次に、落射蛍光観察を行なうため、モード指定スイッチ
28によって落射蛍光観察モードに切換える(ステップ
103)と、励起フィルタ19゜ダイクロイックミラー
20.吸収フィルタ21が光路外から光路中に進出せし
められる。そして落射蛍光観察モートの信号が入力され
たCPU30は、透過照明光用シャッタ23を閉に、又
落射照明光用ンヤッタ22を開に切り換えさせる(ステ
ップ104)ことにより、透過照明光を遮断せしめると
共に落射照明光を標本6に導く。これにより落射蛍光観
察が行われる(ステップ1o5)。
Next, in order to perform epifluorescence observation, the mode designation switch 28 is used to switch to the epifluorescence observation mode (step 103), and the excitation filter 19.degree. dichroic mirror 20. The absorption filter 21 is moved into the optical path from outside the optical path. The CPU 30, to which the epifluorescence observation mode signal is input, closes the transmitted illumination light shutter 23 and switches the epi-illumination light shutter 22 to open (step 104), thereby blocking the transmitted illumination light and Epi-illumination light is guided to the specimen 6. Epifluorescence observation is thereby performed (step 1o5).

更に、落射蛍光観察で認識される蛍光を発している細胞
の部位が標本6全体のどの位置にあるがを確認するため
、モート指定スイッチ28で同時観察モードに切り換え
る(ステップ106)。同時観察モードの信号がCPU
30に入力されると、受光素子12で受光されている落
射蛍光像の明るさの測定値がCPU30へ読み込まれ(
ステップ107)、又予め記憶部29に記憶されている
データがCPU30へ読み出されて、落射蛍光像と透過
観察像との明るさバランスが適性になるように比較演算
される。そして受光素子12の測定値に対応する調光す
べき制御量が決定され(ステップ108) 、これに基
づいて制御信号によって調光部材24が、透過光用シャ
ック23で遮断されている透過照明光路の光量を所要量
減光させるように駆動せしめられる(ステップ109)
。そしてその後、透過光用シャッタ23を開にして(ス
テップ1]0)同時観察か行われる(ステップ111)
Furthermore, in order to confirm the position of the cell emitting fluorescence recognized by epifluorescence observation in the entire specimen 6, the mode is switched to the simultaneous observation mode using the mote designation switch 28 (step 106). Simultaneous observation mode signal is CPU
30, the measured value of the brightness of the epi-fluorescent image received by the light receiving element 12 is read into the CPU 30 (
In step 107), the data previously stored in the storage unit 29 is read out to the CPU 30, and comparison calculations are performed so that the brightness balance between the epifluorescence image and the transmission observation image is appropriate. Then, the control amount to be dimmed corresponding to the measured value of the light receiving element 12 is determined (step 108), and based on this, the dimming member 24 controls the transmitted illumination optical path, which is blocked by the transmitted light shack 23, based on the control signal. is driven to reduce the amount of light by the required amount (step 109).
. After that, the transmitted light shutter 23 is opened (step 1) 0) and simultaneous observation is performed (step 111).
.

このようにして、透過光像の明るさは落射蛍光像の明る
さに合ったレベルに自動的に調整され、二種の像が重ね
られた状態で標本6全体及び蛍光を発している細胞の部
位等を同時に観察することができる。
In this way, the brightness of the transmitted light image is automatically adjusted to a level that matches the brightness of the epifluorescent image, and the two images are superimposed to show the entire specimen 6 and the cells emitting fluorescence. Parts, etc. can be observed simultaneously.

尚、」二連の説明は透過照明観察から落射蛍光観察、そ
して同時観察を選択した場合のフローであるが、実際に
は透過照明観察から同時観察等、いろいろな観察のフロ
ーがある。何れのフローを選択した場合でも、同時観察
の前には、落射蛍光像の観察光量を受光素子12で測定
するために透過照明光用シャッタ23を閉に、又落射照
明光用シャッタ22を開にした落射蛍光観察モードが選
択されるようになっている。
Note that the two-part explanation describes the flow when selecting transmission illumination observation, epifluorescence observation, and simultaneous observation, but in reality, there are various observation flows such as transmission illumination observation to simultaneous observation. Regardless of which flow is selected, before simultaneous observation, close the transmitted illumination light shutter 23 and open the epi-illumination light shutter 22 in order to measure the observation light amount of the epi-fluorescent image with the light receiving element 12. The epi-fluorescence observation mode selected is now selected.

上述のように本発明によれば、透過照明及び落射蛍光の
同時観察を選択した場合に、透過照明による標本像の明
るさが落射蛍光による標本像の明るさとバランスするよ
うに自動的に調整されるから、観察モードを切り換える
度に透過照明光等の微妙な光量調整を観察者が行なう必
要がなくなり、操作も簡単になる。しかもそのために切
換え時の明るさのバランス調整が短時間で行われること
になり、標本の蛍光の退色を少なくすることができる。
As described above, according to the present invention, when simultaneous observation of transmitted illumination and epi-fluorescence is selected, the brightness of the specimen image due to transmitted illumination is automatically adjusted to balance the brightness of the specimen image due to epi-fluorescence. Therefore, there is no need for the observer to make delicate adjustments to the amount of light such as transmitted illumination light every time the observation mode is switched, and the operation becomes easy. Moreover, the brightness balance adjustment at the time of switching can be performed in a short time, and fading of the fluorescence of the specimen can be reduced.

尚、モード指定スイッチ28による落射蛍光モトと透過
照明モード間の切換え操作は、励起フィルタ19.ダイ
クロイックミラー20及び吸収フィルタ21を光路に対
して電動で挿脱するスイッチによって同時に行われるよ
うにしてもよい。
The switching operation between the epi-fluorescence mode and the transmitted-light illumination mode using the mode designation switch 28 is performed using the excitation filter 19. This may be done simultaneously by a switch that electrically inserts and removes the dichroic mirror 20 and the absorption filter 21 into and out of the optical path.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明に係る透過及び落射同時観察可能な
顕微鏡における自動調光方法は、同時観察指定時に落射
蛍光による標本像の明るさを受光素子で観察して、シャ
ツタ閉状態の透過照明光路における調光部材を制御して
明るさバランスを調整するようにしたから、検鏡切換え
の度に透過照明光の微妙な光量調整を観察者が行なう必
要がなくなり、操作も簡単になる。しかも切換え時の明
るさのバランス調整が短時間で行われることになって、
標本の蛍光の退色を抑制することができる。
As described above, the automatic light control method in the microscope capable of simultaneous transmission and epi-illumination observation according to the present invention is to observe the brightness of the specimen image due to epi-fluorescence using the light receiving element when simultaneous observation is specified, and adjust the transmission illumination optical path with the shutter closed. Since the brightness balance is adjusted by controlling the light control member in the microscope, there is no need for the observer to delicately adjust the amount of transmitted illumination light every time the speculum is switched, and the operation becomes simple. Moreover, the brightness balance adjustment at the time of switching will be done in a short time,
Fading of fluorescence of the specimen can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による顕微鏡の一実施例についての光学
系を示す図、第2図は実施例のフローチヤードを示す図
、第3図は従来の顕微鏡の基本光学系を示す図である。 】・・・・透過照明用光源、6・・・・標本、12・・
・・受光素子、15・・・・落射照明用光源、22・・
・・落射照明光用ンヤッタ、23・・・・透過照明光用
シャッタ、24・・・・調光部側、28・・・・モード
指定スイッチ、29・・・・記憶部、30・・・・CP
U。 ■
FIG. 1 is a diagram showing an optical system of an embodiment of a microscope according to the present invention, FIG. 2 is a diagram showing a flow chart of the embodiment, and FIG. 3 is a diagram showing a basic optical system of a conventional microscope. ]...Light source for transmitted illumination, 6...Specimen, 12...
...Light receiving element, 15...Light source for epi-illumination, 22...
...Nyatta for epi-illumination light, 23...Shutter for transmitted illumination light, 24...Dimmer side, 28...Mode designation switch, 29...Storage unit, 30...・CP
U. ■

Claims (1)

【特許請求の範囲】  透過照明による標本像と落射蛍光による標本像とを重
ね合わせて同時観察できるようにした顕微鏡において、 同時観察指定信号により、透過照明光路中のシャッタを
閉にすると同時に落射照明光路中のシャッタを開状態に
して、落射蛍光による標本像の明るさを観察光路系に配
置された受光素子で測定し、該測定値に対応して記憶部
から読み出されたデータに基づき、同時観察時における
透過照明による標本像の明るさが落射蛍光による標本像
の明るさとバランスするように、透過照明光路中に配置
された調光部材を制御した後、透過照明光路中のシャッ
タを開にするようにしたことを特徴とする自動調光方法
[Claims] In a microscope capable of simultaneous observation by superimposing a specimen image obtained by transmitted illumination and a specimen image obtained by epifluorescence, a shutter in the transmitted illumination optical path is closed in response to a simultaneous observation designation signal, and simultaneously the epi-illumination is performed. The shutter in the optical path is opened, the brightness of the specimen image due to epifluorescence is measured with a light receiving element placed in the observation optical path system, and based on the data read out from the storage unit in accordance with the measured value, After controlling the light control member placed in the transmitted illumination optical path, the shutter in the transmitted illumination optical path is opened so that the brightness of the specimen image due to transmitted illumination during simultaneous observation is balanced with the brightness of the specimen image due to epifluorescence. An automatic light control method characterized by:
JP2226275A 1990-08-28 1990-08-28 Microscope capable of simultaneous observation of transmission and epi-illumination and automatic light control method thereof Expired - Lifetime JP3015082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2226275A JP3015082B2 (en) 1990-08-28 1990-08-28 Microscope capable of simultaneous observation of transmission and epi-illumination and automatic light control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2226275A JP3015082B2 (en) 1990-08-28 1990-08-28 Microscope capable of simultaneous observation of transmission and epi-illumination and automatic light control method thereof

Publications (2)

Publication Number Publication Date
JPH04107418A true JPH04107418A (en) 1992-04-08
JP3015082B2 JP3015082B2 (en) 2000-02-28

Family

ID=16842660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2226275A Expired - Lifetime JP3015082B2 (en) 1990-08-28 1990-08-28 Microscope capable of simultaneous observation of transmission and epi-illumination and automatic light control method thereof

Country Status (1)

Country Link
JP (1) JP3015082B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587985A1 (en) * 1992-09-14 1994-03-23 LEICA MIKROSKOPIE UND SYSTEME GmbH Method and apparatus for the controle of illumination for fluorescence micro-photography
JPH09105866A (en) * 1995-10-11 1997-04-22 Olympus Optical Co Ltd Stereoscopic microscope
JP2005316036A (en) * 2004-04-28 2005-11-10 Olympus Corp Imaging apparatus and method and program to control illuminating light beam
JP2006221167A (en) * 2005-02-09 2006-08-24 Leica Microsystems (Schweiz) Ag Fluorescence/infrared device for medical operation microscope
JP2006296516A (en) * 2005-04-15 2006-11-02 Mitaka Koki Co Ltd Bright-field light source for fluorescence observation and surgical microscope loaded with the same
JP2008139794A (en) * 2006-12-05 2008-06-19 Keyence Corp Fluorescence microscope, method of operating fluorescence microscope, operation program for fluorescence microscope, computer-readable recording medium, and recorded equipment
JP2008161721A (en) * 2008-03-26 2008-07-17 Mitaka Koki Co Ltd Surgical microscope attachment
JP2016095493A (en) * 2014-11-07 2016-05-26 オリンパス株式会社 Microscope device
JP2017161740A (en) * 2016-03-10 2017-09-14 オリンパス株式会社 Light field microscope

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587985A1 (en) * 1992-09-14 1994-03-23 LEICA MIKROSKOPIE UND SYSTEME GmbH Method and apparatus for the controle of illumination for fluorescence micro-photography
JPH09105866A (en) * 1995-10-11 1997-04-22 Olympus Optical Co Ltd Stereoscopic microscope
JP2005316036A (en) * 2004-04-28 2005-11-10 Olympus Corp Imaging apparatus and method and program to control illuminating light beam
JP2006221167A (en) * 2005-02-09 2006-08-24 Leica Microsystems (Schweiz) Ag Fluorescence/infrared device for medical operation microscope
JP2006296516A (en) * 2005-04-15 2006-11-02 Mitaka Koki Co Ltd Bright-field light source for fluorescence observation and surgical microscope loaded with the same
JP2008139794A (en) * 2006-12-05 2008-06-19 Keyence Corp Fluorescence microscope, method of operating fluorescence microscope, operation program for fluorescence microscope, computer-readable recording medium, and recorded equipment
JP2008161721A (en) * 2008-03-26 2008-07-17 Mitaka Koki Co Ltd Surgical microscope attachment
JP2016095493A (en) * 2014-11-07 2016-05-26 オリンパス株式会社 Microscope device
JP2017161740A (en) * 2016-03-10 2017-09-14 オリンパス株式会社 Light field microscope

Also Published As

Publication number Publication date
JP3015082B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
EP0510329B1 (en) Photographing apparatus for microscopes
JP3537205B2 (en) Microscope equipment
US6674574B1 (en) Focusing system for a microscope and a reflected illumination fluorescence microscope using the focusing system
JPH0516006B2 (en)
JP2006146243A (en) Transmitted light base for microscope and method for controlling illumination intensity of transmitted light base
JPH0143293B2 (en)
JPH04107418A (en) Automatic dimming method of microscope capable of simultaneous transmission and downward lighting observation
US7576911B1 (en) Variable aperture transmissive substage microscope illuminator
JP2004004856A (en) Microscope system
JP3497229B2 (en) Microscope system
JP4428383B2 (en) Confocal microscope
US20090168156A1 (en) Microscope system, microscope system control program and microscope system control method
JP4689975B2 (en) Microscope illumination intensity measuring device
JP3745034B2 (en) Microscope system
JPH09325277A (en) Focus detector
JPH09189849A (en) Focus detection device for microscope
JPS60420A (en) Fluorescence microphotometric device
JP4828738B2 (en) Microscope device and observation method using this microscope device
JP3804527B2 (en) Microscope system
Uhl Arc lamps and monochromators for fluorescence microscopy
JP4157195B2 (en) Revolver interlocking lighting control device
JP3439259B2 (en) Automatic focus detection device
JPH02191909A (en) Function selective setting device for microscope
JP2003005088A (en) Focusing device for microscope and microscope having the same
JP2002196247A (en) Autofocusable microscope