JPH04107267A - Vacuum-deposition vaporization source using laser - Google Patents

Vacuum-deposition vaporization source using laser

Info

Publication number
JPH04107267A
JPH04107267A JP22738590A JP22738590A JPH04107267A JP H04107267 A JPH04107267 A JP H04107267A JP 22738590 A JP22738590 A JP 22738590A JP 22738590 A JP22738590 A JP 22738590A JP H04107267 A JPH04107267 A JP H04107267A
Authority
JP
Japan
Prior art keywords
irradiated
cooling
laser
powder
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22738590A
Other languages
Japanese (ja)
Inventor
Kazuhiro Oka
岡 一宏
Masatake Hiramoto
平本 誠剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22738590A priority Critical patent/JPH04107267A/en
Publication of JPH04107267A publication Critical patent/JPH04107267A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably maintain the vaporization rate of various materials to be irradiated by transiently heating the material in the vacuum-deposition vaporization source using a laser to a high temp., then cooling the material and supplying the cooled material. CONSTITUTION:The powder of Al2O3, etc., to be irradiated supplied from a powder inlet 19 is agitated by rotating a piston 20, and supplied toward a cooling body 14 by raising the piston 20. The powder is passed through the cooling body 14, sent to a heating and melting body 13, heated and melted. The molten layer is further pushed up by the powder coming from the lower part to a cooling and resolidifying body 12, cooled and resolidified. The material 6 to be irradiated, which has been resolidified, vitrified and converted to a single crystal, is irradiated with a laser beam 1, heated and vaporized without being cracked, and the vaporized particles are deposited on an opposed substrate 9 to form a coating film. The state of the material 6 is adjusted by the length and diameter of the cooling and resolidifying body and the cooling rate of a cooling mechanism.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は基板上に膜を蒸着するレーザ蒸着装置におけ
る被照射材料の蒸発源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an evaporation source for a material to be irradiated in a laser evaporation apparatus for depositing a film on a substrate.

[従来の技術] 第6図は例えば特公昭62−230号公報に示された従
来のレーザ蒸着装置を示す概略構成図である。
[Prior Art] FIG. 6 is a schematic diagram showing a conventional laser vapor deposition apparatus disclosed in, for example, Japanese Patent Publication No. 62-230.

図において、(1)はレーザ光、(2)はレーザ光(1
)の方向を変える第1の平面鏡、(3)はレーザ光(1
)を集光するレンズ、(4)はレンズ(3)で集光され
たレーザ光(1)を内部に取り込むための透過窓(5)
を備えた真空チャンバ、(6)は真空チャンバ(4)内
にあって矢印の方向に回転する円筒形状の被照射材料、
(7)は真空チャンバ(4)内に設けられた第2の平面
鏡で、透過窓(5)を通って真空チャンバ(4)内に入
射してレーザ光(1)の方向を変えて、被照射材料(6
)表面を照射するようにする。(8)は被照射材料(6
)全体を加熱するヒータ、(9)は被照射材料(6)に
対向するように設けられた基板、(10)はシャッター
である。
In the figure, (1) is a laser beam, (2) is a laser beam (1
), the first plane mirror (3) changes the direction of the laser beam (1
), and (4) is a transmission window (5) that takes in the laser beam (1) focused by lens (3).
(6) is a cylindrical irradiated material which is located in the vacuum chamber (4) and rotates in the direction of the arrow;
(7) is a second plane mirror provided in the vacuum chamber (4), which changes the direction of the laser beam (1) that enters the vacuum chamber (4) through the transmission window (5) and Irradiation material (6
) to illuminate the surface. (8) is the irradiated material (6
) A heater that heats the entire body, (9) a substrate provided to face the irradiated material (6), and (10) a shutter.

次に動作について説明する。Next, the operation will be explained.

レーザ光(1)は第1の平面鏡(2)で水平方向に光路
変換され、レンズ(3)で集光された後、透過窓(5)
を通して真空チャンバ(4)内に導かれ、第2の平面鏡
(7)により再び光路変換された後、予めヒータ(8)
で所定の温度に加熱された被照射材料(6)表面に照射
される。この時集光レンズ(3)は、被照射材料(6)
上の照射点付近で焦点が結ばれるように、その焦点距離
および位置が調整される。また、このように条件が不安
定な初期段階では、基板(9)表面はシャッター(10
)で遮蔽され、条件が安定した後シャッター(10)が
取り除かれて、基板(9)表面は被照射材料(6)に直
接対向する。レーザ光(1)が照射された被照射材料(
6)の表面層は急激に昇温しで蒸発し、蒸発粒子が基板
(9)の方向へ飛び出して、基板(9)上に蒸着して堆
積する。被照射材料(6)は矢印方向に回転して、被照
射材料(6)の表面層は照射位置を変えて順に加熱され
、蒸発を繰り返して、蒸発粒子は基板(9)上に堆積膜
を形成する。上記の工程において、被照射材料(6)の
表面層はレーザ光(1)の集光照射による急激な熱衝撃
を受けるため、ヒータ(8)内で表面を予熱していても
表面層に亀裂や割れが生じたり、材料によって被照射材
料(6)の内部にも亀裂が伝播あるいは発生する。また
、被照射材料(6)はこの急激な熱衝撃に耐えられるよ
うにするため、セラミック材料では添加物を加えて焼結
することが必要な場合があり、なかには被照射材料(6
)として使用できないものもある。
The laser beam (1) is horizontally changed in optical path by the first plane mirror (2), focused by the lens (3), and then passed through the transmission window (5).
The optical path is changed again by the second plane mirror (7), and then the heater (8)
The surface of the irradiated material (6) heated to a predetermined temperature is irradiated. At this time, the condensing lens (3) focuses on the irradiated material (6).
The focal length and position are adjusted so that the beam is focused near the upper irradiation point. In addition, at the initial stage when the conditions are unstable, the surface of the substrate (9) is covered with a shutter (10).
), and after the conditions have stabilized, the shutter (10) is removed and the substrate (9) surface directly faces the irradiated material (6). Irradiated material (
The surface layer 6) evaporates due to rapid temperature rise, and evaporated particles fly out toward the substrate (9) and are deposited on the substrate (9). The material to be irradiated (6) is rotated in the direction of the arrow, and the surface layer of the material to be irradiated (6) is heated in sequence by changing the irradiation position, repeating evaporation, and the evaporated particles form a deposited film on the substrate (9). Form. In the above process, the surface layer of the material to be irradiated (6) receives a sudden thermal shock due to the focused irradiation of the laser beam (1), so even if the surface is preheated in the heater (8), the surface layer cracks. Depending on the material, cracks may propagate or occur inside the irradiated material (6). In addition, in order for the irradiated material (6) to withstand this sudden thermal shock, it may be necessary to add additives and sinter the ceramic material;
) may not be available.

[発明が解決しようとする課[] 従来のレーザ蒸着装置は以上のように構成されているの
で、被照射材料の表面に亀裂が生じてレーザ光を吸収で
きる面積が減り蒸発速度が減少したり、被照射材料の表
面が割れ落ちてレーザ光の照射を受ける位置が変わり蒸
発速度が変化したりするため、被照射材料の蒸発速度を
安定に維持できないという問題点があった。また、場合
によっては被照射材料が大きく割れたり、破壊されるた
め、蒸着が維持できなくなるという問題点が生じる場合
があった。さらに、被照射材料として円筒状に形成させ
るため添加物を加えて焼結する必要がある種類のセラミ
ック材料では、蒸着物に添加物を混ざるため所望の組成
の膜形成ができない場合があるといった問題点があった
。また、被照射材料としての形状に作製できないため蒸
着できない材料があるといった問題点もあった。
[Problem to be solved by the invention] Conventional laser evaporation equipment is configured as described above, so cracks occur on the surface of the irradiated material, reducing the area that can absorb laser light and reducing the evaporation rate. However, there was a problem in that the evaporation rate of the irradiated material could not be maintained stably because the surface of the irradiated material cracked and fell, changing the position irradiated with the laser beam and changing the evaporation rate. Further, in some cases, the material to be irradiated may be severely cracked or destroyed, resulting in a problem that the vapor deposition cannot be maintained. Furthermore, in the case of ceramic materials that need to be sintered with additives added to form them into a cylindrical shape as the irradiated material, there is a problem that it may not be possible to form a film with the desired composition because the additives are mixed into the evaporated material. There was a point. Furthermore, there was also the problem that some materials could not be vapor deposited because they could not be manufactured into the shape of the irradiated material.

この発明は上記のような課題を解決するためになされた
もので、被照射材料を安定に蒸発させやすい状態に効率
よく形友 供給できるレーザを用いた真空蒸着用蒸発源
を得ることを目的とする−[1に!!lを解決するため
の手段] この発明に係るレーザを用いた真空蒸着用蒸発源は、被
照射材料を一度高温にしてから再冷却させて供給する機
構を備えたものである。
This invention was made in order to solve the above-mentioned problems, and the purpose is to obtain an evaporation source for vacuum evaporation using a laser that can efficiently supply a shape to the irradiated material in a state where it is easy to stably evaporate it. Do - [to 1! ! Means for Solving Problem 1] The evaporation source for vacuum evaporation using a laser according to the present invention is provided with a mechanism for once raising the temperature of the irradiated material to a high temperature and then recooling and supplying the material.

[作用] この発明におけるレーザを用いた真空蒸着用蒸発源は、
被照射材料を一度高温にしてから再冷却させて供給する
ことで、急激な熱衝撃で亀裂や割れが生じて蒸発速度が
変動したり蒸着の継続が不可能になることを防止する。
[Function] The evaporation source for vacuum evaporation using a laser in this invention is as follows:
By raising the irradiation material to a high temperature and then recooling it before supplying it, it is possible to prevent cracks and cracks from occurring due to sudden thermal shock, which can cause the evaporation rate to fluctuate and make it impossible to continue vapor deposition.

[実施例コ 以下、この発明の一実施例を図により説明する。[Example code] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図はこの発明によるレーザを用いた真空蒸着用蒸発
源を用いた蒸着装置全体の概略構成図、II2図は蒸発
源の概略構成図、$3図はレーザ被照射部となる蒸発源
の第2図の■−■断面図である。
Fig. 1 is a schematic diagram of the entire evaporation apparatus using an evaporation source for vacuum evaporation using a laser according to the present invention, Fig. It is a sectional view taken along the line ■-■ in FIG. 2.

第1図、第2図およびjIa図において、(1)はレー
ザ光、(4)は真空排気されている真空チャンバ、(6
)はレーザ光の照射を受ける被照射材料の被照射部、(
11)は被照射材料を供給するために設けら九た蒸発源
のホルダーである。
In Figures 1, 2, and jIa, (1) is a laser beam, (4) is an evacuated vacuum chamber, and (6 is
) is the irradiated part of the irradiated material that is irradiated with the laser beam, (
11) is a holder for an evaporation source provided for supplying the material to be irradiated.

蒸発源のホルダー(11)は、溶融再凝固させて被照射
材料(6)を供給するための冷却再凝固体(12)と、
被照射材料を溶融させるための加熱溶融体(13)と、
加熱溶融体に被照射材料を供給していくパウダー供給部
(15)と加熱溶融体(13)とを隔てる冷却体(14
)から構成されている。
The evaporation source holder (11) includes a cooling resolidified body (12) for melting and resolidifying and supplying the irradiated material (6);
a heating melt (13) for melting the irradiated material;
A cooling body (14) separates a powder supply section (15) that supplies the material to be irradiated to the heated melt and the heated melt (13).
).

冷却再凝固体(I2)には、冷却機構が設けられており
、ここでは冷却パイプ(16)を第2.3図に示すよう
に配置する方法を用いた。
The cooled resolidified body (I2) is provided with a cooling mechanism, and here a method of arranging cooling pipes (16) as shown in FIG. 2.3 was used.

加熱溶融体(I3)には加熱機構が設けられており、こ
こではコイル(17)を配置して高周波加熱する方法を
用いた。
The heating molten body (I3) is provided with a heating mechanism, and here a method of arranging a coil (17) and performing high frequency heating was used.

冷却体(14)にも冷却機構が設けられており、ここで
は冷却パイプ(18)による方法を用いた。
The cooling body (14) is also provided with a cooling mechanism, and here a method using a cooling pipe (18) was used.

パウダー供給部(15)はパウダー供給口(19)と、
供給したパウダーを攪拌する。かつ、冷却体(14)方
向へ押し上げていく回転上下するピストン(20)とか
らなる。
The powder supply section (15) includes a powder supply port (19),
Stir the supplied powder. It also consists of a piston (20) that rotates up and down and pushes up toward the cooling body (14).

また、これらの冷却機構と加熱機構は、パウダーから再
凝固体までに至る被照射材料(6)と遮へい板(21)
でしきられている。ここでは遮へい板に被照射材料と同
質または高融点の材料である材料からなるパイプを用い
ている。さらに加熱溶融体(13)の加熱機構と、冷却
再凝固体(12)および冷却体(14)の冷却機構とは
、断熱材(22)でしきられている。
In addition, these cooling mechanisms and heating mechanisms are used to control the irradiated material (6) ranging from powder to re-solidified material and the shielding plate (21).
It is divided into Here, a pipe made of a material that is the same as the material to be irradiated or has a high melting point is used as the shielding plate. Further, the heating mechanism for the heated molten body (13) and the cooling mechanism for the cooled resolidified body (12) and the cooling body (14) are separated by a heat insulating material (22).

次に動作について説明する。Next, the operation will be explained.

この場合、被照射材料の例としてAl2O3を用いて説
明する。
In this case, Al2O3 will be used as an example of the material to be irradiated.

パウダー供給口(19)から供給したAl2O3のパウ
ダーは、ピストン(20)を回転させることで攪拌する
とともに、ピストン(20)を押し上げていくことで、
冷却体(14)方向に供給していく。これらのパウダー
は、冷却体(14)を経て加熱溶融体(13)に至ると
加熱溶融する。この溶融層は、下方から続いてくるパウ
ダーによりさらに上方に押し上げられて冷却再凝固体(
12)に至ると、冷却され再凝固する。再凝固してガラ
ス化ないしは単結晶化した被照射材料(6)は、レーザ
光(1)の照射をうけても割れを生じることなく加熱蒸
発され、蒸発粒子は対向して配置された基板(9)上に
堆積し被膜が形成できる。
The Al2O3 powder supplied from the powder supply port (19) is stirred by rotating the piston (20), and by pushing the piston (20) up.
It is supplied in the direction of the cooling body (14). These powders are heated and melted when they reach the heated melting body (13) via the cooling body (14). This molten layer is further pushed upward by the powder continuing from below, and the cooled re-solidified material (
12), it is cooled and solidified again. The irradiated material (6), which has been re-solidified and vitrified or single crystallized, is heated and evaporated without causing any cracks even when irradiated with the laser beam (1), and the evaporated particles are evaporated onto the substrate ( 9) A film can be formed by depositing on the surface.

被照射材料(6)の状態は、冷却再凝固体の長さ、径お
よび冷却機構の冷却速度によって調節できる。
The state of the irradiated material (6) can be adjusted by the length and diameter of the cooled resolidified body and the cooling rate of the cooling mechanism.

このため被照射材料(6)は−度高温にして溶融させた
状態のまま、ないしは半凝固の状態で供給することもで
きる。
For this reason, the material to be irradiated (6) can be supplied in a molten state heated to -degrees high temperature or in a semi-solidified state.

また、被照射材料(6)は、加熱溶融体(13)で供給
したパウダーを一度溶融させてから形成させているが、
コイル(17)への投入エネルギ量を調節して、溶融し
ない程度の温度で、結晶粒成長させる方法を用いてもよ
い。
In addition, the irradiated material (6) is formed after once melting the powder supplied by the heated melt (13).
A method may be used in which the amount of energy input to the coil (17) is adjusted to grow the crystal grains at a temperature that does not melt.

また、供給するパウダーは各種粒径のものを用いること
ができるので、超微粒子を用いてもよく、この場合コイ
ルへの投入エネルギ量を小さくしても低温で、焼結ない
し結晶粒成長させることができる。
In addition, the powder to be supplied can be of various particle sizes, so ultrafine particles may be used. In this case, even if the amount of energy input to the coil is reduced, sintering or crystal grain growth can be achieved at low temperatures. I can do it.

また、レーザ光としてはCO2レーザや、YAGレーザ
やA r FあるいはK r Fなとのエキシマレーザ
光などの高エネルギレーザ光を用いればよい。
Further, as the laser light, high-energy laser light such as a CO2 laser, a YAG laser, or an excimer laser light such as A r F or K r F may be used.

また、電子ビームや、イオンビームなどの高エネルギビ
ームをレーザ光のかわりに用いてもよい。
Further, a high energy beam such as an electron beam or an ion beam may be used instead of the laser beam.

また、ビームは連続波でもパルスでもよい。Also, the beam may be continuous wave or pulsed.

また、パウダーを押し上げるのにピストンを用いている
がそれ以外の例えば圧縮ガス流などを用いてもよい。
Further, although a piston is used to push up the powder, other methods such as compressed gas flow may also be used.

また、被照射材料(6)を回転させるために蒸発源のホ
ルダー(11)を回転できるようにしてもよい。
Furthermore, the holder (11) of the evaporation source may be made rotatable in order to rotate the material to be irradiated (6).

また、第3図は円筒状であるが、それ以外の形状例えば
四角状でもよい。また、第4図および第5図に示すよう
に、被照射材料(6)に照射するレーザ光(1)の照射
位置を変えることができる構成にしてもよい。
Further, although the shape shown in FIG. 3 is cylindrical, other shapes such as rectangular shapes may be used. Furthermore, as shown in FIGS. 4 and 5, a configuration may be adopted in which the irradiation position of the laser beam (1) irradiated onto the irradiated material (6) can be changed.

また、加熱には高周波加熱以外の方法を用いてもよい。Moreover, methods other than high frequency heating may be used for heating.

例えばヒータを配する方法、赤外線反射炉を用いる方法
などである。
Examples include a method of arranging a heater, a method of using an infrared reflecting furnace, etc.

また、冷却方法として液体窒素冷却などの冷却材を流す
方法、熱伝導率のよいセラミック材を配する方法などを
用いてもよい。
Further, as a cooling method, a method of flowing a coolant such as liquid nitrogen cooling, a method of disposing a ceramic material with good thermal conductivity, etc. may be used.

[発明の効果] 以上のようにこの発明によれば、レーザを用いた真空蒸
着用蒸発源を被照射材料を一度高温にしてから再冷却さ
せて供給する構成にしたので、急激な熱衝撃で亀裂や割
れが生じて蒸発速度が変動したり蒸着の継続が不可能に
なることを防止して、様々な被照射材料を蒸発速度を継
続して安定に維持し蒸着できるレーザを用いた真空蒸着
用蒸発源を備えたレーザ蒸着装置が得られる効果がある
[Effects of the Invention] As described above, according to the present invention, since the evaporation source for vacuum evaporation using a laser is configured to heat the irradiated material once to a high temperature and then re-cool it before supplying it, it is possible to avoid sudden thermal shock. Vacuum evaporation using a laser that can continuously maintain a stable evaporation rate and deposit various irradiated materials without causing cracks or fractures that would cause the evaporation rate to fluctuate or make it impossible to continue evaporation. This has the effect of providing a laser evaporation apparatus equipped with an evaporation source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるレーザを用いた真空蒸着用蒸発
源を用いた蒸着装置全体の概略構成図、第2図はこの発
明の一実施例によるレーザを用いた真空蒸着用蒸発源を
示す概略構成図の平面図、第3図は第2図の■−■断面
図、第4図はこの発明の他の実施例によるレーザを用い
た真空蒸着用蒸発源を示す概略構成図の平面図、第5図
はこの発明のさらに他の実施例によるレーザを用いた真
空蒸着用蒸発源を示す概略構成図の平面図、第6図は従
来のレーザ蒸着装置を示す概略構成図である。 図において、(1)はレーザ光(3)は集光レンズ、(
4)は真空チャンバー (5)は透過窓、(6)被照射
材料、(9)は基板、(11)は蒸発源である。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a schematic configuration diagram of an entire vapor deposition apparatus using an evaporation source for vacuum evaporation using a laser according to the present invention, and FIG. 2 is a schematic diagram showing an evaporation source for vacuum evaporation using a laser according to an embodiment of the present invention. 3 is a cross-sectional view taken along the line ■-■ in FIG. 2; FIG. 4 is a plan view of a schematic configuration diagram showing an evaporation source for vacuum evaporation using a laser according to another embodiment of the present invention; FIG. 5 is a plan view of a schematic configuration diagram showing an evaporation source for vacuum evaporation using a laser according to still another embodiment of the present invention, and FIG. 6 is a schematic configuration diagram showing a conventional laser evaporation apparatus. In the figure, (1) is a laser beam, (3) is a condensing lens, (
4) is a vacuum chamber, (5) is a transmission window, (6) is a material to be irradiated, (9) is a substrate, and (11) is an evaporation source. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  真空チャンバ内で、被照射材料にレーザビームを集光
照射し、上記照射材料を蒸発させその蒸発粒子をその蒸
発方向に配置した基板に堆積させ被膜を形成するものに
おいて、上記照射材料を一度高温にしてから再冷却させ
て供給することを特徴とするレーザを用いた真空蒸着用
蒸発源。
In a vacuum chamber, the irradiated material is irradiated with a focused laser beam, the irradiated material is evaporated, and the evaporated particles are deposited on a substrate placed in the evaporation direction to form a film. An evaporation source for vacuum evaporation using a laser, which is characterized in that it is supplied after being recooled.
JP22738590A 1990-08-28 1990-08-28 Vacuum-deposition vaporization source using laser Pending JPH04107267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22738590A JPH04107267A (en) 1990-08-28 1990-08-28 Vacuum-deposition vaporization source using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22738590A JPH04107267A (en) 1990-08-28 1990-08-28 Vacuum-deposition vaporization source using laser

Publications (1)

Publication Number Publication Date
JPH04107267A true JPH04107267A (en) 1992-04-08

Family

ID=16859991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22738590A Pending JPH04107267A (en) 1990-08-28 1990-08-28 Vacuum-deposition vaporization source using laser

Country Status (1)

Country Link
JP (1) JPH04107267A (en)

Similar Documents

Publication Publication Date Title
US4970196A (en) Method and apparatus for the thin film deposition of materials with a high power pulsed laser
US7727335B2 (en) Device and method for the evaporative deposition of a coating material
JPS63227766A (en) Formation of superfine-grained film
JPH04107267A (en) Vacuum-deposition vaporization source using laser
JPS6155588B2 (en)
JPS6320573B2 (en)
JPH04214860A (en) Manufacture of multicomponent solid material
JPH04311561A (en) Method and device for forming thin film
JP2505375B2 (en) Method and apparatus for forming compound film
JPH03174307A (en) Production of oxide superconductor
JP2505376B2 (en) Film forming method and apparatus
JP2000297361A (en) Formation of hyper-fine particle film and device for forming hyper-fine particle film
Wilms et al. Growing of bulk sapphire single crystals using laser material deposition
JPH05117845A (en) Device and method for film forming of compound material
JPH11222669A (en) Gas deposition method and device
JP2001026883A (en) Film forming method and film forming device
JP2543754Y2 (en) Artificial diamond deposition equipment
JPH03253551A (en) Laser spraying method and device
JPS6329585B2 (en)
JPH02104659A (en) Device for producing thin film
JPH06136520A (en) Method for producing thin film and device therefor
JPH0446082A (en) Formation of high-quality oxide superconducting thin film
JPH02258694A (en) Production of oxide superconductor
JPH04214862A (en) Film forming apparatus
Bagdasarov et al. Application of Laser Heating to Crystal Growth