JPH04105547A - Rotor of superconducting rotary electric apparatus - Google Patents

Rotor of superconducting rotary electric apparatus

Info

Publication number
JPH04105547A
JPH04105547A JP2219942A JP21994290A JPH04105547A JP H04105547 A JPH04105547 A JP H04105547A JP 2219942 A JP2219942 A JP 2219942A JP 21994290 A JP21994290 A JP 21994290A JP H04105547 A JPH04105547 A JP H04105547A
Authority
JP
Japan
Prior art keywords
shaft
rigidity
coil
superconducting
flexible support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219942A
Other languages
Japanese (ja)
Inventor
Kiyoshi Miyaike
潔 宮池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP2219942A priority Critical patent/JPH04105547A/en
Publication of JPH04105547A publication Critical patent/JPH04105547A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Motor Or Generator Frames (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PURPOSE:To obtain the rotor of a superconducting rotative electric apparatus capable of decreasing vibration caused by the anisotropy of the rigidity of a coil fixation shaft without decreasing the rigidity by arranging a flexible support having two elastic main axes of different rigidity on a plane intersecting the rotation central axis of the coil fixation shaft. CONSTITUTION:The rigidity in the direction of the X-axis of a flexible support 20 to support a coil fixation shaft 6 is greater than its rigidity in the direction of the Y-axis. Therefore, when the flexible support 20, which has two elastic main axes of different rigidity, is arranged with its high-rigidity X-axis at the slot side of the coil fixation shaft 6 and its low-rigidity Y-axis at the magnetic pole side of the coil fixation shaft 6, the anisotropy of the rigidity of the coil fixation shaft 6 is cancelled and that of the whole rotor is decreased. Therefore, vibration caused by the anisotropy of the rigidity of the coil fixation shaft 6 is decreased without decreasing its rigidity.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、超電導回転電機の回転子に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application) The present invention relates to a rotor for a superconducting rotating electric machine.

(従来の技術) 近年、超電導導体を回転子の界磁巻線として利用したい
わゆる超電導回転電機が開発されている。
(Prior Art) In recent years, so-called superconducting rotating electric machines that utilize superconducting conductors as field windings of rotors have been developed.

この種の回転電機の回転子(以下、超電導回転子と称す
)は、第9図に示すように構成され、回転子の外筒を形
成する常温ダンパ1の両端には回転軸2.3がその軸心
線を常温ダンパ1の軸心線に一致させて取り付けられて
いる。これらの回転軸2.3はそれぞれ軸受け4に支持
されており、回転軸2の端部には図示しないタービン等
の駆動源に接続されるフランジ5が設けられている。
The rotor of this type of rotating electrical machine (hereinafter referred to as a superconducting rotor) is constructed as shown in FIG. It is attached with its axial center line aligned with the axial center line of the room temperature damper 1. Each of these rotating shafts 2.3 is supported by a bearing 4, and a flange 5 is provided at an end of the rotating shaft 2 to be connected to a drive source such as a turbine (not shown).

また、上記常温ダンパ1は真空容器を兼ねており、その
内部にはコイル取付は軸6が収納されている。このコイ
ル取付は軸6は超電導界磁コイル7を保持するためのも
ので、その表面には複数のスロット8(第10図参照)
がコイル取付は軸6の軸方向に沿って形成されている。
Further, the normal temperature damper 1 also serves as a vacuum container, and a shaft 6 for mounting a coil is housed inside the vacuum container. In this coil installation, the shaft 6 is for holding the superconducting field coil 7, and the surface thereof has a plurality of slots 8 (see Fig. 10).
However, the coil attachment is formed along the axial direction of the shaft 6.

これらのスロット8はいわゆる鞍形をなしており、その
内部には超電導界磁コイル7を形成する超電導導体が収
納されている。
These slots 8 have a so-called saddle shape, and a superconducting conductor forming the superconducting field coil 7 is housed inside the slots 8 .

また、上記コイル取付は軸6は中心部が中空となってお
り、その中空部には冷媒としての液体ヘリウム9が収容
されている。この液体ヘリウム9は超電導界磁コイル7
を極低温に冷却するためのもので、回転軸3の端部に設
けられた冷媒給排装置10より冷媒供給管11を介して
供給されるようになっている。なお、上記回転軸3の端
部には超電導界磁コイル7に電流リード12を介して界
磁電流を通電するコレクタリング13が設けられている
Further, in the case of mounting the coil, the shaft 6 is hollow in the center, and liquid helium 9 as a refrigerant is accommodated in the hollow part. This liquid helium 9 is superconducting field coil 7
The refrigerant is supplied through a refrigerant supply pipe 11 from a refrigerant supply/discharge device 10 provided at the end of the rotating shaft 3. Note that a collector ring 13 is provided at the end of the rotating shaft 3 to supply a field current to the superconducting field coil 7 via a current lead 12.

また、上記コイル取付は軸6はトルクチューブ14とフ
レキシブルサポート15とにより常温ダンパ1のほぼ中
心部に支持されている。上記トルクチューブ14は回転
軸2.3の回転をコイル取付は軸6に伝えるためのもの
で、コイル取付は軸6の一端と常温ダンパ1の端部との
間に設けられている。また、上記フレキシブルサポート
15は常温ダンパ1とコイル取付は軸6との熱収縮差を
吸収するためのもので、コイル取付は軸6の端部外周と
常温ダンパ1の内周面との間に設けられている。なお、
上記フレキシブルサポート15はコイル取付は軸6の軸
方向に容易に撓むように円形の薄板から形成されている
。また、上記コイル取付は軸6の外周には空間部を介し
て輻射シールド16が設けられ、この輻射シールド16
で外部からの熱侵入を防止している。
In addition, in the coil installation, the shaft 6 is supported approximately at the center of the normal temperature damper 1 by a torque tube 14 and a flexible support 15. The torque tube 14 is used to transmit the rotation of the rotary shaft 2.3 to the shaft 6, and the coil is installed between one end of the shaft 6 and the end of the normal temperature damper 1. The flexible support 15 is designed to absorb the difference in thermal contraction between the room temperature damper 1 and the shaft 6, and the coil is mounted between the outer periphery of the end of the shaft 6 and the inner peripheral surface of the room temperature damper 1. It is provided. In addition,
The flexible support 15 is formed from a circular thin plate so that the coil can be easily bent in the axial direction of the shaft 6. In addition, in the above-mentioned coil installation, a radiation shield 16 is provided on the outer periphery of the shaft 6 through a space, and this radiation shield 16
This prevents heat from entering from outside.

上記のように構成される超電導回転子は、超電導界磁コ
イル7を液体ヘリウム9によって極低温に冷却し、回転
軸3の端部に設けられたコレクタリング13から電流リ
ード12を通じて超電導界磁コイル7に界磁電流を通電
すると、超電導界磁コイル7が永久磁石となり、強大な
磁界を発生する。したがって、超電導界磁コイル7の超
電導状態を維持した状態で回転子を回転させることによ
り、常温ダンパ1の周囲に配設された固定子(図示せず
)に交流電力を発生させることができる。
In the superconducting rotor configured as described above, the superconducting field coil 7 is cooled to an extremely low temperature by liquid helium 9, and the superconducting field coil is connected to the current lead 12 from the collector ring 13 provided at the end of the rotating shaft 3. When a field current is applied to the superconducting field coil 7, the superconducting field coil 7 becomes a permanent magnet and generates a strong magnetic field. Therefore, by rotating the rotor while maintaining the superconducting state of the superconducting field coil 7, alternating current power can be generated in a stator (not shown) disposed around the room temperature damper 1.

ところで、上記のような超電導回転子は超電導界磁コイ
ル7が2極構成の場合、コイル取付は軸6は第10図に
示すような断面形状となる。このような断面形状を持つ
コイル取付は軸6は互いに直交するX軸方向とY軸方向
の剛性が異なり、コイル取付は軸6の表面に形成された
スロット8の影響によりY軸方向における撓み剛性の方
がX軸方向における撓み剛性よりも大きい。
By the way, in the superconducting rotor as described above, when the superconducting field coil 7 has a two-pole configuration, the coil mounting shaft 6 has a cross-sectional shape as shown in FIG. When mounting a coil with such a cross-sectional shape, the shaft 6 has different rigidity in the X-axis direction and the Y-axis direction, which are orthogonal to each other, and the coil mounting has different rigidity in the Y-axis direction due to the effect of the slot 8 formed on the surface of the shaft 6. is larger than the bending rigidity in the X-axis direction.

このような剛性の異なる2つの弾性主軸を持った回転軸
を一般に異方性の回転軸と称し、異方性の回転軸が横置
きに支持されている゛場合には、回転軸の自重による撓
みが回転軸の回転角によって変動することから、異方性
の回転軸は回転数の2倍の周波数で振動する。また、異
方性の回転軸は曲げ固有振動数の172で回転させた場
合、軸剛性の異方性に基づく励振と曲げ固有振動数とが
一致して2次的危険速度と称される共振現象も生ずる。
A rotating shaft with two elastic principal axes with different stiffnesses is generally called an anisotropic rotating shaft, and if the anisotropic rotating shaft is supported horizontally, the Since the deflection varies depending on the rotation angle of the rotating shaft, the anisotropic rotating shaft vibrates at a frequency twice the number of rotations. In addition, when an anisotropic rotating shaft is rotated at the bending natural frequency of 172, the excitation based on the anisotropy of the shaft stiffness and the bending natural frequency match, causing resonance called a secondary critical speed. Phenomena also occur.

このような異方性の回転軸による振動現象は超電導回転
電機の回転子に限らず、在来型の2極タ一ビン発電機つ
まり常電導の回転子にも共通した問題である。この問題
を解決する手段として、在来型の2極タ一ビン発電機で
は例えば第11図に示すように、コイルを収納するスロ
ットと同様のダミースロット17を磁極部にも設けて剛
性の異方性を少なくしたり、あるいは第12図に示すよ
うに磁極部にクロススロットと称される溝18を軸方向
に適当な間隔で設けて剛性の異方性を少なくする方法な
どが知られている。
Such a vibration phenomenon caused by an anisotropic rotating shaft is a problem not only in the rotor of a superconducting rotating electric machine but also common in conventional two-pole turbine generators, that is, normally conducting rotors. As a means to solve this problem, in conventional two-pole turbine generators, for example, as shown in FIG. There are known methods of reducing the anisotropy of rigidity, or by providing grooves 18 called cross slots in the magnetic pole part at appropriate intervals in the axial direction, as shown in FIG. There is.

(発明が解決しようとする課題) しかしながら、これらの技術を超電導回転電機に適用し
た場合には、以下のような問題が生ずる。
(Problems to be Solved by the Invention) However, when these techniques are applied to a superconducting rotating electric machine, the following problems occur.

すなわち、超電導回転電機は超電導界磁コイル7の支持
固定強度がしばしば重要視される。これは超電導界磁コ
イル7の支持固定が不十分であると、電磁力等が作用し
た場合に超電導界磁コイル7を形成する超電導導体が動
き、摩擦熱が発生することが懸念されるためである。超
電導界磁コイル7はある電流値と磁界の強さと温度の条
件を満たすことによって超電導状態を実現するか、摩擦
熱の発生はコイルの温度上昇を招き、超電導状態から常
電導状態へ転移(クエンチと称される)を引き起こす可
能性がある。よって、コイル取付は軸6には超電導界磁
コイル7をスロット8内にくさび等を用いて強固に固定
するために高い剛性が要求される。しかるに、上述した
従来技術はいずれもコイル取付は軸6の剛性を低下させ
るものであり、剛性の低いコイル取付は軸6に固定され
た超電導界磁コイル7は例えば振動による曲げ振幅の増
加の影響や短絡時の捻り振動による捻り変位の増加の影
響などを受け、クエンチを引き起こす可能性がある。
That is, in a superconducting rotating electrical machine, the strength of supporting and fixing the superconducting field coil 7 is often considered important. This is because if the support and fixation of the superconducting field coil 7 is insufficient, there is a concern that the superconducting conductors forming the superconducting field coil 7 will move when electromagnetic force etc. act, generating frictional heat. be. The superconducting field coil 7 either achieves a superconducting state by satisfying the conditions of a certain current value, magnetic field strength, and temperature, or the generation of frictional heat causes a rise in the temperature of the coil, causing a transition from a superconducting state to a normal conducting state (quenching). ) may cause Therefore, when installing the coil, the shaft 6 is required to have high rigidity in order to firmly fix the superconducting field coil 7 in the slot 8 using a wedge or the like. However, in all of the above-mentioned conventional technologies, the coil attachment reduces the rigidity of the shaft 6, and the coil attachment with low rigidity causes the superconducting field coil 7 fixed to the shaft 6 to be affected by an increase in bending amplitude due to vibration, for example. This may cause quenching due to the effects of increased torsional displacement due to torsional vibration during short circuit.

本発明は上述した事情に鑑みてなされたもので、その目
的はコイル取付は軸の剛性を低下させることなく、コイ
ル取付は軸の剛性の異方性に起因する振動を低減し、安
定した超電導状態を得ることのできる超電導回転電機の
回転子を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to install a coil without reducing the rigidity of the shaft, to reduce vibrations caused by the anisotropy of the rigidity of the shaft, and to achieve stable superconducting. An object of the present invention is to provide a rotor for a superconducting rotating electric machine that can obtain the following state.

[発明の構成] (課題を解決するための手段) 上記課題を解決するために本発明は、両端に回転軸部を
有し真空容器を兼ねた常温ダンパと、この常温ダンパ内
に収納されたコイル取付は軸と、このコイル取付は軸の
表面に形成されたスロット内に収納され超電導界磁コイ
ルを形成する超電導導体と、上記コイル取付は軸を上記
常温ダンパに対して軸方向にフレキシブルに支持するフ
レキシブルサポートとを有する超電導回転電機の回転子
において、上記フレキシブルサポートは上記コイル取付
は軸の回転中心軸と直交する面に剛性の異なる2つの弾
性主軸を有し、これらの弾性主軸のうち剛性の大きい弾
性主軸を上記コイル取付は軸のスロット側に配置し、剛
性の小さい弾性主軸を上記コイル取付は軸のスロットが
形成されていない側に配置したものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides a room-temperature damper having rotating shaft portions at both ends and serving as a vacuum container, and a damper housed in the room-temperature damper. The coil is attached to the shaft, the superconducting conductor is housed in a slot formed on the surface of the shaft and forms a superconducting field coil, and the coil is attached to the shaft so that it is flexible in the axial direction relative to the normal temperature damper. In a rotor of a superconducting rotating electric machine having a flexible support, the flexible support has two elastic main shafts with different rigidities in a plane orthogonal to the rotation center axis of the shaft, and The elastic main shaft with high rigidity is arranged on the slot side of the shaft when the coil is mounted, and the elastic main shaft with low rigidity is arranged on the side of the shaft where the slot is not formed when the coil is mounted.

(作 用) 本発明では、上記のようなフレキシブルサポートでコイ
ル取付は軸を常温ダンパに対してフレキシブルに支持す
ることにより、コイル取付は軸の剛性の異方性がフレキ
シブルサポートによって打ち消され、回転子全体として
の剛性の異方性が低減される。したがって、コイル取付
は軸に超電導界磁コイルを収納するスロット以外の溝等
を別途設ける必要がなく、コイル取付は軸の剛性を低下
させずにコイル取付は軸の剛性の異方性に起因する振動
を低減することができる。
(Function) In the present invention, the shaft is flexibly supported with the flexible support as described above against the normal temperature damper, and the anisotropy of the rigidity of the shaft is canceled out by the flexible support, and the coil can be mounted without rotation. The anisotropy of the stiffness of the entire child is reduced. Therefore, there is no need to provide a separate groove on the shaft other than the slot for storing the superconducting field coil, and the coil installation does not reduce the rigidity of the shaft. Vibration can be reduced.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は本発明の第1実施例を示し、第2
図は超電導回転子の部分断面図である。
1 and 2 show a first embodiment of the present invention, and a second embodiment of the present invention is shown in FIG.
The figure is a partial sectional view of a superconducting rotor.

同図において、1は常温ダンパ、2は回転軸、5はフラ
ンジ、6はコイル取付は軸、7は超電導界磁コイル、9
は液体ヘリウム、16は輻射シールドであり、これらは
第9図に示したものと同一のものである。
In the figure, 1 is a normal temperature damper, 2 is a rotating shaft, 5 is a flange, 6 is a coil mounting shaft, 7 is a superconducting field coil, 9
16 is liquid helium, and 16 is a radiation shield, which are the same as those shown in FIG.

また、20はコイル取付は軸6を常温ダンパ1に対して
フレキシブルに支持するフレキシブルサポートであり、
このフレキシブルサポート20は第1図に示すように内
輪21、外輪22および内輪21と外輪22との間に放
射状に配設された複数のスポーク23とから形成されて
いる。上記スポーク23は周方向位置によってその幅が
異なっており、図中X軸方向のスポーク23はその幅が
大きく、Y軸方向のスポーク23はその幅が小さくなっ
ている。
In addition, 20 is a flexible support that flexibly supports the shaft 6 with respect to the room temperature damper 1 for mounting the coil.
As shown in FIG. 1, this flexible support 20 is formed from an inner ring 21, an outer ring 22, and a plurality of spokes 23 arranged radially between the inner ring 21 and the outer ring 22. The spokes 23 have different widths depending on their positions in the circumferential direction, and in the figure, the spokes 23 in the X-axis direction have a large width, and the spokes 23 in the Y-axis direction have a small width.

上記のよつに構成されるフレキシブルサポート20は、
X軸方向におけるスポーク23の幅がY軸方向における
スポーク23の幅よりも大きくなっているため、X軸方
向の剛性の方がY軸方向の剛性よりも大きい。したがっ
て、このような剛性の異なる2つの弾性主軸(X軸、Y
軸)を持つフレキシブルサポート20をコイル取付は軸
6に対し、第3図に示すように剛性の大きいX軸をコイ
ル取付は軸6のスロット側に配置し、剛性の小さいY軸
をコイル取付は軸6の磁極部側に配置することにより、
コイル取付は軸6の剛性の異方性がフレキシブルサポー
ト20によって打ち消され、回転子全体としての剛性の
異方性が低減される。
The flexible support 20 configured as described above is
Since the width of the spokes 23 in the X-axis direction is greater than the width of the spokes 23 in the Y-axis direction, the rigidity in the X-axis direction is greater than the rigidity in the Y-axis direction. Therefore, the two elastic main axes (X axis, Y axis,
As shown in Figure 3, the flexible support 20 with the coil is attached to the slot side of the axis 6, and the Y-axis, which is less rigid, is attached to the slot side of the axis 6. By placing it on the magnetic pole side of the shaft 6,
When the coil is attached, the rigidity anisotropy of the shaft 6 is canceled out by the flexible support 20, and the rigidity anisotropy of the rotor as a whole is reduced.

したがって、コイル取付は軸6に超電導界磁コイル7を
収納するスロット以外の溝等を別途設ける必要がなく、
コイル取付は軸6の剛性を低下させずにコイル取付は軸
6の剛性の異方性に起因する振動を低減することができ
る。
Therefore, when installing the coil, there is no need to separately provide a groove or the like other than the slot for housing the superconducting field coil 7 on the shaft 6.
The coil attachment can reduce vibrations caused by the anisotropy of the rigidity of the shaft 6 without reducing the rigidity of the shaft 6.

なお、上記実施例ではスポーク23の幅を変えてフレキ
シブルサポート20に剛性の異方性を持たせたが、スポ
ーク23の幅を変える代わりにスポーク23の厚さを変
えても良いし、またその両方を併用しても良い。
In the above embodiment, the width of the spokes 23 was changed to give the flexible support 20 rigidity anisotropy, but instead of changing the width of the spokes 23, the thickness of the spokes 23 may be changed, or the thickness of the spokes 23 may be changed. Both may be used together.

さらに、第4図に示すようにスポーク23を不等間隔に
配置しても同様の効果を得ることができる。
Furthermore, the same effect can be obtained by arranging the spokes 23 at irregular intervals as shown in FIG.

第5図および第6図は本発明の第3実施例を示す図で、
この実施例ではフレキシブルサポート20を2枚のフレ
キシブルサポート24a。
FIG. 5 and FIG. 6 are diagrams showing a third embodiment of the present invention,
In this embodiment, the flexible support 20 includes two flexible supports 24a.

24bから形成しものである。上記フレキシブルサポー
)24aは弾性率の高い材料で形成され、第7図に示す
ようにスポーク23がX軸方向にだけ存在している。ま
た、上記フレキシブルサポート24bは弾性率の低い材
料で形成され、第8図に示すようにスポーク23かY軸
方向にたけ存在している。
24b. The flexible support 24a is made of a material with a high elastic modulus, and as shown in FIG. 7, the spokes 23 are present only in the X-axis direction. Further, the flexible support 24b is made of a material with a low elastic modulus, and as shown in FIG. 8, the spokes 23 are present in the Y-axis direction.

したかって、これらのフレキシブルサポート24a、2
4bを重ね合わせて一体化することにより、第1図に示
したフレキシブルサポートと同様にX軸方向の剛性の方
がY軸方向の剛性よりも大きくなるので、コイル取付は
軸6の剛性を低下させずにコイル取付は軸6の剛性の異
方性に起因する振動を低減することができる。
Therefore, these flexible supports 24a, 2
By overlapping and integrating 4b, the rigidity in the X-axis direction becomes greater than the rigidity in the Y-axis direction, similar to the flexible support shown in Figure 1, so installing the coil reduces the rigidity of the shaft 6. By attaching the coil to the shaft 6, vibrations caused by the anisotropy of the rigidity of the shaft 6 can be reduced.

[発明の効果] 以上説明したように本発明は、両端に回転軸部を有し真
空容器を兼ねた常温ダンパと、この常温ダンパ内に収納
されたコイル取付は軸と、このコイル取付は軸の表面に
形成されたスロット内に収納され超電導界磁コイルを形
成する超電導導体と、上記コイル取付は軸を上記常温ダ
ンパに対して軸方向にフレキシブルに支持するフレキシ
ブルサポートとを有する超電導回転電機の回転子におい
て、上記フレキシブルサポートは上記コイル取付は軸の
回転中心軸と直交する面に剛性の異なる2つの弾性主軸
を有し、これらの弾性主軸のうち剛性の大きい弾性主軸
を上記コイル取付は軸のスロット側に配置し、剛性の小
さい弾性主軸を上記コイル取付は軸のスロットが形成さ
れていない側に配置したものである。
[Effects of the Invention] As explained above, the present invention provides a room-temperature damper that has rotating shaft portions at both ends and also serves as a vacuum container, a coil housed in the room-temperature damper that is mounted on the shaft, and a coil that is mounted on the shaft. A superconducting rotating electric machine having a superconducting conductor that is housed in a slot formed on the surface of the machine and forming a superconducting field coil, and a flexible support that flexibly supports the shaft of the coil in the axial direction with respect to the normal temperature damper. In the rotor, the flexible support has two elastic main shafts with different rigidities on a plane perpendicular to the rotational center axis of the shaft, and the elastic main shaft with greater rigidity is the main shaft on which the coil is mounted. The coil is mounted on the side of the shaft where the slot is not formed, and the elastic main shaft with low rigidity is located on the side of the shaft where the slot is not formed.

したがって、本発明によればコイル取付は軸の剛性の異
方性がフレキシブルサポートによって打ち消されるので
、コイル取付は軸の剛性を低下させずにコイル取付は軸
の剛性の異方性に起因する振動を低減することができ、
安定した超電導状態を得ることのできる超電導回転電機
の回転子を提供できる。
Therefore, according to the present invention, since the anisotropy of the stiffness of the shaft is canceled out by the flexible support, the coil mounting does not reduce the stiffness of the shaft. can be reduced,
A rotor for a superconducting rotating electric machine that can obtain a stable superconducting state can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の第1実施例を説明するため
の図で、第1図はフレキシブルサポートの正面図、第2
図は超電導回転子の部分断面図、jIB図はフレキシブ
ルサポートとコイル取付は軸との位置関係を示す図、第
4図は本発明の第2実施例を示すフレキシブルサポート
の正面図、第5図乃至第8図は本発明の第3実施例を説
明するための図で、第5図はフレキシブルサポートの側
面図、第6図はその正面図、第7図はフレキシブルサポ
ートの正面図、第8図はフレキンプルサポートの正面図
、第9図乃至第12図は従来技術を説明するための図で
、第9図は超電導回転子の概略断面図、第10図はコイ
ル取付は軸の断面形状を示す図、第11図および第12
図は回転子の振動を低減するための従来技術を示す図で
ある。 1・・・常温ダンパ、2,3・・・回転軸、6・・・コ
イル取付は軸、7・・・超電導界磁コイル、8・・・ス
ロット、9・・・液体ヘリウム、16・・・輻射シール
ド、20・・・フレキシブルサポート、21・・・内輪
、22・・・外輪、23・・・スポーク。 出願人代理人 弁理士 鈴江武彦 第 図 第5図 第6 区 第7区 石8区 第3 区 第4区 1119図 第10図
1 to 3 are diagrams for explaining the first embodiment of the present invention, in which FIG. 1 is a front view of the flexible support, and FIG.
The figure is a partial sectional view of the superconducting rotor, the jIB figure is a diagram showing the positional relationship between the flexible support and the coil mounting shaft, Figure 4 is a front view of the flexible support showing the second embodiment of the present invention, and Figure 5 8 to 8 are diagrams for explaining the third embodiment of the present invention, in which FIG. 5 is a side view of the flexible support, FIG. 6 is a front view thereof, FIG. 7 is a front view of the flexible support, and FIG. The figure is a front view of the flexible pull support, Figures 9 to 12 are diagrams for explaining the conventional technology, Figure 9 is a schematic sectional view of a superconducting rotor, and Figure 10 shows the cross-sectional shape of the shaft for installing the coil. Figures 11 and 12 showing
The figure shows a conventional technique for reducing rotor vibration. 1... Normal temperature damper, 2, 3... Rotating shaft, 6... Coil mounting shaft, 7... Superconducting field coil, 8... Slot, 9... Liquid helium, 16...・Radiation shield, 20... Flexible support, 21... Inner ring, 22... Outer ring, 23... Spoke. Applicant's Representative Patent Attorney Takehiko Suzue Figure 5 Figure 6 Ward 7 Ward Ishi 8 Ward 3 Ward 4 1119 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 両端に回転軸部を有し真空容器を兼ねた常温ダンパと、
この常温ダンパ内に収納されたコイル取付け軸と、この
コイル取付け軸の表面に形成されたスロット内に収納さ
れ超電導界磁コイルを形成する超電導導体と、上記コイ
ル取付け軸を上記常温ダンパに対してフレキシブルに支
持するフレキシブルサポートとを有する超電導回転電機
の回転子において、上記フレキシブルサポートは上記コ
イル取付け軸の中心軸と直交する面に剛性の異なる2つ
の弾性主軸を有し、これらの弾性主軸のうち剛性の大き
い弾性主軸を上記コイル取付け軸のスロット側に配置し
、剛性の小さい弾性主軸を上記コイル取付け軸のスロッ
トが形成されていない側に配置したことを特徴とする超
電導回転電機の回転子。
A room-temperature damper that has rotating shafts at both ends and doubles as a vacuum container;
A coil mounting shaft housed in this room temperature damper, a superconducting conductor that is housed in a slot formed on the surface of this coil mounting shaft and forming a superconducting field coil, and a coil mounting shaft that is connected to the room temperature damper. In a rotor of a superconducting rotating electrical machine having a flexible support that supports the coil in a flexible manner, the flexible support has two elastic main axes having different rigidities in a plane perpendicular to the central axis of the coil mounting shaft, and one of these elastic main axes is A rotor for a superconducting rotating electrical machine, characterized in that an elastic main shaft with high rigidity is arranged on the slot side of the coil mounting shaft, and an elastic main shaft with low rigidity is arranged on the side of the coil mounting shaft where the slot is not formed.
JP2219942A 1990-08-23 1990-08-23 Rotor of superconducting rotary electric apparatus Pending JPH04105547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219942A JPH04105547A (en) 1990-08-23 1990-08-23 Rotor of superconducting rotary electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219942A JPH04105547A (en) 1990-08-23 1990-08-23 Rotor of superconducting rotary electric apparatus

Publications (1)

Publication Number Publication Date
JPH04105547A true JPH04105547A (en) 1992-04-07

Family

ID=16743446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219942A Pending JPH04105547A (en) 1990-08-23 1990-08-23 Rotor of superconducting rotary electric apparatus

Country Status (1)

Country Link
JP (1) JPH04105547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061147B2 (en) * 2001-08-30 2006-06-13 Siemens Aktiengesellschaft Superconducting electrical machines for use in navy ships

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061147B2 (en) * 2001-08-30 2006-06-13 Siemens Aktiengesellschaft Superconducting electrical machines for use in navy ships

Similar Documents

Publication Publication Date Title
US4786834A (en) Stator assembly for dynamoelectric machine
JPH04347565A (en) Structure vibration compensating motor device composed of rear coupled twin ac motor
JPH09508520A (en) Motor including permanent magnet rotor
WO2001028069A2 (en) Axial gap motor-generator for high speed operation
US9419480B2 (en) Rotor arrangement and electromechanical transducer having non-parallel permanent magnets
AU5956290A (en) Stator mounting arrangement
KR20120052322A (en) Arrangement for acoustic decoupling of a stator of an electric motor
JP2002199678A (en) High output rotor assembly
JP3762981B2 (en) Permanent magnet rotating electric machine
JPH0530689A (en) Supporting device for stator core
JP2002281698A (en) Stator of dynamo-electric machine and rotary electric machine using the stator
JPH04105547A (en) Rotor of superconducting rotary electric apparatus
JP4028183B2 (en) Rotating electric machine stator and rotating electric machine using the same
JP3543831B2 (en) Magnetic bearing device
JPS61196763A (en) Rotor of superconductive rotary electric machine
US6262506B1 (en) Stator for a rotating electrical machine having multiple control windings
JP2695613B2 (en) Brushless motor
JP2000197335A (en) Stepping motor
JPH08130847A (en) Motor
JP2001136696A (en) Coreless-coil motor
KR0140389Y1 (en) motor
JPS61210847A (en) Ac rotary electric machine
JPH0475456A (en) Plane brushless motor
JPS63287350A (en) Electrically-driven motor
JPH09269007A (en) Passive magnetic bearing