JPH0410531A - Vertical diffusion furnace - Google Patents

Vertical diffusion furnace

Info

Publication number
JPH0410531A
JPH0410531A JP11018290A JP11018290A JPH0410531A JP H0410531 A JPH0410531 A JP H0410531A JP 11018290 A JP11018290 A JP 11018290A JP 11018290 A JP11018290 A JP 11018290A JP H0410531 A JPH0410531 A JP H0410531A
Authority
JP
Japan
Prior art keywords
pipe
processing gas
furnace
tube
diffusion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11018290A
Other languages
Japanese (ja)
Other versions
JP2990670B2 (en
Inventor
Yoshio Ikegame
池亀 良雄
Akira Sekiya
関屋 亮
Akira Seki
関 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2110182A priority Critical patent/JP2990670B2/en
Publication of JPH0410531A publication Critical patent/JPH0410531A/en
Application granted granted Critical
Publication of JP2990670B2 publication Critical patent/JP2990670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the inside of the title vertical diffusion furnace to be kept in a high purity gas atmosphere by a method wherein a processing gas leading-in pipe is provided in the vertical direction from the bottom part to the topmost part in the processing space of the diffusion furnace; the length and inner diameter of the processing gas leading-in pipe exposed in the processing space specified; and a SiC film in specific thickness is formed on the inner and outer surfaces of the leading-in pipe. CONSTITUTION:A processing gas leading-in pipe 33 is provided in a processing space 8 of a diffusion furnace 10 so as to lead-in specific processing gas. The length of the processing gas leading-in pipe 33 exposed in the processing space 8 is 1000mm-1300mm. Besides, the inner and outer diameters of the pipe 33 are almost equalized respectively to be 5-20mm and 6-20mm extending over the whole length. Furthermore, a SiC film in thickness of 20-500mum is formed on both inner and outer surfaces by CVD(chemical vapor deposition) process. Finally, it is recommended that, as for the basic material of the processing gas leading-in pipe 33, the SiC film is formed into a high purity SiC pipe by the CVD process.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、半導体の熱処理工程に用いる縦型拡散炉に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a vertical diffusion furnace used in a heat treatment process for semiconductors.

従来の技術 従来、半導体の熱処理工程、例えば酸化、拡散、アニー
ル等の熱処理工程用に縦型拡散炉が開発されていた。縦
型拡散炉の特徴としては、温度分布が横型炉に比べて均
一なこと、ガスの流れが横型炉よりも良好でウェハ中の
膜厚分布精度が向上すること、S1ウエハが大口径化す
るに連れて横型炉での処理か困難であること等を挙げる
ことかできる。
BACKGROUND OF THE INVENTION In the past, vertical diffusion furnaces have been developed for semiconductor heat treatment processes, such as oxidation, diffusion, annealing, and the like. The characteristics of the vertical diffusion furnace are that the temperature distribution is more uniform than that of the horizontal furnace, that the gas flow is better than that of the horizontal furnace, which improves the accuracy of the film thickness distribution in the wafer, and that the S1 wafer has a larger diameter. However, it is difficult to process it in a horizontal furnace.

縦型拡散炉に使用されるライナーチューブとしては、当
初は石英ガラス製のものか主流であったが、石英ガラス
はヒータの輻射熱をそのまま通過させることから、均熱
管としてのSiCチューブの有効性が見回されつつある
。また、SiCチューブは高温状態のヒータから排出さ
れる金属蒸気(Na、Fe、Cu、AJ等)が炉芯管を
通過して処理空間を汚染することを防止する効果も持つ
Initially, liner tubes used in vertical diffusion furnaces were mainly made of quartz glass, but since quartz glass allows the radiant heat of the heater to pass through it, the effectiveness of SiC tubes as a soaking tube has increased. It's being looked around. The SiC tube also has the effect of preventing metal vapor (Na, Fe, Cu, AJ, etc.) discharged from the heater in a high temperature state from passing through the furnace core tube and contaminating the processing space.

しかし、単に均熱管としてSiCチューブを用いただけ
ては微量の金属蒸気の侵入は防ぎきれず改善が望まれて
いた。
However, simply using a SiC tube as a heat soaking tube cannot prevent trace amounts of metal vapor from entering, and improvements have been desired.

そこで、本出願人は、従来技術の問題点に鑑みて、特願
平1−165259号明細書において、均熱管と炉芯管
の間に金属の侵入を防止するためのガスを導入でき、し
かもその導入空間内を気密に保つことができる縦型拡散
炉を提案した。
Therefore, in view of the problems of the prior art, the applicant proposed in Japanese Patent Application No. 1-165259 that it is possible to introduce a gas between the soaking tube and the furnace core tube to prevent metal from entering. We proposed a vertical diffusion furnace that can keep the introduction space airtight.

発明が解決しようとする問題点 しかし、特願平1−165259号の拡散炉においては
、炉内に設ける処理ガス導入管が石英ガラスで作られて
いたため、微量の金属蒸気の侵入を防ぎきれないという
欠点があった。
Problems to be Solved by the Invention However, in the diffusion furnace of Japanese Patent Application No. 1-165259, the processing gas introduction tube installed in the furnace was made of quartz glass, so it was impossible to prevent trace amounts of metal vapor from entering. There was a drawback.

発明の目的 本発明は前述のような欠点を解消して、炉内をより高純
度のガス雰囲気に保持できるようにする縦型拡散炉を提
供することを目的としている。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a vertical diffusion furnace which eliminates the above-mentioned drawbacks and allows a higher purity gas atmosphere to be maintained in the furnace.

発明の要旨 前述の目的を達成するために、この発明は請求項1に記
載の縦型拡散炉を要旨としている。
SUMMARY OF THE INVENTION To achieve the above-mentioned object, the subject matter of the present invention is a vertical diffusion furnace according to claim 1.

問題点を解決するための手段 本発明の縦型拡散炉は、下方に開口した炉芯管と、その
外側に設けたヒータと、ヒータの外側に設けた断熱体と
を持つ縦型拡散炉において、拡散炉の処理空間の底部か
ら頂部まで垂直方向に処理ガス導入管を設け、処理空間
に露出した処理ガス導入管部分の長さを800〜150
0mmにし、処理ガス導入管の内径を5〜20mmにし
、さらに処理ガス導入管の内面及び外面にCVDにより
厚み20〜500μmのSiC膜を形成したことを特徴
とする拡散炉である。SiCの炉芯管の場合は均熱管を
必要としない。石英ガラスの炉芯管の場合には均熱管を
設けた方かよい。
Means for Solving the Problems The vertical diffusion furnace of the present invention is a vertical diffusion furnace having a furnace core tube opened downward, a heater provided on the outside of the furnace core tube, and a heat insulator provided on the outside of the heater. A processing gas introduction pipe is provided vertically from the bottom to the top of the processing space of the diffusion furnace, and the length of the processing gas introduction pipe exposed to the processing space is 800 to 150 mm.
0 mm, the inner diameter of the processing gas introduction tube is 5 to 20 mm, and a SiC film with a thickness of 20 to 500 μm is formed on the inner and outer surfaces of the processing gas introduction tube by CVD. In the case of a SiC furnace core tube, a soaking tube is not required. In the case of a quartz glass furnace core tube, it is better to install a heat equalizing tube.

作用効果 処理ガス導入管の内外面にCVDにより厚み20〜50
0μmのSiC膜を形成したため、表面の高純度化が達
成され、それに伴って、炉内の処理空間も高純度化か図
れる。
Effect: The inner and outer surfaces of the processing gas introduction pipe are coated with a thickness of 20 to 50 mm by CVD.
Since a 0 μm SiC film is formed, the surface can be highly purified, and accordingly, the processing space in the furnace can also be highly purified.

実  施  例 以下、図面を参照して本発明による縦型拡散炉の実施例
を説明する。
Embodiments Hereinafter, embodiments of the vertical diffusion furnace according to the present invention will be described with reference to the drawings.

第1図は縦型拡散炉10を示す概略図である。縦型拡散
炉10は全体的に円筒形状の炉芯管12(反応管又はプ
ロセスチューブとも呼ばれる)を備えている。炉芯管1
2は下方に開口していて、その開口から半導体ウェハ9
を出し入れする構成になっている。炉芯管12は石英ガ
ラスで構成してあり、その内部が処理空間8を形成して
いる。処理空間8にはウェハ保持部材28によって多数
の半導体ウェハ9か設置しである。
FIG. 1 is a schematic diagram showing a vertical diffusion furnace 10. As shown in FIG. The vertical diffusion furnace 10 includes a core tube 12 (also called a reaction tube or a process tube) that has a generally cylindrical shape. Furnace core tube 1
2 is opened downward, and the semiconductor wafer 9 is inserted through the opening.
It is configured to take in and out. The furnace core tube 12 is made of quartz glass, and the processing space 8 is formed inside thereof. A large number of semiconductor wafers 9 are installed in the processing space 8 using wafer holding members 28 .

処理空間内には処理カス導入管33が設けてあり、所定
の処理用カスを導入できる構成になっている。同様に処
理カス排出管34が設けてあり、処理用のガスを排出す
る構成になっている。
A processing waste introducing pipe 33 is provided in the processing space, and is configured to introduce a predetermined processing waste. Similarly, a processing waste discharge pipe 34 is provided to discharge processing gas.

処理ガス導入管33は処理空間に露出した部分の長さが
1000〜1300mmである。
The length of the portion of the processing gas introduction pipe 33 exposed to the processing space is 1000 to 1300 mm.

図示例では、この長さは1100mmになっている。ま
た、処理ガス導入管33の内径と外径は全長にわたって
ほぼ均一になっており、それぞれ内径は5〜20mmで
あり、外径は6〜22+nmである。図示例では、内径
は12mmになっており、外径は16mmになっている
In the illustrated example, this length is 1100 mm. Further, the inner diameter and outer diameter of the processing gas introduction pipe 33 are substantially uniform over the entire length, and the inner diameter is 5 to 20 mm and the outer diameter is 6 to 22+ nm, respectively. In the illustrated example, the inner diameter is 12 mm and the outer diameter is 16 mm.

さらに、処理ガス導入管33の内面と外面には、CVD
 (化学蒸着)によりSiC膜が形成しである。SiC
膜の厚みは20〜500μmであるが、最高の効果を得
るには50〜100μmにするのが好ましい。
Furthermore, CVD is applied to the inner and outer surfaces of the processing gas introduction pipe 33.
A SiC film is formed by (chemical vapor deposition). SiC
The thickness of the membrane is between 20 and 500 μm, preferably between 50 and 100 μm for best effectiveness.

CVDによるSiC膜の形成法の最適例は焼抜き法であ
る。たとえば、炭素棒又は管の外面にSiC膜を形成し
た後に炭素棒又は管を焼抜き、SiC管を得る。
The most suitable example of a method for forming a SiC film by CVD is a burning method. For example, after forming a SiC film on the outer surface of a carbon rod or tube, the carbon rod or tube is annealed to obtain a SiC tube.

なお、処理ガス導入管33の基材はCVDによるSiC
膜の成形による高純度なSiC管にするのが好ましい。
Note that the base material of the processing gas introduction pipe 33 is SiC made by CVD.
It is preferable to form a high-purity SiC tube by forming a membrane.

ウェハ保持部材28は複数の遮熱板24を持つ。また、
保持したウェハを鉛直軸を中心に回転させる構成になっ
ている。ウェハ保持部材28は炉蓋16に設置してあり
、炉蓋16はベース17に固定しである。ベース17の
一端にはナツト(図示せず)が固定しである。ナツトは
送りねじ18とかみ合っている。
The wafer holding member 28 has a plurality of heat shield plates 24. Also,
The structure is such that the held wafer is rotated around a vertical axis. The wafer holding member 28 is installed on the furnace lid 16, and the furnace lid 16 is fixed to the base 17. A nut (not shown) is fixed to one end of the base 17. The nut meshes with the feed screw 18.

送りねじ18が回転するとベース17は鉛直方向(矢印
C)に送られる。このように送りねじ18を回転するこ
とによりウェハの移動を行う。なお、送りねじは1本、
ガイドシャフトが1本設けてあり、第1図ではガイドシ
ャフト1本は前の送りねじの後ろに位置している。
When the feed screw 18 rotates, the base 17 is fed in the vertical direction (arrow C). By rotating the feed screw 18 in this manner, the wafer is moved. In addition, there is one feed screw,
A guide shaft is provided, which in FIG. 1 is located behind the front lead screw.

炉芯管12の外側には均熱管11が設けである。均熱管
11は全体的に円筒形状をしていて、下方に開口してい
る。均熱管11の上部には先細の湾曲部が設けてあり、
いわゆるR形状を呈している。この湾曲部は均熱管本体
と一体的に構成してもよいし、蓋として別に製造して嵌
合又は接着してもよい。ガスシール性を考慮した場合に
は、嵌合よりは接着型が望ましい。このように均熱管上
部をR形状にすることにより、フラット形状の場合より
耐熱衝撃性を向上できる。また、熱効率も向上できる。
A soaking tube 11 is provided outside the furnace core tube 12. The soaking tube 11 has an overall cylindrical shape and is open downward. A tapered curved part is provided at the upper part of the soaking tube 11,
It has a so-called R shape. This curved portion may be constructed integrally with the heat soaking tube body, or may be manufactured separately as a lid and fitted or bonded. When considering gas sealing properties, an adhesive type is preferable to a fitted type. By forming the upper part of the heat soaking tube into an R shape in this manner, thermal shock resistance can be improved compared to the case where the tube has a flat shape. Furthermore, thermal efficiency can also be improved.

均熱管11はSiCまたはSi含浸のSiCで構成する
。耐酸化性、ガス透過性等を考慮するとSi含浸のSi
Cが望ましい。
The soaking tube 11 is made of SiC or SiC impregnated with Si. Considering oxidation resistance, gas permeability, etc., Si impregnated with Si
C is preferable.

均熱管11の上部には、排気管20が設けである。排気
管20の端部にはフランジ21が設けである。このフラ
ンジ21にテフロン製のOリングを介してガス管(図示
せず)を接続できる。排気管20の外側には多数の冷却
フィン22が設置されている。
An exhaust pipe 20 is provided above the soaking tube 11. A flange 21 is provided at the end of the exhaust pipe 20. A gas pipe (not shown) can be connected to this flange 21 via a Teflon O-ring. A large number of cooling fins 22 are installed on the outside of the exhaust pipe 20.

均熱管11の下端部外周部にはステンレス製の架台15
が設けである。
A stainless steel pedestal 15 is attached to the outer periphery of the lower end of the soaking tube 11.
is the provision.

架台15の下にはステンレス製の部材29がネジ止めさ
れ設置しである。部材29の上には均熱管11が設置さ
れ、均熱管11と部材29の接触部分にはテフロン製の
0リング30が設けてあり、炉の気密性を高めている。
A stainless steel member 29 is screwed and installed under the pedestal 15. A soaking tube 11 is installed on the member 29, and an O-ring 30 made of Teflon is provided at the contact portion between the soaking tube 11 and the member 29 to improve the airtightness of the furnace.

部材29にはガス導入手段としてガス導入管23が設置
してあり、炉芯管と均熱管の間の空間26にガスを導入
する構成になっている(矢印A)。この実施例ではガス
導入管23が対向する2ケ所に設けである。ガス導入管
23によって導入されたガス、例えば塩酸ガスを含んだ
窒素ガスは均熱管11上部に設けた排気管20からガス
管(図示せず)を通して排出される(矢印B)。
A gas introduction pipe 23 is installed in the member 29 as a gas introduction means, and is configured to introduce gas into the space 26 between the furnace core tube and the soaking tube (arrow A). In this embodiment, gas introduction pipes 23 are provided at two opposing locations. The gas introduced by the gas introduction pipe 23, for example, nitrogen gas containing hydrochloric acid gas, is discharged from the exhaust pipe 20 provided above the soaking tube 11 through a gas pipe (not shown) (arrow B).

部材29と炉蓋16の間には、ステンレス製の部材25
が配置してあり部材29にネジ止めされている。部材2
9と部材25の間、部材25と炉蓋16の間にはテフロ
ン製のOリング31.19が設けてあり、炉の気密性を
高めている。
A stainless steel member 25 is provided between the member 29 and the furnace cover 16.
are arranged and screwed to the member 29. Part 2
O-rings 31 and 19 made of Teflon are provided between the member 9 and the member 25 and between the member 25 and the furnace lid 16 to improve the airtightness of the furnace.

部材25の上には、炉芯管12が設置され炉芯管12と
部材25の接触部分にはテフロン製のOリング31が設
けである。炉芯管のみ交換する場合には、部材25を部
材29に止めているネジをとり、炉蓋16とともに下方
へ移動させることにより交換できる。
A furnace core tube 12 is installed on the member 25, and an O-ring 31 made of Teflon is provided at the contact portion between the furnace core tube 12 and the member 25. If only the furnace core tube is to be replaced, it can be replaced by removing the screws fixing the member 25 to the member 29 and moving it downward together with the furnace lid 16.

架台15、部材29、部材25、及び炉蓋16は中空に
して、冷却する構造にしてもよい。
The pedestal 15, the member 29, the member 25, and the furnace lid 16 may be made hollow and configured to be cooled.

均熱管11の外側にはヒータ13が配置されている。ヒ
ータ13の外側には例えば断熱ファイバからなる断熱体
14か形成しである。
A heater 13 is arranged outside the soaking tube 11. A heat insulating body 14 made of, for example, heat insulating fiber is formed on the outside of the heater 13.

ガス流量は使用する条件によって調節できる。The gas flow rate can be adjusted depending on the conditions of use.

ガスを流す効果を明らかにするために、塩酸ガスを含ん
だ窒素ガスを51’/min流し、酸化処理を行った場
合とガスを何も流さず酸化処理を行った場合のシリコン
ウェハ酸化膜中のナトリウム、ニッケルの含有量を測定
した。酸化膜は約1000人(オングストローム)形成
した。その結果を第1表に示す。第1表から、炉芯管と
均熱管の間にガスを流すことにより、金属蒸気の侵入を
防ぐことができることが明らかになった。
In order to clarify the effect of gas flow, we investigated the inside of a silicon wafer oxide film when oxidation treatment was performed by flowing nitrogen gas containing hydrochloric acid gas at 51'/min and when oxidation treatment was performed without flowing any gas. The content of sodium and nickel was measured. An oxide film having a thickness of approximately 1000 angstroms was formed. The results are shown in Table 1. From Table 1, it is clear that the intrusion of metal vapor can be prevented by flowing gas between the furnace core tube and the soaking tube.

次に、放熱フィンの効果を明らかにするために、放熱フ
ィンを有するカス排気管とフィンを持たないガス管にお
けるフランジ端面における温度を測定した。その結果を
第2表に示す。第2表から、フィンを設けることにより
カス排気管におけるフランジ部の温度を大幅に低下でき
ることが明らかになった。
Next, in order to clarify the effect of the heat dissipation fins, the temperature at the flange end face of the waste exhaust pipe with heat dissipation fins and the gas pipe without fins was measured. The results are shown in Table 2. Table 2 reveals that the temperature of the flange portion of the waste exhaust pipe can be significantly reduced by providing the fins.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による縦型拡散炉の実施例を示す概略図
、第2図は第1図に示した炉においてウェハの出入れの
ために炉蓋やベースを下方に移動したところを示す概略
図である。 10・・・縦型拡散炉 12・・・炉芯管 11・・・均熱管 13・・・ヒータ 14・・・断熱体 23・・・ガス導入手段 20・・・ガス排気管 22・・・放熱フィン 第  1 収 代  理  人
Figure 1 is a schematic diagram showing an embodiment of a vertical diffusion furnace according to the present invention, and Figure 2 shows the furnace shown in Figure 1 with the furnace lid and base moved downward to take in and out wafers. It is a schematic diagram. 10...Vertical diffusion furnace 12...Furnace core tube 11...Soaking tube 13...Heater 14...Insulator 23...Gas introduction means 20...Gas exhaust pipe 22... Heat dissipation fin 1st collector

Claims (1)

【特許請求の範囲】[Claims]  下方に開口した炉芯管と、その外側に設けたヒータと
、ヒータの外側に設けた断熱体とを持つ縦型拡散炉にお
いて、拡散炉の処理空間の底部から頂部まで垂直方向に
処理ガス導入管を設け、処理空間に露出した処理ガス導
入管部分の長さを800〜1500mmにし、処理ガス
導入管の内径を5〜20mmにし、さらに処理ガス導入
管の内面及び外面にCVDにより厚み20〜500μm
のSiC膜を形成したことを特徴とする拡散炉。
In a vertical diffusion furnace that has a furnace core tube that opens downward, a heater installed outside the core tube, and a heat insulator installed outside the heater, processing gas is introduced vertically from the bottom to the top of the processing space of the diffusion furnace. A tube is provided, the length of the processing gas introduction pipe exposed to the processing space is set to 800 to 1500 mm, the inner diameter of the processing gas introduction pipe is set to 5 to 20 mm, and the inner and outer surfaces of the processing gas introduction pipe are coated with a thickness of 20 to 20 mm by CVD. 500μm
A diffusion furnace characterized by forming a SiC film.
JP2110182A 1990-04-27 1990-04-27 Gas inlet pipe for vertical semiconductor heat treatment furnace Expired - Fee Related JP2990670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110182A JP2990670B2 (en) 1990-04-27 1990-04-27 Gas inlet pipe for vertical semiconductor heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110182A JP2990670B2 (en) 1990-04-27 1990-04-27 Gas inlet pipe for vertical semiconductor heat treatment furnace

Publications (2)

Publication Number Publication Date
JPH0410531A true JPH0410531A (en) 1992-01-14
JP2990670B2 JP2990670B2 (en) 1999-12-13

Family

ID=14529125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110182A Expired - Fee Related JP2990670B2 (en) 1990-04-27 1990-04-27 Gas inlet pipe for vertical semiconductor heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2990670B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182967A (en) * 1998-12-15 2000-06-30 Sony Corp Method and device for vapor-phase growth
US6881295B2 (en) 2000-03-28 2005-04-19 Nec Electronics Corporation Air-tight vessel equipped with gas feeder uniformly supplying gaseous component around plural wafers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348130A (en) * 1976-10-13 1978-05-01 Toyota Motor Corp Spark condition detecting method and device
JPS5490966A (en) * 1977-11-30 1979-07-19 Toshiba Ceramics Co Siliconncontained silicon carbide reactive tube
JPS54130876A (en) * 1978-04-03 1979-10-11 Cho Lsi Gijutsu Kenkyu Kumiai Method of heating semiconductor
JPS62272525A (en) * 1986-05-21 1987-11-26 Hitachi Ltd Heat treating apparatus
JPH0235436U (en) * 1988-08-29 1990-03-07

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348130A (en) * 1976-10-13 1978-05-01 Toyota Motor Corp Spark condition detecting method and device
JPS5490966A (en) * 1977-11-30 1979-07-19 Toshiba Ceramics Co Siliconncontained silicon carbide reactive tube
JPS54130876A (en) * 1978-04-03 1979-10-11 Cho Lsi Gijutsu Kenkyu Kumiai Method of heating semiconductor
JPS62272525A (en) * 1986-05-21 1987-11-26 Hitachi Ltd Heat treating apparatus
JPH0235436U (en) * 1988-08-29 1990-03-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182967A (en) * 1998-12-15 2000-06-30 Sony Corp Method and device for vapor-phase growth
US6881295B2 (en) 2000-03-28 2005-04-19 Nec Electronics Corporation Air-tight vessel equipped with gas feeder uniformly supplying gaseous component around plural wafers

Also Published As

Publication number Publication date
JP2990670B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
EP0393809B1 (en) Pressure resistant thermal reactor system for semiconductor processing
US5119541A (en) Wafer succeptor apparatus
US5587019A (en) Apparatus for use in epitaxial crystal growth
JPH0218379A (en) Device for pulling up semiconductor single crystal
JPH0410531A (en) Vertical diffusion furnace
JPH0332020A (en) Vertical diffusing furnace
JPS6224630A (en) Formation of thermal oxidation film and device therefor
JPH0658884B2 (en) Vapor phase epitaxial growth system
JPH03291917A (en) Heat-treating equipment
JPH0758037A (en) Heat treatment apparatus for semiconductor wafer
JPS63137416A (en) Vacuum heat insulating furnace
JPH0193130A (en) Vertical furnace
JP3029953B2 (en) Semiconductor wafer heat treatment equipment
JPH03164688A (en) Vertical heat treatment device
JP2008187067A (en) Heat treatment equipment, heat insulation vacuum buffer, and heat insulation board
Osgood et al. Simple refractory metal oven design of high temperature uniformity suitable for operation in ultrahigh vacuum
JPH0519949Y2 (en)
JP2001093841A (en) Apparatus for thermally treating at high temperature and under high vacuum
JPS60113921A (en) Method for vapor-phase reaction and device thereof
JPH1062069A (en) High temperature heater for rod shaped work
JPH01130523A (en) Vertical furnace for heat-treating semiconductor
JPS61294826A (en) Low pressure cvd apparatus
JPS60153116A (en) Vertical diffusion furnace type vapor growth apparatus
JPH03126694A (en) Gas phase reactor
JP2001007036A (en) Furnace of thermally treating semiconductor and method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees