JPH04105083A - Road condition detecting device - Google Patents

Road condition detecting device

Info

Publication number
JPH04105083A
JPH04105083A JP22467890A JP22467890A JPH04105083A JP H04105083 A JPH04105083 A JP H04105083A JP 22467890 A JP22467890 A JP 22467890A JP 22467890 A JP22467890 A JP 22467890A JP H04105083 A JPH04105083 A JP H04105083A
Authority
JP
Japan
Prior art keywords
road surface
road
waves
wave
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22467890A
Other languages
Japanese (ja)
Inventor
Toshimi Okazaki
岡崎 俊実
Seiji Okada
誠二 岡田
Yoriichi Tsuji
辻 頼一
Hajime Yamane
山根 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22467890A priority Critical patent/JPH04105083A/en
Publication of JPH04105083A publication Critical patent/JPH04105083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)

Abstract

PURPOSE:To enable a detectable road surface roughness range to be widely and accurately detected by transmitting an ultrasonic wave to a road, detecting the intensity of an irregular reflection wave received from the road and detecting a road condition on the basis of the detected wave intensity. CONSTITUTION:A transmitter 21 sends an ultrasonic wave having the prescribed frequency to a road 200 on the basis of an electrical signal having the prescribed frequency generated with an ultrasonic wave supply source 10. A receiver 22 is so positioned as to be capable of receiving irregular reflection waves, among reflection waves generated due to the aforesaid wave transmission. The received ultrasonic waves are converted into electrical signals and the signals amplified in an amplifier circuit 31 are detected in an AM detection circuit 32, thereby obtaining detection signals with the amplitude components thereof taken out. Thereafter, a high frequency components are eliminated from the signals in a low pass filter circuit 33, and a road condition detecting signal is outputted. Furthermore, a direction for the transmitter 21 to send waves to the road 200, another direction for the receiver 22 to receive the irregular reflection waves from the road 200 and a vehicle travel direction as shown by an arrow V are so set as to form an angle of approximately 90 degrees, thereby eliminating an error component attributable a Doppler effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は路面状態検出装置、特に超音波を利用した路面
状態検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a road surface condition detection device, and particularly to a road surface condition detection device using ultrasonic waves.

〔従来の技術〕[Conventional technology]

自動車の走行制御を行う上で、現在走行中の路面の状態
は、重要な制御パラメータとなる。路面状態を表現する
物理量としては、通常、路面の凹凸の程度、すなわち路
面粗さを定量的に示した値か用いられている。
When controlling the driving of a vehicle, the condition of the road surface on which the vehicle is currently traveling is an important control parameter. As a physical quantity expressing the road surface condition, a value that quantitatively indicates the degree of unevenness of the road surface, that is, the roughness of the road surface is usually used.

このような路面状態を検出する装置として、般に、2と
おりの装置か用いられている。第1の装置は、超音波パ
ルスを利用した装置であり、超音波パルスを路面に垂直
な方向から発射し、路面からの反射パルスを受信する。
Generally, two types of devices are used to detect such road surface conditions. The first device is a device that uses ultrasonic pulses, which emits ultrasonic pulses from a direction perpendicular to the road surface and receives reflected pulses from the road surface.

そしてこのパルスの往復時間を測定することにより、車
両と路面との距離を求めるものである。路面の凹凸は、
路面との間の距離の微小変化として検出される。第2の
装置は、超音波をパルスではなく連続波として路面に垂
直な方向から発射し、路面からの反射波を受信する。そ
して、この反射波の強度に基づいて路面の凹凸に関する
情報を得ようとするものである。この場合、路面の凹凸
が少なく滑らかになるほど、反射波の強度は強くなる。
By measuring the round trip time of this pulse, the distance between the vehicle and the road surface is determined. The unevenness of the road surface is
It is detected as a minute change in the distance between the vehicle and the road surface. The second device emits ultrasonic waves as continuous waves instead of pulses from a direction perpendicular to the road surface, and receives reflected waves from the road surface. Then, information regarding the unevenness of the road surface is obtained based on the intensity of this reflected wave. In this case, the less uneven the road surface is, the smoother it is, the stronger the reflected waves will be.

この原理による検出装置は、たとえば特開昭62−12
6377号公報に開示されている。
A detection device based on this principle is known, for example, from Japanese Patent Application Laid-Open No. 62-12
It is disclosed in Japanese Patent No. 6377.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述の第1の装置には、自動車の振動に
より車体と路面との間の距離が変化するため、この車両
振動の影響かそのまま誤差として現れてしまうという問
題がある。これに対し、前述の第2の装置では、車体と
路面との距離を検出しているのではないので、車体振動
の影響は受けにくい。ところか、反射波の強度により路
面状態を検出するという原理を用いると、検出可能な路
面粗さの範囲か制限されるという別な問題が生じる。こ
のため、凹凸が激しく、車体に振動を与えるような粗い
路面についての路面状態検出は、この第2の装置で行う
ことはできない。
However, the above-mentioned first device has a problem in that the distance between the vehicle body and the road surface changes due to the vibrations of the vehicle, so the influence of the vehicle vibrations directly appears as an error. On the other hand, the second device described above does not detect the distance between the vehicle body and the road surface, so it is less susceptible to the influence of vehicle body vibrations. However, if the principle of detecting road surface conditions based on the intensity of reflected waves is used, another problem arises in that the range of detectable road surface roughness is limited. For this reason, the second device cannot detect the road surface condition of a rough road surface that is highly uneven and causes vibrations to the vehicle body.

そこで本発明は、検出可能な路面粗さの範囲がより広く
、しかも正確な検出を行うことができる路面状態検出装
置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a road surface condition detection device that can detect a wider range of road surface roughness and can perform accurate detection.

〔課題を解決するための手段〕 (1)  本願節1の発明は、路面状態検出装置におい
て、路面に向けて超音波を送信する送信手段と、路面か
ら乱反射されてくる超音波を受信する受信手段と、受信
した乱反射波の強度を検出する検出手段と、を設け、こ
の強度に基づいて路面状態を検出するようにしたもので
ある。
[Means for Solving the Problems] (1) The invention of Section 1 of the present application provides a road surface condition detection device that includes a transmitting means for transmitting ultrasonic waves toward the road surface, and a receiver for receiving the ultrasonic waves diffusely reflected from the road surface. and a detection means for detecting the intensity of the received diffusely reflected wave, and the road surface condition is detected based on this intensity.

(2)  本願節2の発明は、上述の第1の発明に係る
路面状態検出装置において、送信手段が車両の進行方向
にほぼ直交する方向に超音波を送信し、受信手段が車両
の進行方向にほぼ直交する方向からの超音波を受信する
ようにしたものである。
(2) The invention of Section 2 of the present application is the road surface condition detection device according to the first invention, in which the transmitting means transmits ultrasonic waves in a direction substantially perpendicular to the traveling direction of the vehicle, and the receiving means transmits ultrasonic waves in the traveling direction of the vehicle. It is designed to receive ultrasonic waves from a direction substantially perpendicular to the direction.

〔作 用〕[For production]

路面に超音波を発射した場合、路面には反射波と乱反射
波(散乱波)とか生じる。両者を明確に区別するため、
以下本明細書では、通常の反射波を正反射波と呼ぶこと
にする。上述した従来装置は、いずれも正反射波を用い
て路面状態の検出を行っている。すなわち、路面の所定
部分に超音波を送信し、このときの路面に対する入射角
と等しい角度で反射する反射波(正反射波)を受信して
路面状態の検出を行っている。本願発明者は、正反射波
ではなく乱反射波を用いても路面状態の検出が可能であ
り、しかも、乱反射波を用いた方か検出可能な路面粗さ
の範囲がより広くなる事実を見出た′したのである。
When ultrasonic waves are emitted onto a road surface, reflected waves and diffusely reflected waves (scattered waves) are generated on the road surface. To clearly distinguish between the two,
Hereinafter, in this specification, a normal reflected wave will be referred to as a regular reflected wave. All of the conventional devices described above detect road surface conditions using specularly reflected waves. That is, the road surface condition is detected by transmitting ultrasonic waves to a predetermined portion of the road surface and receiving reflected waves (regularly reflected waves) that are reflected at an angle equal to the incident angle with respect to the road surface at this time. The inventor of the present application has discovered that it is possible to detect road surface conditions using diffusely reflected waves instead of specularly reflected waves, and that the range of detectable road surface roughness is wider when using diffusely reflected waves. I did it.

前述のように、路面に超音波を発射すると、路面には正
反射波と乱反射波とが生じる。正反射波と乱反射波の発
生割合は、路面の凹凸の程度、すなわち路面粗さにより
定まる。路面が鏡面のような滑らかな面であれば、はと
んどが正反射波となる。一方、超音波の波長のオーダー
の凹凸が多数形成されたいわゆるざらざらの面であれば
、はとんどが乱反射となる。したがって、正反射波の割
合が多ければ路面の粗さは小であり、乱反射波の割合が
多ければ路面の粗さは大であると判断できる。このよう
に、原理的には正反射波の強度を測定する方法でも、乱
反射波の強度を測定する方法でも、いずれの方法でも路
面状態を検出することが可能である。ただ、正反射波の
方が指向性をもっているため、従来は正反射波の強度に
より検出を行うことが常識とされていた。
As mentioned above, when ultrasonic waves are emitted onto the road surface, specularly reflected waves and diffusely reflected waves are generated on the road surface. The generation ratio of regularly reflected waves and diffusely reflected waves is determined by the degree of unevenness of the road surface, that is, the roughness of the road surface. If the road surface is smooth like a mirror, most of the waves will be specularly reflected. On the other hand, if the surface is so-called a rough surface with many irregularities on the order of the wavelength of the ultrasonic wave, most of the reflection will be diffused. Therefore, it can be determined that the roughness of the road surface is low if the ratio of specularly reflected waves is high, and the roughness of the road surface is high if the ratio of diffusely reflected waves is high. In this way, in principle, it is possible to detect the road surface condition using either method of measuring the intensity of specularly reflected waves or method of measuring the intensity of diffusely reflected waves. However, since specularly reflected waves have more directivity, conventionally it was common sense to perform detection based on the intensity of specularly reflected waves.

本願節1の発明は、この常識に反して、乱反射波の強度
により路面状態の検出を行うことにより、検出可能な路
面粗さの範囲を広げたしのである。
Contrary to this common sense, the invention of Section 1 of the present application expands the range of detectable road surface roughness by detecting the road surface condition based on the intensity of diffusely reflected waves.

本願節2の発明は、この第1の発明のもつ潜在的な誤差
を除去するためになされたものである。
The invention of Section 2 of the present application was made in order to eliminate the potential errors of the first invention.

車両の走行中、乱反射波は車速に応じたドツプラシフト
を受け、送信時の周波数とは異なる周波数で受信される
。ところが、一般に超音波の受信器(超音波を電気信号
に変換するトランスデユーサ)は、周波数によって受信
感度が変化する。このため、乱反射波の受信感度は車速
によって変化するものとなり、この受信感度の変動分が
潜在的な誤差となる。そこで、本願節2の発明では、車
両の進行方向にほぼ直交する方向に超音波を送信し、同
方向からの超音波を受信するようにしている。
While the vehicle is running, the diffusely reflected waves undergo a Doppler shift depending on the vehicle speed, and are received at a frequency different from the frequency at which they were transmitted. However, in general, the receiving sensitivity of an ultrasonic receiver (a transducer that converts ultrasonic waves into an electrical signal) changes depending on the frequency. Therefore, the reception sensitivity of the diffusely reflected wave changes depending on the vehicle speed, and this variation in reception sensitivity becomes a potential error. Therefore, in the invention of Section 2 of the present application, ultrasonic waves are transmitted in a direction substantially perpendicular to the traveling direction of the vehicle, and ultrasonic waves from the same direction are received.

こうすれば、受信周波数はドツプラシフトを受けること
なく常に一定となり、潜在的誤差が除去される。
In this way, the receiving frequency is always constant without undergoing Doppler shift, and potential errors are eliminated.

〔実施例〕                。〔Example〕 .

以下、本発明を図示する実施例に基づいて説明する。第
1図は本発明の一実施例に係る路面状態検出装置の構成
を示すブロック図である。ここに図示する構成要素は、
すべて車両100に搭載されることになる。超音波発生
源10は、所定の周波数の電気信号を発生する装置であ
り、この電気信号に基づいて、送信器21は路面200
にこの所定周波数の超音波を送信する。路面200上で
は、この超音波に基づいて、正反射波と乱反射波が生じ
る。受信器22は、このうちの乱反射波を受けるのに適
当な位置に配置される。一般に、乱反射波は半球状に路
面から広がってゆくので、受信器22の配置には、正反
射波を受けるときのような厳密な方向性は必要ない。本
実施例では、第1−図に示すように、路面200に対し
て角度φとなるような向きに超音波を送信し、同し角度
φの向きて戻ってくる乱反射波を受信するような角度に
送信器21および受信器22を取り付けている。
The present invention will be described below based on illustrated embodiments. FIG. 1 is a block diagram showing the configuration of a road surface condition detection device according to an embodiment of the present invention. The components illustrated here are:
All of them will be mounted on the vehicle 100. The ultrasonic wave source 10 is a device that generates an electrical signal of a predetermined frequency, and based on this electrical signal, the transmitter 21 transmits the signal to the road surface 200.
This ultrasonic wave of a predetermined frequency is transmitted to. On the road surface 200, specularly reflected waves and diffusely reflected waves are generated based on this ultrasonic wave. The receiver 22 is placed at an appropriate position to receive the diffusely reflected waves. In general, the diffusely reflected waves spread out from the road surface in a hemispherical manner, so the placement of the receiver 22 does not require strict directionality, unlike when receiving specularly reflected waves. In this embodiment, as shown in Figure 1, ultrasonic waves are transmitted in a direction that forms an angle φ with respect to the road surface 200, and diffusely reflected waves that return in a direction that is oriented at the same angle φ are received. A transmitter 21 and a receiver 22 are attached at an angle.

受信器22は、受信した超音波を電気信号に変換し、こ
れを増幅回路31に与える。増幅回路31て増幅された
信号は、更にAM検波回路32こよってAM検波される
。すなわち、信号の振幅成分を取り出した検波信号か得
られる。更に、ローパスフィルタ回路33により、この
検波信号から風などの影響による高周波成分が除去され
、路面状態検出信号か出力される。こうして出力された
路面状態検出信号は、路面粗さをそのまま示す信号とな
る。
Receiver 22 converts the received ultrasonic waves into electrical signals and provides them to amplifier circuit 31 . The signal amplified by the amplifier circuit 31 is further subjected to AM detection by the AM detection circuit 32. That is, a detected signal obtained by extracting the amplitude component of the signal can be obtained. Furthermore, a low-pass filter circuit 33 removes high frequency components due to the influence of wind and the like from this detection signal, and outputs a road surface condition detection signal. The road surface condition detection signal output in this way becomes a signal directly indicating the road surface roughness.

ここで、このように検出された信号強度と路面粗さとの
関係をみると、第2図および第3図に示すグラフのよう
になる。第2図は、従来装置において用いられていた正
反射波の信号強度と路面粗さとの関係を示すグラフであ
り、第3図は、本装置において用いられる乱反射波の信
号強度と路面粗さとの関係を示すグラフである。正反射
波の信号強度は、第2図に示すように、路面粗さが粗く
なるに従って減衰するか、乱反射波の信号強度は、第3
図に示すように、路面粗さが粗くなるに従って増加する
。このように、正反射波も乱反射波もいずれも路面粗さ
に関する情報を含んでおり、どちらを検出しても路面粗
さの情報を得ることができるが、従来装置では、指向性
の良い正反射波か用いられていた。ところが、本願発明
者は、乱反射波を用いた検出では、路面粗さの検出範囲
が広がることを認識したのである。いま、超音波の送受
信器や検出回路などの処理系の雑音レヘルをIoとした
ときの路面粗さの検出範囲は、正反射波を用いた場合は
第2図に示すように範囲aとなるが、乱反射波を用いた
場合は第3図に示すように範囲すとなる。具体的な例で
この範囲を示すと、正反射波を用いた場合は、微小な凹
凸をもった路面の粗さを検出することは可能であるか、
車両に振動を与えるほどの大きな凹凸になると検出する
ことができなくなる。これに対して乱反射波を用いた場
合は、検出可能範囲すは、スリップする程度の凹凸から
車両に振動を与えるほどの大きな凹凸に至るまで広がる
。一般に、路面粗さの下限値は、スリップする程度の凹
凸まで検出することができれば十分であり、車両搭載用
の路面状態検出装置としては、乱反射波を用いた方が適
当であることかわかる。
Here, the relationship between the signal strength detected in this way and the road surface roughness is as shown in the graphs shown in FIGS. 2 and 3. Figure 2 is a graph showing the relationship between the signal strength of the specularly reflected wave used in the conventional device and road surface roughness, and Figure 3 is a graph showing the relationship between the signal strength of the diffusely reflected wave used in this device and the road surface roughness. It is a graph showing a relationship. As shown in Figure 2, the signal strength of the specularly reflected wave attenuates as the road surface becomes rougher, or the signal strength of the diffusely reflected wave decreases as the road surface becomes rougher.
As shown in the figure, it increases as the road surface roughness becomes rougher. In this way, both specularly reflected waves and diffusely reflected waves contain information regarding road surface roughness, and information on road surface roughness can be obtained by detecting either of them. Reflected waves were used. However, the inventor of the present application recognized that detection using diffusely reflected waves expands the detection range of road surface roughness. Now, when the noise level of the processing system such as the ultrasonic transmitter/receiver and the detection circuit is taken as Io, the detection range of road surface roughness is range a as shown in Figure 2 when specularly reflected waves are used. However, if diffusely reflected waves are used, the range will be as shown in FIG. To illustrate this range with a specific example, if specular reflection waves are used, is it possible to detect the roughness of a road surface with minute irregularities?
If the unevenness becomes large enough to cause vibrations to the vehicle, detection becomes impossible. On the other hand, when diffusely reflected waves are used, the detectable range expands from irregularities that cause the vehicle to slip to irregularities that are large enough to cause vibrations to the vehicle. In general, the lower limit of road surface roughness is sufficient if it can detect even irregularities to the extent of slipping, and it can be seen that it is appropriate to use diffusely reflected waves as a road surface condition detection device mounted on a vehicle.

このように、乱反射波を用いると、正反射波を用いた場
合よりも、路面粗さの検出範囲か広がるというメリット
が得られる。ところが、車両走行中に乱反射波を用いた
検出を行うと、そこには潜在的な誤差要因か含まれるこ
とになる。これは、車両の走行により、乱反射波がドツ
プラ効果の影響を受けるためである。正反射波を用いた
従来装置では、送信波と反射波との間でドツプラ効果の
影響が相殺されるため、車両の走行は誤差要因とはなら
ない。ところか、乱反射波の周波数はドツプラ効果によ
り車速に応じた量だけ変位することになる。しかも、受
信器22の受信感度は、第4図に示すグラフのように、
受信周波数によって異なる。したかって、乱反射波の周
波数が車速により変化すると、受信器22の受信感度が
周波数によって異なるため、最終的に検出される乱反射
波の信号強度は、車速により変動するものとなる。
In this way, the use of diffusely reflected waves has the advantage that the detection range of road surface roughness is wider than when specularly reflected waves are used. However, if detection using diffusely reflected waves is performed while the vehicle is running, it will include potential error factors. This is because the diffusely reflected waves are affected by the Doppler effect as the vehicle travels. In the conventional device using specularly reflected waves, the influence of the Doppler effect is canceled out between the transmitted wave and the reflected wave, so the running of the vehicle does not become an error factor. However, due to the Doppler effect, the frequency of the diffusely reflected wave is displaced by an amount corresponding to the vehicle speed. Moreover, the receiving sensitivity of the receiver 22 is as shown in the graph shown in FIG.
Depends on receiving frequency. Therefore, when the frequency of the diffusely reflected wave changes depending on the vehicle speed, the reception sensitivity of the receiver 22 varies depending on the frequency, so the signal strength of the diffusely reflected wave that is finally detected varies depending on the vehicle speed.

このような潜在的な誤差要因を取り除くため、本実施例
では第5図に示すような向きに送信器21および受信器
22を取り付けている。第5図は、車両100を上方か
ら見た図であり、矢印Vの方向が車両の走行方向である
。送信器21が路面200に向けて超音波を送信゛する
方向および受信器22が路面200からの乱反射波を受
信する方向と、矢印Vで示す車両の走行方向とのなす角
をθとすると、θ−906となるように設定するのであ
る。すなわち、送信波および乱反射波は、第1図に示す
ように車両前方から見ると、路面200に対して任意の
角度φをとるが、第5図に示すように車両上方から見る
と、走行方向に対して直角になる。別言すれば、送信波
および乱反射波の伝播路は走行方向に直交する平面内に
含まれることになる。このような設定を行えば、送信波
および乱反射波の伝播方向についての車速成分は零とな
り、乱反射波はドツプラシフトを受けることなく、送信
波と同じ常に一定の周波数で受信されることになる。し
たがって、ドツプラ効果に起因する誤差成分を除去する
ことができる。
In order to eliminate such potential error factors, in this embodiment, the transmitter 21 and receiver 22 are mounted in the orientation shown in FIG. FIG. 5 is a view of the vehicle 100 viewed from above, and the direction of arrow V is the traveling direction of the vehicle. Let θ be the angle formed by the direction in which the transmitter 21 transmits ultrasonic waves toward the road surface 200, the direction in which the receiver 22 receives diffusely reflected waves from the road surface 200, and the vehicle traveling direction indicated by arrow V. It is set so that it becomes θ-906. That is, the transmitted wave and the diffusely reflected wave take an arbitrary angle φ with respect to the road surface 200 when viewed from the front of the vehicle as shown in FIG. 1, but when viewed from above the vehicle as shown in FIG. be at right angles to. In other words, the propagation paths of the transmitted waves and the diffusely reflected waves are included in a plane perpendicular to the traveling direction. If such a setting is made, the vehicle speed component in the propagation direction of the transmitted wave and the diffusely reflected wave becomes zero, and the diffusely reflected wave is received at the same constant frequency as the transmitted wave without undergoing Doppler shift. Therefore, error components caused by the Doppler effect can be removed.

第6図および第7図は、ドツプラ効果に起因する誤差を
、上述の方法で除去した結果を示すグラフである。すな
わち、送信器21か路面200に向けて超音波を送信す
る方向および受信器22が路面200からの乱反射波を
受信する方向を、車両の走行方向と同じ向きにした場合
(θ=0°)の測定結果(第6図)と、車両の走行方向
に直交した向きにした場合(θ−90’)の測定結果(
第7図)と、を示すグラフである。θ−0°の場合は、
車速の変動とともに乱反射波の信号強度も変動している
が、θ−90’の場合は、車速の変動の影響を受けずに
信号強度はほぼ一定である。
FIGS. 6 and 7 are graphs showing the results of removing errors caused by the Doppler effect using the method described above. That is, when the direction in which the transmitter 21 transmits ultrasonic waves toward the road surface 200 and the direction in which the receiver 22 receives diffusely reflected waves from the road surface 200 are set in the same direction as the vehicle traveling direction (θ=0°). The measurement results (Fig. 6) and the measurement results when the vehicle is oriented perpendicular to the running direction (θ-90') (
FIG. 7) is a graph showing. In the case of θ-0°,
The signal strength of the diffusely reflected wave also fluctuates as the vehicle speed fluctuates, but in the case of θ-90', the signal strength is almost constant without being affected by the vehicle speed fluctuation.

このように、θ−90’ となるような設定を行うこと
により正確な路面状態の検出が可能になる。
In this way, by setting θ-90', it becomes possible to accurately detect the road surface condition.

なお、実用上は、必ずしも正確にθ−906に設定する
必要はなく、潜在的な誤差か許容範囲内となる程度に抑
えられるような設定をすればよい。
Note that, in practice, it is not necessary to set exactly θ-906, but it is sufficient to set it so that the potential error is suppressed to within an allowable range.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本願発明によれば、乱反射波の強度により
路面状態の検出を行うようにしたため、検出可能な路面
粗さの範囲を広げることができる。
As described above, according to the present invention, since the road surface condition is detected based on the intensity of the diffusely reflected waves, the range of detectable road surface roughness can be expanded.

また、車両の進行方向にほぼ直交する方向に超音波を送
信し、同方向からの超音波を受信するようにしたため、
受信周波数はドツプラシフトを受けることなく常に一定
となり、乱反射波を用いた測定についての潜在的誤差が
除去される。
In addition, ultrasonic waves are transmitted in a direction almost perpendicular to the direction of travel of the vehicle, and ultrasonic waves from the same direction are received.
The receiving frequency is always constant without undergoing Doppler shift, and potential errors associated with measurements using diffusely reflected waves are eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る路面状態検出装置の構
成を示すブロック図、第2図は正反射波の信号強度と路
面粗さとの関係を示すグラフ、第3図は乱反射波の信号
強度と路面粗さとの関係を示すグラフ、第4図は超音波
受信器の受信感度を示すグラフ、第5図は本発明に係る
路面状態検出装置における送信器および受信器の取り付
は向きを示す上面図、第6図および第7図は送信器およ
び受信器の取り付は向きを示す角度を、それぞれθ−0
″およびθ−90″としたときの検出信号強度に対する
車速の影響を示すグラフである。 路面用さ  0絹い 漉2囚 1@面粗さ 第3図
FIG. 1 is a block diagram showing the configuration of a road surface condition detection device according to an embodiment of the present invention, FIG. 2 is a graph showing the relationship between the signal strength of specularly reflected waves and road surface roughness, and FIG. 3 is a graph showing the relationship between the signal strength of specularly reflected waves and road surface roughness. A graph showing the relationship between signal strength and road surface roughness, Fig. 4 is a graph showing the reception sensitivity of the ultrasonic receiver, and Fig. 5 shows the orientation of the transmitter and receiver in the road surface condition detection device according to the present invention. The top view, Figures 6 and 7 show the mounting angles of the transmitter and receiver at θ-0, respectively.
9 is a graph showing the influence of vehicle speed on the detection signal strength when `` and θ-90''. For road surfaces 0 silk 2 1 @ surface roughness figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)路面に向けて超音波を送信する送信手段と、路面
から乱反射されてくる超音波を受信する受信手段と、受
信した乱反射波の強度を検出する検出手段と、を備え、
前記強度に基づいて路面状態を検出することを特徴とす
る路面状態検出装置。
(1) comprising a transmitting means for transmitting ultrasonic waves toward the road surface, a receiving means for receiving the ultrasonic waves diffusely reflected from the road surface, and a detecting means for detecting the intensity of the received diffusely reflected waves,
A road surface condition detection device that detects a road surface condition based on the intensity.
(2)請求項1に記載の路面状態検出装置において、送
信手段が車両の進行方向にほぼ直交する方向に超音波を
送信し、受信手段が車両の進行方向にほぼ直交する方向
からの超音波を受信するように、それぞれを設けたこと
を特徴とする路面状態検出装置。
(2) In the road surface condition detection device according to claim 1, the transmitting means transmits ultrasonic waves in a direction substantially perpendicular to the direction of travel of the vehicle, and the receiving means transmits ultrasonic waves from a direction substantially perpendicular to the direction of travel of the vehicle. A road surface condition detection device characterized in that each is provided so as to receive the following information.
JP22467890A 1990-08-27 1990-08-27 Road condition detecting device Pending JPH04105083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22467890A JPH04105083A (en) 1990-08-27 1990-08-27 Road condition detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22467890A JPH04105083A (en) 1990-08-27 1990-08-27 Road condition detecting device

Publications (1)

Publication Number Publication Date
JPH04105083A true JPH04105083A (en) 1992-04-07

Family

ID=16817510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22467890A Pending JPH04105083A (en) 1990-08-27 1990-08-27 Road condition detecting device

Country Status (1)

Country Link
JP (1) JPH04105083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428359A (en) * 1992-10-20 1995-06-27 Toyota Jidosha Kabushiki Kaisha Doppler-effect vehicle speed sensor using different speed determining rules depending upon receiver output
US6909893B2 (en) * 2000-03-15 2005-06-21 Denso Corporation Wireless communication system, fixed base station and mobile terminal station

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428359A (en) * 1992-10-20 1995-06-27 Toyota Jidosha Kabushiki Kaisha Doppler-effect vehicle speed sensor using different speed determining rules depending upon receiver output
EP0738901A2 (en) * 1992-10-20 1996-10-23 Toyota Jidosha Kabushiki Kaisha Doppler-effect vehicle speed sensor using different speed determining rules depending upon receiver output
EP0738901A3 (en) * 1992-10-20 1996-11-20 Toyota Jidosha Kabushiki Kaisha Doppler-effect vehicle speed sensor using different speed determining rules depending upon receiver output
US6909893B2 (en) * 2000-03-15 2005-06-21 Denso Corporation Wireless communication system, fixed base station and mobile terminal station

Similar Documents

Publication Publication Date Title
US11885874B2 (en) Acoustic distance measuring circuit and method for low frequency modulated (LFM) chirp signals
US5922960A (en) Ultrasonic material constant measuring system
JPH04105083A (en) Road condition detecting device
JPH0354409A (en) Ultrasonic wave detector
JPS6291876A (en) Mutual intervention preventing device for ultrasonic sensor
JP2775011B2 (en) Flow detector
GB2284053A (en) Detecting presence or absence of liquid in a vessel
JPS5810691B2 (en) Ultrasonic measuring device
JPH04105082A (en) Road condition detecting device
JPH04120488A (en) Speed detector
JPS62122812A (en) Road surface sensor for vehicle
JPH04105085A (en) Road condition detecting device
JP2001221856A (en) Doppler earth speedometer
JP2513125Y2 (en) Ground speed detector
JPH04105084A (en) Road condition detecting device
JPH02290583A (en) Ground speed detecting device
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JPS62284280A (en) Ultrasonic sensor device
JPH02116775A (en) Speed detector
JPH08334561A (en) Ultrasonic doppler-type ground speed measuring apparatus
JPH03115986A (en) Road surface state detecting device
SE9403028L (en) Ways of measuring vibration of a measuring object
JPS62293175A (en) Ultrasonic measuring instrument
JPH05213200A (en) Range finder for railway vehicle
JPS63236985A (en) Ultrasonic distance measuring instrument