JPH04105028A - Thermo-sensitive sensor - Google Patents

Thermo-sensitive sensor

Info

Publication number
JPH04105028A
JPH04105028A JP22353290A JP22353290A JPH04105028A JP H04105028 A JPH04105028 A JP H04105028A JP 22353290 A JP22353290 A JP 22353290A JP 22353290 A JP22353290 A JP 22353290A JP H04105028 A JPH04105028 A JP H04105028A
Authority
JP
Japan
Prior art keywords
temperature
substrate
thermal conductivity
heat sink
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22353290A
Other languages
Japanese (ja)
Inventor
Hitoshi Kanekawa
仁士 金川
Koichi Aizawa
浩一 相澤
Keiji Kakinote
柿手 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP22353290A priority Critical patent/JPH04105028A/en
Publication of JPH04105028A publication Critical patent/JPH04105028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide certain sensibility for abrupt temp. change by furnishing a plurality of thermo-sensitive elements on a base board located on a heat sink, and therein differing the thermal conductivity of those parts of base board where thermo-sensitive elements are installed. CONSTITUTION:A thermal sensor 1 is equipped with a base board 4, which is provided on the surface with a heat sink 2 and film resistances (thermo- sensitive element) 3, 3' for temp. measuring. This base board 4 is formed from a quartz glass plate 4' and a Si plate 4'', and they are placed in line on the heat sink 2. The thermal conductivity of the quartz glass plate 4' is 0.0138W/cm deg.C, while that of the Si plate 4'' is 1.48W/cm deg.C. Thus the thermal conductivities of those parts of base board where the resistances 3, 3' are provided differ greatly, the ratio being 100 approximately. This constitution enables sure sensing of abrupt temp. varying.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、感温センサ、特に急激な温度変化の検知に
通した感温センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature-sensitive sensor, and particularly to a temperature-sensitive sensor capable of detecting rapid temperature changes.

〔従来の技術〕[Conventional technology]

火災や生産機械の異常時における急激な温度上昇(急激
な温度変化)を検出し警報を発する装置がある。このよ
うな装置には、急激な温度上昇を捉えるための感温セン
サが使われている。
There is a device that detects a sudden temperature rise (rapid temperature change) in the event of a fire or abnormality in production machinery and issues an alarm. Such devices use temperature sensors to detect sudden increases in temperature.

従来、この種の感温センサとして、小孔を有するダイア
フラムと同ダイアフラムの動きにより開閉動作させられ
る電気接点を備えた感温センサが実用に供されている。
BACKGROUND ART Conventionally, as a temperature-sensitive sensor of this type, a temperature-sensitive sensor including a diaphragm having a small hole and an electrical contact that is opened and closed by the movement of the diaphragm has been put into practical use.

緩やかな温度上昇に対しては、ダイアフラム内で気体が
膨張により増加しても増加した分の気体は小孔を通して
外部に逐次放出され、ダイアフラムが大きく膨らむよう
なことはない。しかし、急激な温度上昇に対しては、全
ての増加した気体を直ちに小孔から外部に放出すること
ができないため、ダイアフラムが大きく膨らみ、この動
きに伴って電気接点の接続状態が切り変えられる。この
電気接点の接続状態の切り換えにより、急激な温度上昇
のあったことが検知できる。
In response to a gradual temperature rise, even if the gas increases within the diaphragm due to expansion, the increased gas is sequentially released to the outside through the small holes, and the diaphragm does not expand significantly. However, when the temperature suddenly rises, all of the increased gas cannot be immediately released to the outside from the small holes, so the diaphragm expands greatly, and this movement changes the connection state of the electrical contacts. By switching the connection state of the electrical contacts, it is possible to detect a sudden rise in temperature.

サーミスタを利用した感温センサもある。この感温セン
サは、突出する2本の棒状体にそれぞれ別個に取りつけ
られたサーミスタを備えた構成をとっており、急激な温
度変化のあった際、両サーミスタの抵抗値に差がつくよ
うになっている。この感温センサを用いた装置では、両
サーミスタの出力差を監視するようにしており、緩やか
な温度上昇に対しては両サーミスタの出力差はわずかで
あるが、急激な温度変化に対しては両サーミスタの出力
差が太き(なるため、これを捉えることにより急激な温
度上昇のあったことを検知することができる。
There are also temperature sensors that use thermistors. This temperature sensor has a thermistor attached to each of two protruding rod-shaped bodies, so that when there is a sudden temperature change, there is a difference in the resistance value of both thermistors. It has become. In a device using this temperature sensor, the difference in output between both thermistors is monitored, and the difference in output between both thermistors is small in response to a gradual temperature rise, but in response to a sudden temperature change. The output difference between both thermistors is large, so by detecting this, it is possible to detect a sudden temperature rise.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしなから、前記のダイアフラムを利用した感温セン
サは、小型化し難く、腐食性雰囲気に弱く、さらには、
塵埃の多い雰囲気等では小孔が詰まりやすく信頼性に乏
しいといった問題がある。
However, temperature sensors using diaphragms are difficult to miniaturize, are susceptible to corrosive atmospheres, and
In a dusty atmosphere, the small holes tend to become clogged, resulting in poor reliability.

一方、サーミスタを利用した感温センサは、サーミスタ
間で温度の上がり方に差を出すための号−ミスタ配置が
難しく、突出した棒状体に号−ミスタを固定するなどし
ているため、小型化にも限度があり、機械的強度も低く
信頼性に乏しいといった問題がある。
On the other hand, temperature-sensitive sensors using thermistors are difficult to arrange in order to differentiate the temperature rise between the thermistors, and the number-mister is fixed to a protruding rod-shaped body, resulting in miniaturization. However, there are also limitations, as well as low mechanical strength and poor reliability.

この発明は、上記事情に鑑み、小型化に適しており、信
頼性の高い構造を有し、急激な温度変化を確実に検知す
ることのできる感温センサを提供することを課題とする
In view of the above circumstances, it is an object of the present invention to provide a temperature-sensitive sensor that is suitable for miniaturization, has a highly reliable structure, and can reliably detect rapid temperature changes.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、請求項1〜4記載の感温セン
サは、ヒートシンク上に基板が設けられ、同基板の上に
は複数の感温体が設けられていて、各感温体が設けられ
ている基板部分の熱伝導率が異なっている構成をとって
いる。
In order to solve the above problems, the temperature sensor according to claims 1 to 4 is provided with a substrate provided on a heat sink, a plurality of temperature sensors provided on the substrate, and each temperature sensor provided with a substrate. The structure is such that the thermal conductivity of the parts of the substrate that are connected to each other is different.

感温体が設けられた基板としては、例えば、請求項2の
ように、石英ガラス板(熱伝導率小)と絶縁層を表面に
形成したシリコン板(熱伝導重大)とよりなり、これら
両板がヒートシンク上に並置された構成のものが挙げら
れる。絶縁層には、厚み111N前後であって、酸化シ
リコン膜、窒化シリコン膜、あるいは、酸化シリコン膜
と窒化シリコン膜が適当な数だけ積み重ねられた積層膜
などがある。基板全体の厚みは、通常、100n〜1鶴
程度である。上記のように、石英ガラス板とシリコン板
といったように複数の基板片からなる場合、各基板片の
厚みをほぼ等厚みとすることが多いが、必ずしも、等厚
みとする必要はない。
As claimed in claim 2, the substrate on which the temperature sensor is provided may be, for example, a quartz glass plate (low thermal conductivity) and a silicon plate with an insulating layer formed on the surface (high thermal conductivity). One example is a structure in which the plates are juxtaposed on a heat sink. The insulating layer has a thickness of about 111N, and includes a silicon oxide film, a silicon nitride film, or a laminated film in which an appropriate number of silicon oxide films and silicon nitride films are stacked. The thickness of the entire substrate is usually about 100 nm to 1 inch. As mentioned above, in the case of a plurality of substrate pieces such as a quartz glass plate and a silicon plate, the thickness of each substrate piece is often made to be approximately equal, but it is not necessarily necessary to make them equal thickness.

熱伝導率の異なる部分は熱伝導率比(大きい方の熱伝導
率/小さい方の熱伝導率)は、通常、請求項3のように
、lθ〜200程度である。
The thermal conductivity ratio (larger thermal conductivity/smaller thermal conductivity) of the portions with different thermal conductivities is usually about lθ to 200, as in claim 3.

また、感温体としては、請求項4のように、白金、プラ
チナの少なくとも一つで形成された薄膜抵抗体が好適で
ある。
Further, as the temperature sensor, a thin film resistor made of at least one of platinum and platinum is suitable.

なお、ヒートシンクは、普通、熱伝導率の良い金属材料
で作られることが多い。
Note that heat sinks are usually made of metal materials with good thermal conductivity.

r作   用〕 この発明の感温センサでは、熱伝導率の異なる基板部分
に感温体がそれぞれ設けられている。熱伝導率の高い基
板部分はヒートシンクの間で熱の遺り取りが行われ易く
 (熱流が大きい)、他方、熱伝導率の低い基板部分は
ヒートシンクの間で熱の遺り取りが行われ難い(熱流が
小さい)。そのため、被検雰囲気温度に急激な変化が起
こった時、熱伝導率の高い基板部分ではヒートシンクの
方に温度変化が吸い取られる形が出来、この基板部分の
感温体には温度変化が直ぐには起こらない。
r Effect] In the temperature-sensitive sensor of the present invention, temperature-sensitive bodies are respectively provided on substrate portions having different thermal conductivities. Parts of the board with high thermal conductivity tend to transfer heat between heat sinks (large heat flow), while parts of the board with low thermal conductivity have difficulty transferring heat between heat sinks. (low heat flow). Therefore, when a sudden change occurs in the temperature of the test atmosphere, the temperature change is absorbed by the heat sink in the part of the board with high thermal conductivity, and the temperature change does not immediately affect the temperature sensor in this part of the board. It won't happen.

一方、熱伝導率の低い基板部分ではヒートシンクの方に
温度変化は伝わらず感温体に素早く作用する形が出来、
この基板部分の感温体は急激な温度変化に敏感に応動し
て変化する。したがって、被検雰囲気温度に急激な変化
が起こった時、感湿体同士の間に大きな温度差がつき、
これに伴い感温体の出力間に大きな信号差が生じる。勿
論、被検雰囲気温度が緩やかに変化した場合にはふたつ
の感温体に大きな温度差が付かないため、感温体の出力
間の信号差は僅かでしかない。つまり、感温体出力間の
信号差を監視していれば、被検雰囲気温度に急激な変化
があった場合に大きな信号となって現れてくるから、こ
れを検知すれば、被検雰囲気温度の急激な変化を確実に
捉えることができる。
On the other hand, in the part of the board with low thermal conductivity, temperature changes are not transmitted to the heat sink, but act quickly on the temperature sensor.
The temperature sensitive body in this substrate portion changes in response to rapid temperature changes. Therefore, when a sudden change occurs in the temperature of the test atmosphere, a large temperature difference will occur between the humidity sensing elements.
As a result, a large signal difference occurs between the outputs of the temperature sensitive bodies. Of course, if the ambient temperature to be tested changes slowly, there will not be a large temperature difference between the two temperature sensitive bodies, so the signal difference between the outputs of the temperature sensitive bodies will be only small. In other words, if you monitor the signal difference between the temperature sensor outputs, a large signal will appear if there is a sudden change in the temperature of the test atmosphere. It is possible to reliably capture sudden changes in

この発明では、急激な温度変化のあった際に感温体の間
に温度差が付(ようにするのに、基板部分の熱伝導率差
によっており、サーミスタを用いた従来の感温センサの
ような感温体配置によらないため、感温体配置を考慮す
る必要がない。
In this invention, the difference in thermal conductivity of the substrate part is used to create a temperature difference between the temperature sensing elements when there is a sudden temperature change, which is different from the conventional temperature sensing sensor using a thermistor. There is no need to consider the arrangement of the temperature sensors.

そして、基板が確りしたヒートシンクの上にある構造は
、信頼性の高い構造であり、小型化に適する。例えば、
感温部を基板表面に形成した測温用の薄膜抵抗体にすれ
ば、十分な小型化が図れるまた、石英ガラス基板と絶縁
層を表面に形成したシリコン基板とよりなる基板構成は
耐環境性の向上をもたらし、また、白金や金といった材
料の抵抗体よりなる感温体も、やはり耐環境性の向上を
もたらす。
The structure in which the board is placed on a solid heat sink is a highly reliable structure and is suitable for miniaturization. for example,
If the temperature sensing part is a thin film resistor for temperature measurement formed on the surface of the substrate, sufficient miniaturization can be achieved.In addition, the substrate structure consisting of a quartz glass substrate and a silicon substrate with an insulating layer formed on the surface is environmentally resistant. Temperature sensitive elements made of resistors made of materials such as platinum and gold also bring about improved environmental resistance.

感温体が金やプラチナの内の少なくとも一つで用いて形
成された薄膜抵抗体であると、温度変化に対して直線性
のよい信号出力を感温体より得ることができるため、信
号処理がし易い。
If the thermosensor is a thin film resistor made of at least one of gold and platinum, it is possible to obtain a signal output from the thermosensor with good linearity with respect to temperature changes, making it easy to process signals. Easy to remove.

〔実 施 例〕〔Example〕

以下、この発明にかかる感温センサの一実施例を図面を
参照しなから詳しく説明する。
Hereinafter, one embodiment of the temperature-sensitive sensor according to the present invention will be described in detail with reference to the drawings.

第1図は、この発明の実施例にかかる感温センサの構成
をあられす。
FIG. 1 shows the configuration of a temperature sensor according to an embodiment of the present invention.

感温センサ1はヒートシンク2と測温用の薄膜抵抗体(
感温体)3.3′が表面に形成された基板4を備えてい
る。基板4は石英ガラス板4′とシリコン板4“のふた
つで構成されており、両板4′、4“はヒートシンク2
上に並置されている。第2図にみるように、薄膜抵抗体
3は石英ガラス板4′表面に、薄膜抵抗体3′はシリコ
ン板4“表面にそれぞれ形成されている。
The temperature sensor 1 includes a heat sink 2 and a thin film resistor for temperature measurement (
It is equipped with a substrate 4 on which a temperature sensitive body 3.3' is formed. The substrate 4 is composed of a quartz glass plate 4' and a silicon plate 4'', and both plates 4' and 4'' are connected to a heat sink 2.
juxtaposed above. As shown in FIG. 2, the thin film resistor 3 is formed on the surface of the quartz glass plate 4', and the thin film resistor 3' is formed on the surface of the silicon plate 4''.

石英ガラス板4′は全体が石英ガラスで出来ており、他
方、シリコン板4“は厚み1pの酸化シリコン層4“a
が表面に形成されているが、他はシリコン層4″bであ
る。酸化シリコン層4″aは熱酸化法、スパンタリング
蒸着法、真空蒸着法などにより形成することができる。
The quartz glass plate 4' is entirely made of quartz glass, while the silicon plate 4'' has a silicon oxide layer 4''a with a thickness of 1 p.
is formed on the surface, and the rest is a silicon layer 4''b. The silicon oxide layer 4''a can be formed by a thermal oxidation method, a sputtering deposition method, a vacuum deposition method, or the like.

薄膜抵抗体3.3′は、石英ガラス板4′やシリコン板
4″の酸化シリコン層4“a上に、スパンタリング蒸着
法、真空蒸着法でプラチナや金の薄膜を形成した後、湿
式エツチングやドライエツチングを利用してパターン化
することにより形成されたものである。なお、薄膜抵抗
体3.3′を形成した後、結露の影響を受けないように
するために電気絶縁性保護膜6で覆うようにしている(
第2図は保護膜6を省略しである)。
The thin film resistor 3.3' is made by forming a thin film of platinum or gold on the silicon oxide layer 4''a of the quartz glass plate 4' or silicon plate 4'' by sputtering vapor deposition or vacuum vapor deposition, and then wet etching. It is formed by patterning using dry etching. Note that after forming the thin film resistor 3.3', it is covered with an electrically insulating protective film 6 to prevent it from being affected by dew condensation (
In FIG. 2, the protective film 6 is omitted).

薄膜抵抗体や保護膜が形成された石英ガラス板4′およ
びシリコン板4″はヒートシンク2に接着されている。
A quartz glass plate 4' and a silicon plate 4'' on which a thin film resistor and a protective film are formed are bonded to the heat sink 2.

なお、リード線8は信号出力用である。Note that the lead wire 8 is for signal output.

薄膜抵抗体3が設けられた基板部分である石英ガラス板
4′の熱伝導率は約0.0138W/印°Cであり、薄
膜抵抗体3′が設けられた基板部分である酸化シリコン
層材シリコン板4″の熱伝導率は約1.48 W/cm
”cである。このように、薄膜抵抗体3.3′が設けら
れた基板部分の熱伝導率は大きく異なっており、その比
率は約100倍である。
The thermal conductivity of the quartz glass plate 4', which is the substrate portion on which the thin film resistor 3 is provided, is approximately 0.0138 W/°C, and the silicon oxide layer material, which is the substrate portion on which the thin film resistor 3' is provided, is approximately 0.0138 W/°C. The thermal conductivity of silicon plate 4″ is approximately 1.48 W/cm
Thus, the thermal conductivity of the substrate portion where the thin film resistor 3.3' is provided differs greatly, and the ratio is approximately 100 times.

この発明は、上記実施例に限らない。This invention is not limited to the above embodiments.

例えば、第3図に示す感温センサ1′のように、薄膜抵
抗体3.3′が表面に形成された基板14が、どちらも
全体が種類の違う絶縁材料で作られたふたつの絶縁板1
4’  14“よりなり、両板14”  14“は熱伝
導率比が10以上あってヒートシンク2上に並置された
構成であうでもよい。これ以外の構成は、第1図の感温
センサ1と同じ構成であるので説明は省略する。
For example, as in the temperature sensor 1' shown in FIG. 3, the substrate 14 on which the thin film resistor 3.3' is formed is made of two insulating plates, both entirely made of different types of insulating materials. 1
4'14", and both plates 14" and 14" may have a thermal conductivity ratio of 10 or more and may be arranged side by side on the heat sink 2. Other configurations are similar to the temperature sensor 1 in FIG. Since they have the same configuration, the explanation will be omitted.

さらに、第4図に示す感温センサ1“のように、薄膜抵
抗体3.3′が表面に形成された基板24が、高熱伝導
率板24″内に低熱伝導率板24′があるという構成で
あってもよい。この場合、高熱伝導率板24′は、絶縁
層が表面に設けられたシリコン板であっても、全体が熱
伝導率の比較的良い絶縁材からなるものであってもよい
Furthermore, as in the temperature sensor 1'' shown in FIG. 4, a substrate 24 on which a thin film resistor 3.3' is formed has a low thermal conductivity plate 24' inside a high thermal conductivity plate 24''. It may be a configuration. In this case, the high thermal conductivity plate 24' may be a silicon plate with an insulating layer provided on its surface, or may be made entirely of an insulating material with relatively good thermal conductivity.

したがって、感温センサ1″では、薄膜抵抗体3が熱伝
導率の小さい基板部分子に設けられ、薄膜抵抗体3′が
熱伝導率の大きい基板部分子′に設けられていることに
なる。これ以外の構成は、第1図の感温センサ1と同じ
構成であるので説明は省略する。なお、両板24’  
24“は熱伝導率比が10以上であることが好ましい。
Therefore, in the temperature sensor 1'', the thin film resistor 3 is provided on the substrate component with low thermal conductivity, and the thin film resistor 3' is provided on the substrate component with high thermal conductivity. The configuration other than this is the same as the temperature sensor 1 shown in FIG. 1, so the explanation will be omitted.
24'' preferably has a thermal conductivity ratio of 10 or more.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、請求項1〜3記載の感温センサは
、ヒートシンク上の基板の上には複、数の感温体が設け
られていて、各感温体が設けられている基板部分の熱伝
導率が異なっている構成であるため、小型化に適してお
り、信頼性の高い構造を有し、急激な温度変化を確実に
検知することのできる優れたセンサである。
As described above, in the temperature sensor according to claims 1 to 3, a plurality of temperature sensors are provided on a substrate on a heat sink, and a substrate on which each temperature sensor is provided. It is an excellent sensor that is suitable for miniaturization because its parts have different thermal conductivities, has a highly reliable structure, and can reliably detect rapid temperature changes.

請求項2記載の感温センサは、加えて、石英ガラス基板
と絶縁層を表面に形成したシリコン基板とよりなる基板
構成であるため、耐環境性に優れる。
In addition, the temperature sensor according to the second aspect has a substrate structure including a quartz glass substrate and a silicon substrate with an insulating layer formed on its surface, and therefore has excellent environmental resistance.

請求項3記載の感温センサは、加えて、熱伝導率の異な
る基板部分の熱伝導率比が10〜200であるため、急
激な温度変化をより確実に捉えられるようになる。
In addition, in the temperature sensor according to the third aspect, since the thermal conductivity ratio of the substrate portions having different thermal conductivities is 10 to 200, rapid temperature changes can be detected more reliably.

請求項4記載の感温センサは、加えて、感温体が金、プ
ラチナの内の少なくとも一つで用いて形成された薄膜抵
抗体であるため、耐環境性に優れ、しかも、温度変化に
対して直線性のよい信号出力が得られるため、信号処理
がし易い。
In addition, since the temperature sensor is a thin film resistor made of at least one of gold and platinum, the temperature sensor according to claim 4 has excellent environmental resistance and is resistant to temperature changes. On the other hand, since a signal output with good linearity can be obtained, signal processing is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明にかかる感温センサの一実施例をあ
られす断面図、第2図は、同感温センサをあられす平面
図、第3図および第4図は、それぞれ、この発明にかか
る感温センサの他の実施例をあられす断面図である。 1、l’l“・・・感温センサ 2・・・ヒートシンク
  3.3′・・・薄膜抵抗体(感温体) 4.14.
24・・・基板 代理人 弁理士  松 本 武 彦 第3図 節4図 円「積し呈ネ市正書(自発 平成2年11月9日 1、事件の表示 怜駆122−223532号 2、発明の名称 感温センサ 3、補正をする者 1阿牛とのR系
FIG. 1 is a cross-sectional view of an embodiment of the temperature-sensitive sensor according to the present invention, FIG. 2 is a plan view of the same temperature-sensing sensor, and FIGS. 3 and 4 are respectively according to the present invention. FIG. 7 is a cross-sectional view of another embodiment of such a temperature sensor. 1, l'l"...Temperature sensor 2...Heat sink 3.3'...Thin film resistor (temperature sensor) 4.14.
24...Substrate agent, patent attorney Takehiko Matsumoto Figure 3, Section 4, Circle ``Shitsune City Seisho (Volunteer November 9, 1990 1, Incident Indication Reiku No. 122-223532 2, Name of the invention Temperature sensor 3, corrector 1 R system with Agyu

Claims (1)

【特許請求の範囲】 1 ヒートシンク上に基板が設けられ、同基板の上には
複数の感温体が設けられていて、各感温体が設けられて
いる基板部分の熱伝導率が異なっている感温センサ。 2 基板が、石英ガラス板と絶縁層を表面に形成したシ
リコン板とよりなり、これら両板がヒートシンク上に並
置されている請求項1記載の感温センサ。 3 熱伝導率の異なる部分は熱伝導率比が10〜200
である請求項1または2記載の感温センサ。 4 感温体が、白金、プラチナの少なくとも一つで形成
された薄膜抵抗体である請求項1から3までのいずれか
に記載の感温センサ。
[Claims] 1. A substrate is provided on a heat sink, and a plurality of temperature sensitive bodies are provided on the same substrate, and the thermal conductivity of the portion of the substrate where each temperature sensitive body is provided is different. Temperature sensor. 2. The temperature-sensitive sensor according to claim 1, wherein the substrate is made of a quartz glass plate and a silicon plate with an insulating layer formed on its surface, and the two plates are juxtaposed on a heat sink. 3 The thermal conductivity ratio of parts with different thermal conductivities is 10 to 200.
The temperature-sensitive sensor according to claim 1 or 2. 4. The temperature sensor according to claim 1, wherein the temperature sensor is a thin film resistor made of at least one of platinum and platinum.
JP22353290A 1990-08-24 1990-08-24 Thermo-sensitive sensor Pending JPH04105028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22353290A JPH04105028A (en) 1990-08-24 1990-08-24 Thermo-sensitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22353290A JPH04105028A (en) 1990-08-24 1990-08-24 Thermo-sensitive sensor

Publications (1)

Publication Number Publication Date
JPH04105028A true JPH04105028A (en) 1992-04-07

Family

ID=16799630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22353290A Pending JPH04105028A (en) 1990-08-24 1990-08-24 Thermo-sensitive sensor

Country Status (1)

Country Link
JP (1) JPH04105028A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343640C (en) * 2001-04-11 2007-10-17 欧姆龙健康医疗事业株式会社 Electronic thermometer
US7377687B2 (en) 2002-11-19 2008-05-27 Qinetiq Limited Fluid temperature measurement
JP2008309526A (en) * 2007-06-12 2008-12-25 Nippon Soken Inc Temperature sensor element and temperature sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343640C (en) * 2001-04-11 2007-10-17 欧姆龙健康医疗事业株式会社 Electronic thermometer
US7377687B2 (en) 2002-11-19 2008-05-27 Qinetiq Limited Fluid temperature measurement
JP2008309526A (en) * 2007-06-12 2008-12-25 Nippon Soken Inc Temperature sensor element and temperature sensor

Similar Documents

Publication Publication Date Title
US5048336A (en) Moisture-sensitive device
US20070209433A1 (en) Thermal mass gas flow sensor and method of forming same
KR20020007853A (en) absolute humidity sensor and circuit for detecting temperature and humidity using the same
US6589433B2 (en) Accelerometer without proof mass
JPS60243549A (en) Sensor for catalytic combustion and manufacture thereof
JPH03272428A (en) Pressure sensor
US6725716B1 (en) Thermo-sensitive flow rate sensor and method of manufacturing the same
JPH04105028A (en) Thermo-sensitive sensor
US20020172255A1 (en) Microstructured thermosensor
JP3112180B2 (en) Humidity sensor
JPH01203957A (en) Hanger construction for sensor having thermosensitive semiconductor device
US5148707A (en) Heat-sensitive flow sensor
JP3358684B2 (en) Thermal dependency detector
JPH0326929A (en) Thermo-sensor
US20200350132A1 (en) Electromechanical relay constructions
Lee et al. A micromachined robust humidity sensor for harsh environment applications
JP3345695B2 (en) Acceleration sensor
JPH04235338A (en) Humidity sensor
JP3316740B2 (en) Flow detection element
JPS6138534A (en) Heat flow sensor
JPH0612493Y2 (en) Micro bridge flow sensor
JP3746666B2 (en) Fire detector
JPS6111638Y2 (en)
KR100331809B1 (en) thin film type absolute humidity sensor
KR20020087121A (en) Pressure sensor