JPH04104911A - Recovery of iron oxide - Google Patents

Recovery of iron oxide

Info

Publication number
JPH04104911A
JPH04104911A JP2220369A JP22036990A JPH04104911A JP H04104911 A JPH04104911 A JP H04104911A JP 2220369 A JP2220369 A JP 2220369A JP 22036990 A JP22036990 A JP 22036990A JP H04104911 A JPH04104911 A JP H04104911A
Authority
JP
Japan
Prior art keywords
iron oxide
carbon
oxygen
magnetite
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2220369A
Other languages
Japanese (ja)
Inventor
Yutaka Tamaura
裕 玉浦
Goji Funayama
船山 剛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALPHA CREST KK
Original Assignee
ALPHA CREST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALPHA CREST KK filed Critical ALPHA CREST KK
Priority to JP2220369A priority Critical patent/JPH04104911A/en
Publication of JPH04104911A publication Critical patent/JPH04104911A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Compounds Of Iron (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To regenerate the title iron oxide through such processes that when surface-deposited carbon is to be removed from iron oxide particles with oxygen defects disappeared, water or water vapor is brought into contact with the system to produce CO by reaction the oxygen in the iron oxide and the carbon on the surface, resulting in efficient carbon removal. CONSTITUTION:Oxygen defects are forcedly produced in the spinel structure in an iron oxide (magnetite) to effect activation, and using the resultant iron oxide thus activated as a catalyst, the carbon dioxide in automotive exhaust gas, etc., is decomposed to suppress its emission into the air. And, used, deactivated iron oxide particles through the above process, which has been freed from oxygen defects, with carbon powder deposited on the particle surface, are brought into contact with water or water vapor to make reaction between the oxygen in said iron oxide and the carbon on the surface to effect producing carbon monoxide, thus removing the carbon from the surface of said iron oxide. The resultant iron oxide is then activated and reused for carbon dioxide decomposition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、反応により鉄酸化物の表面に析出した炭素を
除去して鉄酸化物を回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for recovering iron oxide by removing carbon deposited on the surface of iron oxide by reaction.

〔従来の技術] 鉄酸化物(マグネタイト)は、従来より強磁性材料とし
て知られ、各種の技術分野において広く利用されている
[Prior Art] Iron oxide (magnetite) has been known as a ferromagnetic material and is widely used in various technical fields.

一方、マグネタイトのスピネル構造に酸素欠陥を生じさ
せて活性化したものは、反応性触媒として極めて有用で
あることが見出されて、化学分野での利用に新たな展開
が可能となった。
On the other hand, magnetite activated by creating oxygen vacancies in its spinel structure has been found to be extremely useful as a reactive catalyst, allowing new developments in its use in the chemical field.

発明者は、さきに、活性化マグネタイトを用いて炭酸ガ
スを分解する方法を完成させた(肖願平1−30856
8号参照)。この方法は、低温処理にもがかわらず、1
00%近い分解効率で炭酸ガスを分解でき、自動車排ガ
ス、火力発電所における排ガス中の炭酸ガス除去に適用
して地球大気中への炭酸ガス放出を抑制するための有効
な技術であり、さらに宇宙ステーション内における炭酸
ガス、酸素のリサイクルシステムへの利用に大きな期待
が寄せられている。
The inventor previously completed a method of decomposing carbon dioxide gas using activated magnetite (Xiao Guanping 1-30856
(See No. 8). This method, despite the low temperature treatment,
It is an effective technology that can decompose carbon dioxide with nearly 00% decomposition efficiency and can be applied to the removal of carbon dioxide from automobile exhaust gas and exhaust gas from thermal power plants to suppress the release of carbon dioxide into the earth's atmosphere. There are great expectations for its use in the carbon dioxide and oxygen recycling system within the station.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記方法は、まず、Fe、O,粒子と水素と
を反応させて活性化マグネタイトを生成し、この活性化
マグネタイトにCO2を反応させるものである。その反
応式を以下に示す。
By the way, in the above method, first, activated magnetite is produced by reacting Fe, O, and particles with hydrogen, and then CO2 is reacted with this activated magnetite. The reaction formula is shown below.

マグネタイト+H2→活性化マグネタイト+H,0活性
化マグネタイト+CO3→C+マグネタイトこのように
、第1段階でH2のみの反応を用い、第2段階でC帆を
反応させるのであるが、最終的に生成される炭素(C)
は、マグネタイト粒子の表面に微細な粉末として析出す
ることになる。マグネタイトは、鉄の酸化物のため無害
であり、反応済のマグネタイトをそのまま廃棄処分をし
ても特段公害問題が生ずる慮れはないが、表面に析出し
た炭素は有用な資源であり、マグネタイトから炭素を分
離する技術が確立されれば、マグネタイトは再び活性化
マグネタイトに、炭素は資源に活用でき、誠に好ましい
クローズドサイクルをもたらす。
Magnetite + H2 → activated magnetite + H, 0 activated magnetite + CO3 → C + magnetite In this way, only H2 is used in the first stage, and C sail is reacted in the second stage. Carbon (C)
will precipitate as fine powder on the surface of magnetite particles. Magnetite is an iron oxide, so it is harmless, and there is no possibility of causing any particular pollution problems even if the reacted magnetite is disposed of as is. However, the carbon deposited on the surface is a useful resource, and it is possible to remove it from magnetite. If a technology to separate carbon is established, magnetite can be reactivated into magnetite and carbon can be used as a resource, creating a truly favorable closed cycle.

殊に、宇宙ステーションでの利用を考えたときには、マ
グネタイトの再生利用は不可欠であるといえる。
Especially when considering its use in space stations, recycling magnetite is essential.

本発明の目的は、上記課題を解決し、炭素を含んだ鉄酸
化物を単に水又は水蒸気と反応させるのみの簡単な処理
によって鉄酸化物から炭素を容易に分離して再生させる
方法を提供することにある。
An object of the present invention is to solve the above problems and provide a method for easily separating and regenerating carbon from iron oxide through a simple process of simply reacting carbon-containing iron oxide with water or steam. There is a particular thing.

[課題を解決するための手段] 上記目的を達成するため、本発明による鉄酸化物の回収
方法においては、水又は水蒸気を反応させる工程を有し
、炭素を含有した鉄酸化物から炭素を除去して鉄酸化物
を回収する方法であって、鉄酸化物は、酸素欠陥が消失
した粒子であり、炭素は、鉄酸化物の表面に析出したも
のであり、水又は水蒸気を反応させる工程は、炭素を含
有する鉄酸化物に水又は水蒸気を接触させ、鉄酸化物中
の酸素と表面の炭素との反応により一酸化炭素を生成さ
せて炭素を鉄酸化物の表面より除去する工程である。
[Means for Solving the Problems] In order to achieve the above object, the method for recovering iron oxide according to the present invention includes a step of reacting water or steam to remove carbon from iron oxide containing carbon. In this method, iron oxide is a particle in which oxygen defects have disappeared, carbon is precipitated on the surface of iron oxide, and the step of reacting with water or steam is , is a process in which carbon-containing iron oxide is brought into contact with water or steam, and carbon monoxide is generated through a reaction between oxygen in the iron oxide and carbon on the surface, thereby removing carbon from the surface of the iron oxide. .

[原理・作用] 炭酸ガスの分解に用いられた活性化鉄酸化物粒子(マグ
ネタイト粒子)は、その分解反応により活性が失われ、
原則的には酸素欠陥のない元の鉄酸化物粒子に戻るが、
その表面には炭酸ガスの分解により生じた炭素の粉末が
析出している。この鉄酸化物は炭素の析出状態で非常に
反応性が高い。
[Principle/effect] Activated iron oxide particles (magnetite particles) used to decompose carbon dioxide lose their activity due to the decomposition reaction,
In principle, it returns to the original iron oxide particles without oxygen defects, but
Carbon powder produced by decomposition of carbon dioxide gas is deposited on its surface. This iron oxide is highly reactive in the carbon precipitate state.

その特性を鋭意研究の結果、水又は水蒸気を接触させた
ときに水素ガス及び−酸化炭素ガスを発生することが見
出された。しかも、水素と一酸化炭素の発生量は反応温
度によって決定されることが判明した。反応のメカニズ
ムは必ずしも明らかではないが、X線回折による鉄酸化
物の構造分析、炭素量の測定、鉄(It)、鉄(III
)の化学分析の結果から次に示す反応によるものと思わ
れる。すなわち、 1)反応は100℃以上で生じ、水素を発生する。
As a result of extensive research into its properties, it was discovered that it generates hydrogen gas and carbon oxide gas when it comes into contact with water or steam. Moreover, it was found that the amount of hydrogen and carbon monoxide generated was determined by the reaction temperature. Although the reaction mechanism is not necessarily clear, structural analysis of iron oxide by X-ray diffraction, measurement of carbon content, iron (It), iron (III)
), it seems that this is due to the following reaction. That is, 1) The reaction occurs at 100°C or higher and generates hydrogen.

水素発生量は反応温度の上昇と共に増加し、約400℃
で支配的反応となる。この反応は、表面に析出した炭素
粉末の存在のもとに、鉄酸化物に接触した水分(H,O
)の酸素を鉄酸化物が引き抜くことによって生ずるもの
と考えられる。不活性の鉄酸化物だけでは同一条件で水
又は水蒸気を接触させても反応は生ずることはなく、水
素が発生することはない。
The amount of hydrogen generated increases as the reaction temperature rises, reaching approximately 400°C.
becomes the dominant reaction. This reaction occurs when water (H, O,
) is thought to be produced when iron oxide extracts oxygen from the iron oxide. If only inert iron oxide is brought into contact with water or steam under the same conditions, no reaction will occur and no hydrogen will be generated.

U)反応温度が550℃以上では、−酸化炭素を発生す
る反応が支配的となる。この反応は、高温のため、鉄酸
化物の酸素が表面の炭素を酸化することによって生ずる
ことは明らかである。
U) When the reaction temperature is 550°C or higher, the reaction that generates -carbon oxide becomes dominant. It is clear that this reaction occurs because the oxygen in the iron oxide oxidizes the carbon on the surface due to the high temperature.

上記i)、 ii)の反応は、鉄酸化物(マグネタイト
)粒子の表面に非常に微細な炭素粉末が直接析出してい
ることによるものである。
The reactions i) and ii) above are due to the direct precipitation of very fine carbon powder on the surface of iron oxide (magnetite) particles.

したがって、主として550℃以上の温度条件のもとで
、炭素を含む鉄酸化物に水又は水蒸気を反応させれば、
炭素と鉄酸化物とを有効に分離できる。得られた炭素を
含まない純粋な鉄酸化物は、これを再び活性化して炭酸
ガス分解処理に再生利用でき、炭素は有用な資源エネル
ギーガスとして回収できる。
Therefore, if water or steam is reacted with carbon-containing iron oxide mainly under temperature conditions of 550°C or higher,
Carbon and iron oxide can be effectively separated. The resulting carbon-free pure iron oxide can be reactivated and recycled for carbon dioxide decomposition treatment, and the carbon can be recovered as a useful resource energy gas.

以上は、炭酸ガスの分解処理に用いた鉄酸化物(マグネ
タイト)の回収について説明したが、炭素を、含む鉄酸
化物が最終的に生成する反応は、これに限られるもので
はない。他の反応によっても、同様に炭素が析出し、こ
れがマグネタイトに含まれる状態が形成されるものであ
れば、全く同様に本発明を適用できる。
The above describes the recovery of iron oxide (magnetite) used in the decomposition treatment of carbon dioxide gas, but the reaction that ultimately produces iron oxide containing carbon is not limited to this. The present invention can be similarly applied to other reactions as long as carbon is similarly precipitated and is included in magnetite.

なお、鉄酸化物には、マグネタイト、フェライトのほか
、ウスタイトなどを使用できる。
Note that in addition to magnetite and ferrite, wustite and the like can be used as the iron oxide.

[発明の効果] 以上のように本発明によるときには、反応生成物として
生成された炭素を含む鉄酸化物から有効に炭素を除去し
て純粋な鉄酸化物を取り出すことができ、殊に活性化マ
グネタイトを炭酸ガス分解に利用する技術に本発明を適
用して宇宙空間で利用しつるシンプルで有用なガス分離
システム、酸素、二酸化炭素の循環利用システムを実現
できる効果を有するものである。
[Effects of the Invention] As described above, according to the present invention, carbon can be effectively removed from carbon-containing iron oxide produced as a reaction product to extract pure iron oxide. By applying the present invention to the technology of using magnetite to decompose carbon dioxide gas, it is possible to realize a simple and useful gas separation system that can be used in outer space, and a system for recycling oxygen and carbon dioxide.

[実施例] 以下に本発明の実施例を示す。[Example] Examples of the present invention are shown below.

マグネタイト(Feお0.)lOg石英カラム内に充填
し、300 ’Cで4時間水素ガスを通じて酸素欠陥鉄
酸化物を得た。次に二酸化炭素をカラムに導入して3゜
0℃で反応させマグネタイト表面上に炭素を析出させた
。この鉄酸化物中には4%炭素が含まれていた。次に、
炭素が付着した鉄酸化物5gを石英セルに充填し、15
0℃、2506C,350℃、450℃、550℃、6
50℃の各温度に加熱された水蒸気を鉄酸化物に接触さ
せ、その生成ガスの変化を調べた。各温度での反応ガス
の成分組成を第1表に示す。第1表に明らかなとおり、
反応温度が450°Cでは水素ガスの発生量が増加して
ゆくが以後反応温度が高まるにしたがって、その発生量
が減じ、逆にCOガスの発生量が増加することがわかる
。したがって、反応温度を550℃以上に選ぶことで短
時間でマグネタイトより炭素を分離することができる。
Magnetite (FeO0.) was packed in a lOg quartz column, and hydrogen gas was passed at 300'C for 4 hours to obtain oxygen-deficient iron oxide. Next, carbon dioxide was introduced into the column and reacted at 3°0°C to precipitate carbon on the magnetite surface. This iron oxide contained 4% carbon. next,
Fill a quartz cell with 5 g of iron oxide with carbon attached, and
0℃, 2506C, 350℃, 450℃, 550℃, 6
Steam heated to various temperatures of 50°C was brought into contact with iron oxide, and changes in the resulting gas were investigated. Table 1 shows the component composition of the reaction gas at each temperature. As is clear from Table 1,
It can be seen that when the reaction temperature is 450° C., the amount of hydrogen gas generated increases, but as the reaction temperature increases thereafter, the amount of hydrogen gas generated decreases, and conversely, the amount of CO gas generated increases. Therefore, by selecting the reaction temperature to be 550° C. or higher, carbon can be separated from magnetite in a short time.

第  1  表Table 1

Claims (1)

【特許請求の範囲】[Claims] (1)水又は水蒸気を反応させる工程を有し、炭素を含
有した鉄酸化物から炭素を除去して鉄酸化物を回収する
方法であって、 鉄酸北物は、酸素欠陥が消失した粒子であり、炭素は、
鉄酸化物の表面に析出したものであり、水又は水蒸気を
反応させる工程は、炭素を含有する鉄酸化物に水又は水
蒸気を接触させ、鉄酸化物中の酸素と表面の炭素との反
応により一酸化炭素を生成させて炭素を鉄酸化物の表面
より除去する工程であることを特徴とする鉄酸化物の回
収方法。
(1) A method for recovering iron oxide by removing carbon from carbon-containing iron oxide, which involves a step of reacting water or steam, and ferrous oxides are particles in which oxygen defects have disappeared. and carbon is
It is precipitated on the surface of iron oxide, and the step of reacting with water or steam is to bring water or steam into contact with iron oxide containing carbon, and the oxygen in the iron oxide reacts with the carbon on the surface. 1. A method for recovering iron oxide, which is a step of generating carbon monoxide and removing carbon from the surface of iron oxide.
JP2220369A 1990-08-22 1990-08-22 Recovery of iron oxide Pending JPH04104911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220369A JPH04104911A (en) 1990-08-22 1990-08-22 Recovery of iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220369A JPH04104911A (en) 1990-08-22 1990-08-22 Recovery of iron oxide

Publications (1)

Publication Number Publication Date
JPH04104911A true JPH04104911A (en) 1992-04-07

Family

ID=16750049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220369A Pending JPH04104911A (en) 1990-08-22 1990-08-22 Recovery of iron oxide

Country Status (1)

Country Link
JP (1) JPH04104911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249247A (en) * 2008-04-08 2009-10-29 Sumitomo Heavy Ind Ltd Carbon recovery apparatus and carbon recovery method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249247A (en) * 2008-04-08 2009-10-29 Sumitomo Heavy Ind Ltd Carbon recovery apparatus and carbon recovery method

Similar Documents

Publication Publication Date Title
JP5387851B2 (en) Method for recovering valuable metals from spent catalyst
US2979384A (en) Process for production of hydrogen and sulfur
CA2419941A1 (en) Method for the production of functionalised short carbon nanotubes and functionalised short carbon nanotubes obtainable by said method
JPS6053730B2 (en) Nickel refining method
Takenaka et al. Production of pure hydrogen from methane mediated by the redox of Ni-and Cr-added iron oxides
US4324776A (en) Mid-temperature H2 S removal process
JPH0356772B2 (en)
US4004995A (en) Process for removing nitrogen oxides and sulfur dioxide from effluent gases
JPH0451481B2 (en)
CN113289600A (en) Heteroatom doped carbon dot photocatalytic degradation of industrial waste gas
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
CN112121798A (en) Method for degrading chloramphenicol in water under catalysis of MIL-101(Fe/Co) derived magnetic cobalt ferrite and application
JPH04104911A (en) Recovery of iron oxide
Lin et al. Magnetic separation and recycling of ferrite nanocatalysts for CO2 decomposition with CH4 recovery from steel industrial flyash
Lin et al. Synthesis and characterization of nickel and zinc ferrite nanocatalysts for decomposition of CO2 greenhouse effect gas
US5093303A (en) Catalyst for decomposing gaseous oxide and method of manufacturing the same
Otsuka et al. The decomposition of water on the CO-or H2-reduced indium oxide.
US4376647A (en) Process for treating sulfide-bearing ores
Li et al. Regeneration of deactivated CuO@ SiO2 catalysts for catalytic oxidation of AsH3: A synergy of regeneration and modification
EP0431819A1 (en) Method for decomposing gaseous oxide and catalyst used therefor
JP7349146B2 (en) Separation of catalyst carrier and solid carbon and recovery method of carrier
JPH04103691A (en) Production of resource energy gas
JPH04225819A (en) Method for cracking and immobilizing co2
JPH03205302A (en) Method for producing hydrogen
JPS63205140A (en) Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide