JPH04104470A - Manufacture of electrode for solid electrolyte fuel cell - Google Patents

Manufacture of electrode for solid electrolyte fuel cell

Info

Publication number
JPH04104470A
JPH04104470A JP2221776A JP22177690A JPH04104470A JP H04104470 A JPH04104470 A JP H04104470A JP 2221776 A JP2221776 A JP 2221776A JP 22177690 A JP22177690 A JP 22177690A JP H04104470 A JPH04104470 A JP H04104470A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode
intermediate layer
fuel cell
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2221776A
Other languages
Japanese (ja)
Inventor
Kazuo Fushimi
伏見 和夫
Kaoru Kitakizaki
薫 北寄崎
Kazuhiko Kawakami
和彦 河上
Yasuhiro Yoshioka
靖浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2221776A priority Critical patent/JPH04104470A/en
Publication of JPH04104470A publication Critical patent/JPH04104470A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain an oxygen electrode with small interface impedance between it and a solid electrolyte by providing an intermediate layer made of a mixture of both materials brought into contact with each other at the time of stacking between at least one of individual layers. CONSTITUTION:A perovskite compound La0.6Sr0.4Co0.98Ni0.02O3 is formed into a film on a porous substrate l, then it is fully heat-treated to manufacture a perovskite oxygen electrode 2. The mixed powder LSCN/LaF3=1: l is formed from the same La0.6Sr0.4Co0.98Ni0.02O3 powder and the electrolyte LaF3 powder used for an electrolyte layer on the oxygen electrode 2, and this mixed powder is flame-sprayed to form an intermediate layer 3. LaF3 powder is stacked on the intermediate layer 3 to form an LaF3 electrolyte layer 4. Flame-spraying Ni powder is stacked on the electrolyte layer 4 to form an Ni hydrogen electrode 6. The interface impedance is reduced, and the voltage-current characteristic of a battery is improved.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、酸素極と固体電解質層間又は固体電解質層と
水素極間に中間層を設けた固体電解質型燃料電池の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing a solid oxide fuel cell in which an intermediate layer is provided between an oxygen electrode and a solid electrolyte layer or between a solid electrolyte layer and a hydrogen electrode.

B3発明の概要 本発明の固体電解質型燃料電池の製造方法は、酸素極、
固体電解質、水素極を積層して成る固体電解質型燃料電
池において、各層間のうち少なくとも一方の層間に、積
層時に相互に接する両相料の混合体から成る中間層を設
け、酸素極と固体電解質間の界面インピーダンスを減少
させると共に、又は、固体電解質と水素極間に温度変化
による剥離が生じないようにしたものである。
B3 Summary of the Invention The method for manufacturing a solid oxide fuel cell of the present invention includes an oxygen electrode,
In a solid electrolyte fuel cell consisting of a stack of a solid electrolyte and a hydrogen electrode, an intermediate layer made of a mixture of both phase materials that come into contact with each other during stacking is provided between at least one of the layers, and an oxygen electrode and a solid electrolyte are stacked together. This is to reduce the interfacial impedance between the solid electrolyte and the hydrogen electrode, or to prevent separation due to temperature changes between the solid electrolyte and the hydrogen electrode.

C9従来の技術 従来、低温固体電解質型燃料電池、特に平板型電池のセ
ルは、第3図に示すように、多孔質基板1上に酸素極2
.電解質4.水素極6を順次積層した構造になっている
C9 Prior Art Conventionally, a low-temperature solid electrolyte fuel cell, especially a flat plate cell, has an oxygen electrode 2 on a porous substrate 1, as shown in FIG.
.. Electrolyte4. It has a structure in which hydrogen electrodes 6 are sequentially stacked.

この電池の製造方法としてはプラズマスプレー法が知ら
れており、実際にもこの方法でセルが作られている。
A plasma spray method is known as a method for manufacturing this battery, and cells are actually manufactured using this method.

多孔質基板1は自立できない薄膜型燃料電池を支えるも
ので、かつカス透過性の良いものである。
The porous substrate 1 supports a thin film fuel cell that cannot stand on its own, and has good sludge permeability.

固体電解質がLaF3で膨張係数(]、]7.2X10
−6/’Cが大ぎいために、膨張係数をマツチングする
ようにステンレス5US31.6Lの多孔質板を使用し
ている。
The solid electrolyte is LaF3 and has an expansion coefficient (], ]7.2X10
-6/'C is too large, so a porous plate of stainless steel 5US31.6L is used to match the expansion coefficient.

酸素極2は低温での酸素分子の酸素イオン化の触媒能の
高い、膨張係数のマツチングを考えて、ペロブスカイト
化合物Lao、eS ro 4cOo 、8NO020
3又はLao、oS ro4MnO,、、La0.6S
 r o、、C’r O3等を使用している。
The oxygen electrode 2 is made of perovskite compounds Lao, eS ro 4cOo, 8NO020, which have high catalytic ability for oxygen ionization of oxygen molecules at low temperatures and matching expansion coefficients.
3 or Lao, oS ro4MnO, , La0.6S
r o, , C'r O3, etc. are used.

これらのペロブスカイト酸素極2はプラズマスプレー法
により100μmの厚さに作製され、その後熱処理を十
分に行いプラスマスプレー時の熱及び機械的ストレスよ
り生じる結晶構造の乱れを回復させである。
These perovskite oxygen electrodes 2 are fabricated to a thickness of 100 μm by plasma spraying, and then sufficiently heat treated to recover the disordered crystal structure caused by heat and mechanical stress during plasma spraying.

このように作成したペロブスカイト酸素極2の上にプラ
ズマスプレー法によりLaF3を100μmの厚さに積
層して電解質層4とし、この上に水素イオン化能が高く
、かつ価格の安いNiを100μmの厚さに積層し水素
極6としてセルが作られている。
LaF3 is laminated to a thickness of 100 μm using a plasma spray method on the perovskite oxygen electrode 2 created in this way to form an electrolyte layer 4, and Ni, which has high hydrogen ionization ability and is inexpensive, is deposited on top of this to a thickness of 100 μm. A cell is made by stacking the hydrogen electrodes 6 on top of each other.

なお、Niはプラズマスプレーの際中に一部NiOに変
化するか、電池運転中H2ガスによってNiに変化する
Note that Ni partially changes to NiO during plasma spraying or changes to Ni by H2 gas during battery operation.

D6発明が解決しようとする課題 上記従来セルは、複素インピーダンス測定法により界面
インピーダンスを測定すると、30〜100Ω・0m2
(400°C)あり、これは主にペロブスカイト酸素極
/LaF3界面が原因であることがわかった。出力0.
7V−200〜300m A / c m 2のV−I
特性を得るためには、セル全体のインピーダンスを0.
XΩ・0m2にしなければならないのに、現在界面イン
ピータンスだけで20〜60Ω・0m2もあり、大きな
技術的問題となっている。(セル全体のインピーダンス
−固体電解質のバルクインピーダンス+L a F 3
/ペロブス力イト界面インピーダンス+LaF3/Ni
電極界面インピーダンス+それぞれの電極のバルクイン
ピーダンス) また、水素電極として触媒能の高いNiを使用している
が、固体電解質(LaF3)の膨張係数(17,2X1
0−6/°C)に比べてNi(11,9×10−6/°
C)は非常に小さいので、膨張係数のミスマツチングが
生じており、電池の運転(高温)−電池の運転停止(低
温)の繰り返しによるヒI・ザイクルにより固体電解質
(La、F、、)とNi極との間で剥離が生じるという
問題点があった。
D6 Problems to be Solved by the Invention When the interface impedance of the above conventional cell is measured using the complex impedance measurement method, it is 30 to 100Ω・0m2.
(400°C), and it was found that this was mainly caused by the perovskite oxygen electrode/LaF3 interface. Output 0.
7V-200~300m A/cm2 V-I
In order to obtain the characteristics, the impedance of the entire cell should be set to 0.
Although it has to be set to XΩ·0m2, currently the interfacial impedance alone is 20 to 60Ω·0m2, which is a big technical problem. (Impedance of the entire cell - Bulk impedance of solid electrolyte + L a F 3
/ Perobus force interface impedance + LaF3/Ni
(electrode interface impedance + bulk impedance of each electrode) In addition, Ni with high catalytic ability is used as the hydrogen electrode, but the expansion coefficient of the solid electrolyte (LaF3) (17,2X1
Ni (11,9×10-6/°C) compared to Ni (11,9×10-6/°C)
Since C) is very small, mismatching of expansion coefficients occurs, and the solid electrolyte (La, F,...) and Ni There was a problem in that peeling occurred between the electrodes.

本発明は従来術のこのような問題点に鑑みてなされたも
のであり、その目的とするところは、界面インピーダン
スを減小させることのできる低温固体電解質型燃料電池
用電極の製造法及びヒートザイクルにより電解質と水素
極との間で剥離の生することのない低温固体電解質型燃
料電池用電極の製造法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the conventional techniques, and its purpose is to provide a method for manufacturing electrodes for low-temperature solid oxide fuel cells that can reduce interfacial impedance, and a heat cycle. An object of the present invention is to provide a method for manufacturing an electrode for a low-temperature solid electrolyte fuel cell in which peeling does not occur between an electrolyte and a hydrogen electrode.

E9課題を解決するための手段 上記目的を達成するために、本発明の固体電解質型燃料
電池用電極の製造方法は、 酸素極、固体電解質、水素極を積層して成る固体電解質
型燃料電池において、各層間のうち少なくとも一方の層
間に、積層時に相互に接する両材料の混合体から成る中
間層を設けるものである。
E9 Means for Solving the Problems In order to achieve the above object, the method for manufacturing an electrode for a solid oxide fuel cell of the present invention includes the following steps: , an intermediate layer made of a mixture of both materials that contacts each other during lamination is provided between at least one of the layers.

また、ペロブスカイト化合物を製膜した酸素極の上に固
体電解質層を積層し、その上にNiを使用した水素極を
積層してなる燃料電池の製造方法において、前記酸素極
の上に該酸素極に使用しているペロブスカイト化合物と
前記固体電解質層に使われている固体電解質との混合体
からなる中間層を設けた後、この中間層上に前記固体電
解質層を設けるものである。
Further, in a method for producing a fuel cell in which a solid electrolyte layer is laminated on an oxygen electrode formed of a perovskite compound film, and a hydrogen electrode using Ni is laminated on top of the solid electrolyte layer, the oxygen electrode is laminated on the oxygen electrode. After providing an intermediate layer made of a mixture of the perovskite compound used in the solid electrolyte layer and the solid electrolyte used in the solid electrolyte layer, the solid electrolyte layer is provided on the intermediate layer.

また、ペロブスカイト化合物を製膜した酸素極の上に固
体電解質層を積層し、その上にNiを使用した水素極を
積層してなる燃料電池の製造方法において、前記固体電
解質層の上に該固体電解質層に使用している固体電解質
と前記水素極に使用しているNiとの混合体からなる中
間層を設けた後、この中間層上に前記水素電極を設ける
ものである。
In addition, in a method for manufacturing a fuel cell in which a solid electrolyte layer is laminated on an oxygen electrode formed of a film of a perovskite compound, and a hydrogen electrode using Ni is laminated on top of the solid electrolyte layer, the solid After providing an intermediate layer made of a mixture of the solid electrolyte used in the electrolyte layer and Ni used in the hydrogen electrode, the hydrogen electrode is provided on this intermediate layer.

F9作用 ペロブスカイト化合物よりなる酸素極と固体電解層との
間に酸素極に使われているペロブスカイト化合物と固体
電解層に使われている固体電解質との混合体からなる中
間層を設けると、界面インピータンスが小さくなる。こ
のため電池の電圧電流特性が向上する。
If an intermediate layer made of a mixture of the perovskite compound used in the oxygen electrode and the solid electrolyte used in the solid electrolyte layer is provided between the oxygen electrode made of the F9 action perovskite compound and the solid electrolyte layer, the interfacial impedance will be reduced. The chest of drawers becomes smaller. Therefore, the voltage-current characteristics of the battery are improved.

また、固体電解層とNi水素極との間に固体電解質層に
使われている固体電解質と水素極に使われているNiと
の混合体からなる中間層を設けると、隣接層間の膨張係
数の差が小さくなるので、温度変化により固体電解質と
Ni水素極間に剥離を生ずることがなくなる。
Furthermore, if an intermediate layer made of a mixture of the solid electrolyte used in the solid electrolyte layer and the Ni used in the hydrogen electrode is provided between the solid electrolyte layer and the Ni hydrogen electrode, the expansion coefficient between the adjacent layers can be reduced. Since the difference becomes smaller, separation between the solid electrolyte and the Ni hydrogen electrode will not occur due to temperature changes.

G、実施例 第1図は実施例1〜3により作成される電池のセル断面
を示す。
G. Example FIG. 1 shows cell cross sections of batteries prepared according to Examples 1 to 3.

実施例1 (1)ステンレス5US316L製焼結フイルター(直
径44.5mm、厚さ3.0 mm、ろ過精度2μm)
よりなる多孔質基板1の上に、ペロブスカイト化合物L
ao、eS r+)4COo 9gNio、o203を
プラズマスプレー法で約100μmの厚さに製膜し、そ
の後十分に熱処理してペロブスカイト酸素極2を作る。
Example 1 (1) Sintered filter made of stainless steel 5US316L (diameter 44.5 mm, thickness 3.0 mm, filtration accuracy 2 μm)
A perovskite compound L is placed on a porous substrate 1 made of
ao, eS r+)4COo 9gNio, o203 is formed into a film with a thickness of about 100 μm by a plasma spray method, and then sufficiently heat-treated to form a perovskite oxygen electrode 2.

(2)この酸素極2の上に同じLa(1,eS ro 
 4CO0,98N i O0203(以下LSCNと
いう)粉と電解質層に使用する電解質LaF3粉(どち
らの粉末も10〜80μmに粉径調整)から、LSCN
/LaF3=1 : 1 (容積比)の混合粉を作り、
この混合粉を以下のプラズマスプレー条件で溶射し約2
0μmに積層した中間層3を作る。
(2) The same La (1, eS ro
From 4CO0,98N i O0203 (hereinafter referred to as LSCN) powder and electrolyte LaF3 powder used for the electrolyte layer (both powders have a powder diameter adjusted to 10 to 80 μm), LSCN
/LaF3=1:1 (volume ratio) mixed powder was made,
This mixed powder was sprayed under the following plasma spray conditions for approximately 2
An intermediate layer 3 is made by laminating the layers to a thickness of 0 μm.

プラズマガス:Air  2.8A!/min保護カス
:Ar、]、QA/min 溶射距離・120mm パウダー供給量:6g/min キャリアーガス A i r、  1.8A /m i
 nパワー+14.3V−110A (3)この中間層3の上に、LaF3粉を次のプラズマ
スプレー条件で積層し約100μm厚さのLaF3電解
質層4を作る。
Plasma gas: Air 2.8A! /min Protective residue: Ar, ], QA/min Thermal spraying distance: 120mm Powder supply amount: 6g/min Carrier gas Air, 1.8A/min
n power +14.3V-110A (3) On this intermediate layer 3, LaF3 powder is laminated under the following plasma spray conditions to form a LaF3 electrolyte layer 4 with a thickness of about 100 μm.

プラズマガス:Ar  2,3A/min保護ガス:A
r、1.OA/min 溶射距離:90mm パウダー供給量:5g/min キャリアーガス:Ar  ]、8#/minパワー: 
1−37V−]、 10A (4)LaF3電解質層上に、溶射用Ni粉(昭和電工
製M−80)1.0〜44μmのものを次のプラズマス
プレー条件で約100μm厚さに積層しNi水素極6を
作る。
Plasma gas: Ar 2,3A/min Protective gas: A
r, 1. OA/min Spraying distance: 90mm Powder supply amount: 5g/min Carrier gas: Ar], 8#/min Power:
1-37V-], 10A (4) On the LaF3 electrolyte layer, Ni powder for thermal spraying (M-80 manufactured by Showa Denko) with a thickness of 1.0 to 44 μm was laminated to a thickness of about 100 μm under the following plasma spray conditions. Make hydrogen electrode 6.

プラズマガス:Ar、  2.31/min保護ガス:
Ar、1.On/min 溶射距離+140mm パウダー供給量:9.Og/min キャリアーガス: A r 、  2 I/ m i 
nパワー145V−110A (比較例1) 実施例1において、(2)の工程によるLSCN/La
F3混合物の中間層3がないもの、他は全て同じ。
Plasma gas: Ar, 2.31/min Protective gas:
Ar, 1. On/min Spraying distance +140mm Powder supply amount: 9. Og/min Carrier gas: A r , 2 I/mi
n power 145V-110A (Comparative example 1) In Example 1, LSCN/La by step (2)
The one without intermediate layer 3 of the F3 mixture, all else being the same.

実施例2 実施例1のペロブスカイト混合物をLao、6S r 
o、、Mn O3(以下LSMOという)に変え、他は
実施例1と同様に作った。
Example 2 The perovskite mixture of Example 1 was mixed with Lao, 6S r
o,,MnO3 (hereinafter referred to as LSMO) was used, and the other conditions were the same as in Example 1.

(比較例2) 実施例2において(2)の工程によるLSMO/LaF
3の混合物の中間層がないもの。
(Comparative Example 2) LSMO/LaF obtained by step (2) in Example 2
A mixture of 3 without an intermediate layer.

実施例3 実施例1のペロブスカイト混合物をL a o、。Example 3 The perovskite mixture of Example 1 is L ao.

S r(、,4CrOs (以下LSCr○という)に
変え、他は実施例1と同様に作った。
It was made in the same manner as in Example 1 except that Sr(,,4CrOs (hereinafter referred to as LSCr○)) was used.

(比較例3) 実施例3において(2)の工程による L S Cr O/ L a F 3の混合物の中間層
がないもの。
(Comparative Example 3) Example 3 without the intermediate layer of the L S Cr O/La F 3 mixture obtained in step (2).

表1に、実施例1..2.3及び比較例1,23により
作成したセルの界面インピーダンスを複素インピーダン
ス法で測定した結果を示す。
Table 1 shows Example 1. .. 2.3 and Comparative Examples 1 and 23, the interfacial impedances of the cells prepared according to Comparative Examples 1 and 23 were measured using the complex impedance method.

表1 単位・Ω・0m2 表1の結果より明らかなように、実施例1〜3によれば
、酸素極2と電解質層4との間にペロブスカイト化合物
/ L a F 3の中間層3を設けたことにより界面
インピータンスを大幅に減少させることができた。
Table 1 Unit・Ω・0m2 As is clear from the results in Table 1, according to Examples 1 to 3, the intermediate layer 3 of perovskite compound/L a F 3 was provided between the oxygen electrode 2 and the electrolyte layer 4. This made it possible to significantly reduce the interfacial impedance.

なお、固体電解質とペロブスカイト化合物の混合割合1
:1が望ましいが、1:99〜99:1(容積比)とす
ることができる。
In addition, the mixing ratio of solid electrolyte and perovskite compound is 1
:1 is desirable, but it can be 1:99 to 99:1 (volume ratio).

酸素極及び中間層に使用されるペロブスカイI・化合物
は、次の3種である。
The following three types of Perovsky I compounds are used for the oxygen electrode and the intermediate layer.

■La1−xSr、Co1−yNiVO3X、0〜0.
9.y:0〜0.5望ましくはXO,4,y=0.02 ■L a 1−xS r、Mn 03 X、0〜0.9望ましくはx=0.4 ■La1−.5rxCr○3 X=O〜0.9望ましくはx=0.4 固体電解質としては、LaF3.LaoF、La1−x
MxF3−x (M: S r、Sa、Ca等)La 
1− x M X Op + −xを使用する。
■La1-xSr, Co1-yNiVO3X, 0-0.
9. y: 0 to 0.5, preferably XO, 4, y=0.02 ■La 1-xS r, Mn 03 X, 0 to 0.9, preferably x=0.4 ■La1-. 5rxCr○3 X=O~0.9 Preferably x=0.4 As the solid electrolyte, LaF3. LaoF, La1-x
MxF3-x (M: S r, Sa, Ca, etc.) La
1- x M X Op + -x is used.

酸素極上に設ける中間層の厚さは、10〜20μmとす
るのがよい。
The thickness of the intermediate layer provided on the oxygen electrode is preferably 10 to 20 μm.

ペロブスカイト酸素極、Ni水素極はプラズマスプレー
以外にガス溶射でもよい。
The perovskite oxygen electrode and the Ni hydrogen electrode may be formed by gas spraying instead of plasma spraying.

第2図は実施例4及び5により作成される電池のセル断
面を示す。
FIG. 2 shows cell cross sections of batteries produced according to Examples 4 and 5.

実施例4 (1)ステンレスSUS 304製の焼結フィルター(
直径44.5mm、厚さ3.0mm、ろ過精度2μm)
よりなる多孔質基板1の上に、ペロブスカイト化合物L
ao、6S rQ 4COo 98NjO,1)203
をプラズマスプレー法で約100μmの厚さに積層し酸
素極2を作り、この」−にL a F 3をプラズマス
プレー法で100μmの厚さに積層して電解質層4を作
る。
Example 4 (1) Sintered filter made of stainless steel SUS 304 (
Diameter 44.5mm, thickness 3.0mm, filtration accuracy 2μm)
A perovskite compound L is placed on a porous substrate 1 made of
ao, 6S rQ 4COo 98NjO, 1) 203
was laminated to a thickness of about 100 μm using a plasma spray method to form an oxygen electrode 2, and L a F 3 was laminated to a thickness of about 100 μm to a thickness of 100 μm to this layer by a plasma spray method to form an electrolyte layer 4.

(2)この電解質層4の上に、溶射用Ni粉(昭和電工
製M  80)10〜44 μm + LaF、、粉(
造粒して10〜80μmに調整したもの)−11(容積
比)に混合した混合粉を作り、この混合粉を以下の条件
でプラズマスプレーで約20μmの厚さに積層し中間層
5を作る。
(2) On top of this electrolyte layer 4, Ni powder for thermal spraying (M80 manufactured by Showa Denko) 10 to 44 μm + LaF powder (
(granulated and adjusted to 10 to 80 μm) - 11 (volume ratio) mixed powder is made, and this mixed powder is laminated to a thickness of about 20 μm using plasma spray under the following conditions to form the intermediate layer 5. .

プラズマガス:Ar、2.8A/min保護ガス:Ar
、1.0A/min 溶則距離:140mm 粉供給量:6g/min キャリアーガス” r 、  1 、8 (! / m
 i nパワー 137V−1,1OA (3)この中間層5 (7)−、hl: N i粉(M
−80)のみを使ってこのNi粉を以下の条件でプラズ
マスプレーにより約100μmの厚さに積層し水素極6
を作った。
Plasma gas: Ar, 2.8A/min Protective gas: Ar
, 1.0A/min Melting distance: 140mm Powder supply amount: 6g/min Carrier gas "r, 1, 8 (! / m
i n power 137V-1,1OA (3) This intermediate layer 5 (7)-, hl: Ni powder (M
-80), this Ni powder was laminated to a thickness of about 100 μm by plasma spraying under the following conditions.
made.

プラズマガス:Ar  2.8//min保護ガス:A
r、1.O1/min 溶射距離:140mm パウダー供給量:9g/min キャリアーガス:24/min パワー: 145V−11OA 実施例5 実施例4の水素極をNi粉を次のガス溶射条件で溶射し
たものに変え、他は実施例4と同様にして作った。
Plasma gas: Ar 2.8//min Protective gas: A
r, 1. O1/min Spraying distance: 140mm Powder supply amount: 9g/min Carrier gas: 24/min Power: 145V-11OA Example 5 The hydrogen electrode in Example 4 was replaced with one in which Ni powder was sprayed under the following gas spraying conditions. The rest was made in the same manner as in Example 4.

カス組成:C2H2102 溶射距離+200mm パウダー供給量:25g/min キャリアーガス: N2. 4ffl 7m i n実
施例4及び5により作製した固体電解質型燃料電池を室
温→500°Cの温度昇降を昇降速度100°C/hで
100回繰り返したところ電解質4と水素極6との間で
の剥離は何ら現れなかった。
Residue composition: C2H2102 Spraying distance +200mm Powder supply amount: 25g/min Carrier gas: N2. 4ffl 7min When the temperature of the solid electrolyte fuel cell prepared according to Examples 4 and 5 was raised and lowered from room temperature to 500°C 100 times at a raising/lowering rate of 100°C/h, the temperature between the electrolyte 4 and the hydrogen electrode 6 was No peeling appeared.

また、室温→500℃で昇降を速度200°C/hで1
00回繰り返しても剥離は何ら現れなかった。
Also, from room temperature to 500°C, lift and lower at a speed of 200°C/h.
Even after repeating the test 00 times, no peeling appeared.

なお、固体電解質とNiとの混合割分は、望ましくは1
:1であるが、■=99〜99・1 (容積比)とする
ことかできる。
Note that the mixing ratio of the solid electrolyte and Ni is preferably 1
:1, but ■=99 to 99·1 (volume ratio) can be used.

固体電解質としては、LaF3.La0F。As the solid electrolyte, LaF3. La0F.

La1−、MxF3−x (M: S r :Ba)、
LaM x OFl−Xが使用できる。
La1-, MxF3-x (M: S r :Ba),
LaM x OFl-X can be used.

固体電解質上の中間層、及びNi水素極の製膜法はプラ
ズマスプレー法、ガス溶射法に限定されるものではない
The method for forming the intermediate layer on the solid electrolyte and the Ni hydrogen electrode is not limited to the plasma spray method or the gas spray method.

H1発明の効果 本発明は、上述のとおり構成されているので、次に記載
する効果を奏する。
H1 Effects of the Invention Since the present invention is configured as described above, it produces the following effects.

(1)酸素極と固体電解質問に中間層を設けることによ
り、固体電解質との間の界面インピーダンスが小さい酸
素電極が得られる。これにより電圧電流特性のより燃料
電池を得ることができる。
(1) By providing an intermediate layer between the oxygen electrode and the solid electrolyte, an oxygen electrode with low interfacial impedance with the solid electrolyte can be obtained. This makes it possible to obtain a fuel cell with better voltage-current characteristics.

(2)固体電解質と水素極間に中間層を設けることによ
り、温度変化により固体電解質層から剥離することのな
い水素電極が得られる。これにより燃料電池の寿命が向
上する。
(2) By providing an intermediate layer between the solid electrolyte and the hydrogen electrode, a hydrogen electrode that does not peel off from the solid electrolyte layer due to temperature changes can be obtained. This improves the lifespan of the fuel cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、夫々本発明の異なる実施例により
作られる燃料電池のセル断面構成図、第3図は従来燃料
電池のセル断面構成図を示す。 ■・・多孔質基板、2・・酸素極、3,5・・中間層、
4・・・固体電解質層、6・・・水素極。 外1名
1 and 2 are cross-sectional configuration diagrams of fuel cells manufactured according to different embodiments of the present invention, and FIG. 3 is a cross-sectional configuration diagram of a conventional fuel cell. ■... Porous substrate, 2... Oxygen electrode, 3, 5... Intermediate layer,
4... Solid electrolyte layer, 6... Hydrogen electrode. 1 other person

Claims (3)

【特許請求の範囲】[Claims] (1)酸素極、固体電解質、水素極を積層して成る固体
電解質型燃料電池において、各層間のうち少なくとも一
方の層間に、積層時に相互に接する両材料の混合体から
成る中間層を設けることを特徴とする固体電解質型燃料
電池用電極の製造方法。
(1) In a solid oxide fuel cell formed by stacking an oxygen electrode, a solid electrolyte, and a hydrogen electrode, an intermediate layer made of a mixture of the two materials that contacts each other during stacking is provided between at least one of the layers. A method for producing an electrode for a solid electrolyte fuel cell, characterized by:
(2)ペロブスカイト化合物を製膜した酸素極の上に固
体電解質層を積層し、その上にNiを使用した水素極を
積層してなる燃料電池の製造方法において、 前記酸素極の上に該酸素極に使用しているペロブスカイ
ト化合物と前記固体電解質層に使われている固体電解質
との混合体からなる中間層を設けた後、この中間層上に
前記固体電解質層を設けたことを特徴とする固体電解質
型燃料電池用電極の製造方法。
(2) A method for producing a fuel cell in which a solid electrolyte layer is laminated on an oxygen electrode formed of a film of a perovskite compound, and a hydrogen electrode using Ni is laminated on top of the solid electrolyte layer, in which the oxygen After providing an intermediate layer made of a mixture of the perovskite compound used in the electrode and the solid electrolyte used in the solid electrolyte layer, the solid electrolyte layer is provided on this intermediate layer. A method for manufacturing an electrode for a solid electrolyte fuel cell.
(3)ペロブスカイト化合物を製膜した酸素極の上に固
体電解質層を積層し、その上にNiを使用した水素極を
積層してなる燃料電池の製造方法において、 前記固体電解質層の上に該固体電解質層に使用している
固体電解質と前記水素極に使用しているNiとの混合体
からなる中間層を設けた後、この中間層上に前記水素電
極を設けたことを特徴とする固体電解質型燃料電池の製
造方法。
(3) A method for manufacturing a fuel cell in which a solid electrolyte layer is laminated on an oxygen electrode made of a perovskite compound, and a hydrogen electrode made of Ni is laminated on top of the solid electrolyte layer, wherein A solid state characterized in that an intermediate layer made of a mixture of the solid electrolyte used in the solid electrolyte layer and Ni used in the hydrogen electrode is provided, and then the hydrogen electrode is provided on this intermediate layer. A method for manufacturing an electrolyte fuel cell.
JP2221776A 1990-08-23 1990-08-23 Manufacture of electrode for solid electrolyte fuel cell Pending JPH04104470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221776A JPH04104470A (en) 1990-08-23 1990-08-23 Manufacture of electrode for solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221776A JPH04104470A (en) 1990-08-23 1990-08-23 Manufacture of electrode for solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH04104470A true JPH04104470A (en) 1992-04-06

Family

ID=16772021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221776A Pending JPH04104470A (en) 1990-08-23 1990-08-23 Manufacture of electrode for solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH04104470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059523A (en) * 2001-08-14 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell
WO2022137691A1 (en) * 2020-12-23 2022-06-30 三井金属鉱業株式会社 Nickel powder, method for producing same, conductive composition, and conductive film
WO2024000742A1 (en) * 2022-06-30 2024-01-04 苏州大学 Perovskite oxide-transition metal phosphide heterostructure composite electrode material, preparation method therefor, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059523A (en) * 2001-08-14 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell
WO2022137691A1 (en) * 2020-12-23 2022-06-30 三井金属鉱業株式会社 Nickel powder, method for producing same, conductive composition, and conductive film
WO2024000742A1 (en) * 2022-06-30 2024-01-04 苏州大学 Perovskite oxide-transition metal phosphide heterostructure composite electrode material, preparation method therefor, and use thereof

Similar Documents

Publication Publication Date Title
Choy et al. The development of intermediate-temperature solid oxide fuel cells for the next millennium
JP5418284B2 (en) ION ELECTROLYTE MEMBRANE STRUCTURE, ITS MANUFACTURING METHOD, AND SOLID OXIDE FUEL CELL USING ION ELECTROLYTE MEMBRANE STRUCTURE
JP4029321B2 (en) Porous oxide film, method for producing the same, and fuel cell using the same
JP2012506127A (en) New materials and structures for low temperature SOFC
Mehta et al. Two-layer fuel cell electrolyte structure by sol-gel processing
ES2912750T3 (en) A method for producing an SOFC cathode diffusion barrier layer and an SOFC
Cheng et al. Enhancing oxygen exchange activity by tailoring perovskite surfaces
CN103460479A (en) Sintering additives for ceramic devices obtainable in a low pO2 atmosphere
Princivalle et al. Microstructural investigations of nanostructured La (Sr) MnO3-δ films deposited by electrostatic spray deposition
JPH08138690A (en) Solid electrolyte fuel cell
JP2012502441A (en) SOFC battery electrolyte and method for producing the same
JP3915500B2 (en) THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME
CN111009675B (en) Solid oxide fuel cell and preparation method thereof
TW588116B (en) Reduced grain boundary crystalline thin films
JP2005503246A (en) Oxide ion conductive ceramic membrane structure / microstructure, use to separate oxygen from air
JPH04104470A (en) Manufacture of electrode for solid electrolyte fuel cell
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JPH0381962A (en) Solid electrolyte fuel cell
KR20140067193A (en) Method of manufacturing porous composite thin film and the porous composite thin film for electrode
JPH04324251A (en) Manufacture of interconnector for solid electrolyte fuel cell
KR20040098139A (en) Thin film solid electrolyte and a method for preparing the same
JPH0652869A (en) Solid electrolyte film of fuel cell and manufacture thereof
JPS62268063A (en) Manufacture of solid electrolyte
CN209561540U (en) A kind of collector plate, fuel cell and its precursor
JP2005078951A (en) Single cell for solid oxide fuel battery and its manufacturing method