JPH0410410A - Thin film processing equipment - Google Patents

Thin film processing equipment

Info

Publication number
JPH0410410A
JPH0410410A JP2482290A JP2482290A JPH0410410A JP H0410410 A JPH0410410 A JP H0410410A JP 2482290 A JP2482290 A JP 2482290A JP 2482290 A JP2482290 A JP 2482290A JP H0410410 A JPH0410410 A JP H0410410A
Authority
JP
Japan
Prior art keywords
substrate
reaction tube
thin film
infrared
lamps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2482290A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kikuta
光洋 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2482290A priority Critical patent/JPH0410410A/en
Publication of JPH0410410A publication Critical patent/JPH0410410A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable high-quality films at low temperature without deterioration such as thermal distortion by providing infrared lamps and ultraviolet lamps for irradiating the deposition surface of a substrate S installed in a reaction tube. CONSTITUTION:An Si substrate S is installed on a susceptor 2; then a reaction tube 1 is kept hermetic with hydrogen gas atmosphere and pressure-reduced, and this state is retained. With the susceptor 2 driven by rotation, infrared lamps 3<3 are switched on to heat the substrate S by irradiation with infrared rays. At this time, ultraviolet lamps 4, 4 are turned on, too, to irradiate the deposition surface of the substrate S with ultraviolet rays. This state is retained for a given period of time for hydrogen baking of the substrate S. Next, disilane gas and hydrogen gas are introduced simultaneously into a reaction tube 1 to make an Si thin film epitaxially grown from the surface of the substrate S. After completion of film deposition, the reaction tube 1 is filled with hydrogen gas atmosphere again, and next infrared lamps and ultraviolet lamps 3, 4 are switched off.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体基板等の表面に薄膜を成長させる装置
に関し、さらに詳しくは、基板表面上に化学気相成長に
よって薄膜を形成する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an apparatus for growing a thin film on the surface of a semiconductor substrate, etc., and more particularly relates to an apparatus for forming a thin film on the surface of a substrate by chemical vapor deposition. .

〈従来の技術〉 一般に、半導体素子は基板となるウェハを出発材料とし
て、基板上に様々な膜を形成し、かつ基板に不純物を拡
散、またはエツチング等により基板を加工して製造され
る。
<Prior Art> In general, semiconductor devices are manufactured by using a wafer as a substrate as a starting material, forming various films on the substrate, and processing the substrate by diffusing impurities into the substrate or etching the substrate.

近年、半導体素子の高集積・高性能化および半導体基板
の大口径化に伴い、それら半導体素子を製造する各々の
工程に要求される製造条件はますます厳しくなってきて
いる。
In recent years, as semiconductor devices have become more highly integrated and have higher performance, and semiconductor substrates have become larger in diameter, the manufacturing conditions required for each process for manufacturing these semiconductor devices have become increasingly strict.

半導体素子の製造工程のうち、半導体基板上に単結晶ま
たは多結晶および非晶質を形成させる薄膜形成工程にお
いては、成膜温度の低温化と薄膜の高品質化および膜均
一性の向上環が要求されている。
In the manufacturing process of semiconductor devices, in the thin film formation process in which single crystal, polycrystalline, and amorphous materials are formed on a semiconductor substrate, it is important to lower the film formation temperature, improve the quality of the thin film, and improve film uniformity. requested.

例えば、Si基板表面にSi薄膜を気相エピタキシャル
成長させる装置は、第2図に示すように、石英製の反応
管21内部の支持台22(サセプタ等)に置かれた半導
体基板5(Si単結晶基板)を、反応管21の外部に設
置された赤外線ランプ23からの赤外線照射により加熱
し、この状態で反応管21内部に水素ガスおよびシラン
等の原料ガスを導入することによって、その基板表面上
にSi薄膜をエピタキシャル成長させるよう構成されて
いる。
For example, an apparatus for growing a Si thin film on the surface of a Si substrate by vapor phase epitaxial growth is, as shown in FIG. The substrate (substrate) is heated by infrared irradiation from an infrared lamp 23 installed outside the reaction tube 21, and in this state hydrogen gas and raw material gas such as silane are introduced into the reaction tube 21, so that the surface of the substrate is heated. It is configured to epitaxially grow a Si thin film.

ところが、このような装置においては、反応温度が例え
ば600°C程度の低温とした場合、正常なエピタキシ
ャル成長ができない。これは、シランガス等の原料ガス
の熱分解反応および基板表面上での原子の活性化が不十
分であることが原因であるとされている。従って、低温
でエピタキシャル成長を行うには、上記の熱分解反応お
よび活性化を他の方法によって促進する必要がある。
However, in such an apparatus, when the reaction temperature is set to a low temperature of, for example, about 600° C., normal epitaxial growth cannot be performed. This is said to be caused by insufficient thermal decomposition reaction of the raw material gas such as silane gas and insufficient activation of atoms on the substrate surface. Therefore, in order to perform epitaxial growth at low temperatures, it is necessary to promote the above-mentioned thermal decomposition reaction and activation by other methods.

その反応活性化等を促進する方法としては、従来、プラ
ズマやECR(電子サイクロトロン共鳴)を利用する方
法、あるいはレーザや紫外光を利用する方法等がある。
Conventional methods for promoting reaction activation include methods using plasma and ECR (electron cyclotron resonance), and methods using laser and ultraviolet light.

第3図に紫外光を利用した光エピタキシャル成長装置の
従来の構成例を示す。
FIG. 3 shows an example of a conventional configuration of an optical epitaxial growth apparatus using ultraviolet light.

石英製の反応管31内部に設置された支持台32に置か
れた半導体基板Sを、反応管31の下部に設置された赤
外線ランプ33によって加熱するとともに、反応管31
の上部に設置された水銀ランプ34によって、半導体基
板S表面に紫外光を照射した状態で、反応管31内部に
水素ガスおよび原料ガスを導入し、基板上にSiをエピ
タキシャル成長させる。このように半導体基板S表面に
紫外光を照射することで成長反応等が促進され、これに
より反応温度が600″C程度の低温であっても正常な
エピタキシャル成長が可能となる。
A semiconductor substrate S placed on a support stand 32 installed inside a reaction tube 31 made of quartz is heated by an infrared lamp 33 installed at the bottom of the reaction tube 31.
While the surface of the semiconductor substrate S is irradiated with ultraviolet light by a mercury lamp 34 installed above the reactor tube 31, hydrogen gas and raw material gas are introduced into the reaction tube 31 to epitaxially grow Si on the substrate. By irradiating the surface of the semiconductor substrate S with ultraviolet light in this manner, growth reactions and the like are promoted, thereby allowing normal epitaxial growth even at a low reaction temperature of about 600''C.

〈発明が解決しようとする課題〉 ところで、第3図に示した光エピタキシャル成長装置に
よれば、基板Sの裏面に赤外線が支持台を介して間接的
に照射されるため、どうしても基板の裏面側がより高く
加熱され、基板の表面と裏面側に温度差が生じて基板に
熱歪みが発生する。
<Problems to be Solved by the Invention> By the way, according to the optical epitaxial growth apparatus shown in FIG. The substrate is heated to a high temperature, creating a temperature difference between the front and back sides of the substrate, causing thermal distortion in the substrate.

この熱歪みにより、形成される薄膜および半導体基板に
様々な悪影響が及ぶ。しかも、基板加熱の熱ロスが大き
いという問題がある。
This thermal strain has various adverse effects on the formed thin film and semiconductor substrate. Moreover, there is a problem in that heat loss during substrate heating is large.

また、半導体基板下方に赤外線ランプが隙間なく設置さ
れるため、基板を回転させる機構を設けることができず
、このため、得られる薄膜の膜質および膜厚等の均一性
が充分に得られないなどの問題がある。
In addition, since the infrared lamps are installed tightly below the semiconductor substrate, it is not possible to provide a mechanism to rotate the substrate, and as a result, the resulting thin film is not sufficiently uniform in film quality and thickness. There is a problem.

本発明の目的は、基板に熱歪み等の劣化が発生すること
が少なく、しかも、低温で良質の薄膜を得ることができ
る装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus that is less likely to cause deterioration such as thermal strain on a substrate and can obtain a high-quality thin film at a low temperature.

〈課題を解決するための手段〉 上記の目的を達成するための構成を、実施例に対応する
第1図を参照しつつ説明すると、本発明は、反応管1内
で基板Sを所定温度に加熱し、その基板S表面に反応ガ
スを導くことによって、その基板S表面上に薄膜を成長
させる装置において、反応管1内に設置された基板Sの
成膜面に赤外線および紫外線を照射するための、それぞ
れの光源(赤外線ランプおよび紫外線ランプ)3・・・
3.44を備えていることによって特徴づけられる。
<Means for Solving the Problems> The configuration for achieving the above object will be explained with reference to FIG. 1 corresponding to the embodiment. In an apparatus for growing a thin film on the surface of a substrate S by heating and guiding a reactive gas to the surface of the substrate S, for irradiating infrared rays and ultraviolet rays onto the film forming surface of the substrate S installed in the reaction tube 1. , each light source (infrared lamp and ultraviolet lamp) 3...
3.44.

〈作用〉 反応管1内に置かれた基板S表面に、赤外線を直接的に
照射することにより、加熱効率が向上しこれによって基
板の表面と裏面側との温度差が少なくなる。さらに、基
板Sの成膜面に赤外線および紫外線を同時に照射するこ
とにより、熱ロスが少なく反応成長の効率が向上する。
<Function> By directly irradiating the surface of the substrate S placed in the reaction tube 1 with infrared rays, heating efficiency is improved, thereby reducing the temperature difference between the front and back sides of the substrate. Furthermore, by simultaneously irradiating the film-forming surface of the substrate S with infrared rays and ultraviolet rays, heat loss is reduced and the efficiency of reaction growth is improved.

また、基板S下方に回転機構等を設置するスペースを確
保できる。
Further, a space can be secured below the substrate S to install a rotation mechanism and the like.

〈実施例〉 第1図は本発明実施例の構成図で、(a)は反応管1を
その軸方向と直交する方向で切断して示す側面図、また
(b)は反応管1をその軸方向に沿って切断して示す側
面図である。なお、(b)においては反応管1部のみを
示している。
<Example> Fig. 1 is a block diagram of an example of the present invention, in which (a) is a side view showing the reaction tube 1 cut in a direction perpendicular to its axial direction, and (b) is a side view showing the reaction tube 1 in its axial direction. FIG. 3 is a side view cut along the axial direction. In addition, in (b), only one part of the reaction tube is shown.

石英製の反応管1内部に支持台2が配設されており、こ
の支持台2に膜を形成すべき基板Sが装着される。支持
台2は、反応管1の下方外部に設けられた回転機構5の
軸5aによって支持されている。なお、反応管1は、減
圧下において成膜を行えるように、円筒状もしくはある
程度の曲率をもつ筒状に成形されている。
A support stand 2 is disposed inside a reaction tube 1 made of quartz, and a substrate S on which a film is to be formed is mounted on this support stand 2. The support stand 2 is supported by a shaft 5a of a rotation mechanism 5 provided below and outside the reaction tube 1. Note that the reaction tube 1 is formed into a cylindrical shape or a cylindrical shape with a certain degree of curvature so that film formation can be performed under reduced pressure.

反応管1の一方の開口部1a側にはガス導入口が設けら
れており、このガス導入口にキャリアガスおよび反応ガ
ス供給源(ともに図示せず)がそれぞれ接続されている
。また、他方の開口部、ガス排出口1bには圧力制御装
置(図示せず)が接続されている。
A gas introduction port is provided on one opening 1a side of the reaction tube 1, and a carrier gas and a reaction gas supply source (both not shown) are connected to this gas introduction port, respectively. Further, a pressure control device (not shown) is connected to the other opening, the gas discharge port 1b.

反応管1の外部周囲には複数個の赤外線ランプ3・・・
3が配列されており、これらの赤外線ランプ3の点灯に
より、支持台2に置かれた基板Sの表面および裏面の双
方に赤外線を照射できる。また反応管1の外部には、支
持台2に置かれた基板Sよりも上方位置で、かつ、赤外
線ランプ群3・・・3とは干渉しない位置に水銀ランプ
等の紫外線ランプ4が配設されており、この紫外線ラン
プ4の点灯により、基板Sの表面つまり成膜面に紫外線
を照射できる。なお、各ランプ3または4の外方には、
赤外線および紫外線を外方に洩れさせることなく反応管
1内部に導くための円弧状反射板6または7がそれぞれ
配設されている。
A plurality of infrared lamps 3 are installed around the outside of the reaction tube 1.
3 are arranged, and by lighting these infrared lamps 3, both the front and back surfaces of the substrate S placed on the support stand 2 can be irradiated with infrared rays. Furthermore, an ultraviolet lamp 4 such as a mercury lamp is disposed outside the reaction tube 1 at a position above the substrate S placed on the support stand 2 and at a position that does not interfere with the infrared lamp group 3...3. By lighting the ultraviolet lamp 4, the surface of the substrate S, that is, the film-forming surface, can be irradiated with ultraviolet rays. In addition, on the outside of each lamp 3 or 4,
Arc-shaped reflecting plates 6 or 7 are respectively provided to guide infrared rays and ultraviolet rays into the reaction tube 1 without leaking them to the outside.

なお、反応管1、各ランプ3.4および各反射板6,7
は、それぞれ冷却水または冷却空気等によって充分に冷
却できる構造となっている。
In addition, the reaction tube 1, each lamp 3.4, and each reflection plate 6, 7
These are designed to be sufficiently cooled by cooling water or cooling air, respectively.

次に、以上の本発明実施例を使用して、St単結晶基板
(ウェハ)にSin膜を成長させる手順を説明する。な
お、キャリアガスとしては水素ガス、また反応ガスとし
てはジシラン(SiJ6)を用いる。
Next, a procedure for growing a Sin film on a St single crystal substrate (wafer) will be explained using the above-described embodiment of the present invention. Note that hydrogen gas is used as a carrier gas, and disilane (SiJ6) is used as a reaction gas.

まず、Si基板Sを支持台2上に設置し、次いで反応管
1内の気密を保持し、この状態で、まずは水素ガスを反
応管1内部に導入してその内部を水素ガス雰囲気とする
とともに、圧力制御装置によって内圧を10Torrま
で減圧し、この状態を保持する。
First, the Si substrate S is placed on the support 2, and then the inside of the reaction tube 1 is kept airtight. In this state, hydrogen gas is first introduced into the reaction tube 1 to create a hydrogen gas atmosphere inside the reaction tube 1. , the internal pressure is reduced to 10 Torr by the pressure control device, and this state is maintained.

次に、支持台2を回転駆動した状態で、赤外線ランプ3
・・・3を点灯して、基板Sに赤外線を照射し基板Sを
700°Cまで加熱する。このとき同時に紫外線ランプ
4.4も点灯して、基板Sの成膜面に紫外光照射する。
Next, while the support base 2 is rotationally driven, the infrared lamp 3
... 3 is turned on and the substrate S is irradiated with infrared rays to heat the substrate S to 700°C. At this time, the ultraviolet lamp 4.4 is also turned on to irradiate the film-forming surface of the substrate S with ultraviolet light.

そしてこの状態を10分間保持して基板Sに水素ベーク
処理を施す。
Then, this state is maintained for 10 minutes and the substrate S is subjected to hydrogen baking treatment.

次に、反応管1内部にジシランガスおよび水素ガスを同
時に導入して、基板S表面上にSi薄膜をエピタキシャ
ル成長させる。この成膜時間は約20分程度とする。ま
た、成膜中における反応管1の内圧は10Torrとす
る。
Next, disilane gas and hydrogen gas are simultaneously introduced into the reaction tube 1 to epitaxially grow a Si thin film on the surface of the substrate S. The film forming time is about 20 minutes. Further, the internal pressure of the reaction tube 1 during film formation is 10 Torr.

そして、成膜が完了した後、反応管1の内部を再び水素
ガス雰囲気とし、次いで各赤外線および紫外線ランプ3
.4の消灯する。その後、基板Sの温度が室温程度まで
降下した時点で、支持台2の回転駆動を停止し、水素ガ
スの導入を止め反応管1内部を窒素ガスによってパージ
し、次いテ基板Sを反応管1から取り出す。
After the film formation is completed, the inside of the reaction tube 1 is made into a hydrogen gas atmosphere again, and then each of the infrared and ultraviolet lamps 3
.. 4 lights out. After that, when the temperature of the substrate S drops to about room temperature, the rotation of the support stand 2 is stopped, the introduction of hydrogen gas is stopped, and the inside of the reaction tube 1 is purged with nitrogen gas, and then the substrate S is placed in the reaction tube. Take it out from 1.

以上の手順によって、Si基板上に成長させたSin膜
の表面を、結晶欠陥評価用のエッチャントでエツチング
し光学顕微鏡で観察したところ、スリップや欠陥等のな
い良質なエピタキシャル成長層が形成されていることが
確認できた。また、膜厚および比抵抗を測定したところ
、その均一性も良好な結果が得られた。
The surface of the Si film grown on the Si substrate according to the above procedure was etched with an etchant for evaluating crystal defects and observed with an optical microscope, and it was found that a high-quality epitaxial growth layer with no slips or defects was formed. was confirmed. Furthermore, when the film thickness and specific resistance were measured, good results were obtained in terms of uniformity.

ここで、以上の本発明実施例においては、反応管1内の
基板Sの表面および裏面の双方に赤外線を照射できるの
で、基板Sの加熱が全体に亘って一様となり、基板Sの
熱歪み等による悪影響をさらに軽減できる。また、成長
反応を減圧下で行うことによって、低温でより良質な薄
膜を得ることが可能となる。
Here, in the above-described embodiment of the present invention, since infrared rays can be irradiated to both the front and back surfaces of the substrate S in the reaction tube 1, the heating of the substrate S is uniform throughout, and thermal distortion of the substrate S is reduced. It is possible to further reduce the negative effects caused by Moreover, by performing the growth reaction under reduced pressure, it becomes possible to obtain a thin film of better quality at a lower temperature.

なお、赤外線および紫外線ランプ3,4のそれぞれの位
置は、支持台2に置かれた基板Sの成膜面に赤外線およ
び紫外線を照射できる位置であれば特に限定されない。
Note that the respective positions of the infrared and ultraviolet lamps 3 and 4 are not particularly limited as long as they can irradiate the film-forming surface of the substrate S placed on the support stand 2 with infrared and ultraviolet rays.

また、その各ランプの個数も任意の個数とすることがで
きる。
Moreover, the number of each lamp can also be set to an arbitrary number.

また、以上の本発明実施例においては、5iFi4膜を
エピタキシャル成長させる例について説明したが、これ
に限定されることなく、反応管1内部に導入するガスを
適宜に変更することにより、例えば多結晶Si薄膜やS
i窒化膜等の他の薄膜を成長させることも可能である。
Further, in the above embodiments of the present invention, an example in which a 5iFi4 film is epitaxially grown has been described, but the invention is not limited to this, and by appropriately changing the gas introduced into the reaction tube 1, it is possible to grow polycrystalline Si, for example. Thin film or S
It is also possible to grow other thin films such as i-nitride films.

さらに、本発明は、基板表面に多結晶または非晶質薄膜
を成長させる、他の一般的な化学気相成長装置にも適用
可能である。
Furthermore, the present invention is also applicable to other common chemical vapor deposition apparatuses that grow polycrystalline or amorphous thin films on substrate surfaces.

〈発明の効果〉 以上説明したように、本発明によれば、反応管内に置か
れた基板の成膜面に、赤外線および紫外線を同時に照射
できるよう構成したので、基板の熱歪み等が少なく、し
かも熱ロスが少ない高効率の反応成長が行える結果、従
来に比して良質な薄膜を得ることができる。また、基板
を回転させるための機構を設置することが可能となって
、得られる薄膜の膜質および膜厚等の均一性も良好とな
る。
<Effects of the Invention> As explained above, according to the present invention, since the film forming surface of the substrate placed in the reaction tube is configured to be irradiated with infrared rays and ultraviolet rays simultaneously, there is little thermal distortion of the substrate, etc. Moreover, as a result of highly efficient reaction growth with less heat loss, it is possible to obtain thin films of better quality than in the past. Furthermore, it becomes possible to install a mechanism for rotating the substrate, and the resulting thin film has good film quality and uniformity in film thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成図である。 第2図および第3図はそれぞれ気相エピタキシャル成長
装置の従来の構成例を示す図である。 1・・・反応管 2・・・支持台 3・・・3・・・赤外線ランプ 4・・・紫外線ランプ 5−・・・回転機構 S・・・基板
FIG. 1 is a block diagram of an embodiment of the present invention. FIGS. 2 and 3 are diagrams each showing an example of a conventional structure of a vapor phase epitaxial growth apparatus. 1...Reaction tube 2...Support stand 3...3...Infrared lamp 4...Ultraviolet lamp 5-...Rotation mechanism S...Substrate

Claims (1)

【特許請求の範囲】[Claims]  反応管内で基板を所定温度に加熱し、その基板表面に
反応ガスを導くことによって、その基板表面上に薄膜を
成長させる装置において、上記反応管内に設置された基
板の成膜面に赤外線および紫外線を照射するための、そ
れぞれの光源を備えていることを特徴とする、薄膜製造
装置。
In an apparatus that grows a thin film on the surface of a substrate by heating the substrate to a predetermined temperature in a reaction tube and introducing a reactive gas to the surface of the substrate, infrared and ultraviolet rays are applied to the film-forming surface of the substrate placed in the reaction tube. 1. A thin film manufacturing device characterized by being equipped with respective light sources for irradiating.
JP2482290A 1990-02-02 1990-02-02 Thin film processing equipment Pending JPH0410410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2482290A JPH0410410A (en) 1990-02-02 1990-02-02 Thin film processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2482290A JPH0410410A (en) 1990-02-02 1990-02-02 Thin film processing equipment

Publications (1)

Publication Number Publication Date
JPH0410410A true JPH0410410A (en) 1992-01-14

Family

ID=12148875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2482290A Pending JPH0410410A (en) 1990-02-02 1990-02-02 Thin film processing equipment

Country Status (1)

Country Link
JP (1) JPH0410410A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399928B1 (en) * 2000-12-29 2003-09-29 주식회사 하이닉스반도체 Apparatus for depositing a single-crystal silicon
WO2005029561A1 (en) * 2003-09-24 2005-03-31 Tokyo Electron Limited Heat treatment apparatus
JP2009535825A (en) * 2006-04-27 2009-10-01 アプライド マテリアルズ インコーポレイテッド Substrate processing chamber using dielectric barrier discharge lamp assembly
JP2015005652A (en) * 2013-06-21 2015-01-08 独立行政法人産業技術総合研究所 Thermal treatment device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399928B1 (en) * 2000-12-29 2003-09-29 주식회사 하이닉스반도체 Apparatus for depositing a single-crystal silicon
WO2005029561A1 (en) * 2003-09-24 2005-03-31 Tokyo Electron Limited Heat treatment apparatus
US7978963B2 (en) 2003-09-24 2011-07-12 Tokyo Electron Limited Thermal processing apparatus
JP2009535825A (en) * 2006-04-27 2009-10-01 アプライド マテリアルズ インコーポレイテッド Substrate processing chamber using dielectric barrier discharge lamp assembly
JP2015005652A (en) * 2013-06-21 2015-01-08 独立行政法人産業技術総合研究所 Thermal treatment device

Similar Documents

Publication Publication Date Title
TWI820036B (en) Epitaxy system integrated with high selectivity oxide removal and high temperature contaminant removal
JP3067940B2 (en) Silicon nitride thin film deposition
TWI687966B (en) Method of processing substrate and vacuum processing system and apparatus
JP3207832B2 (en) CVD reactor and method for producing epitaxially grown semiconductor wafers
CN101151712A (en) A method and system for removing an oxide from a substrate
JPH051380A (en) Silicon carbide film forming method
TW200406827A (en) Manufacturing method of silicon epi-wafer
JPS63307740A (en) Photochemical reaction processing device
JPH0410410A (en) Thin film processing equipment
JP3038524B2 (en) Semiconductor manufacturing equipment
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JPH01256118A (en) Vapor phase reaction equipment
JP3201970B2 (en) Semiconductor film formation method
JPS6252200A (en) Device for gaseous-phase epitaxial growth
JP3024543B2 (en) Crystalline silicon film and method of manufacturing the same
KR200455957Y1 (en) Apparatus For Supplying Gas
JPS63207121A (en) Method and apparatus for manufacturing thin film by photo-cvd
JP4010044B2 (en) Film forming method and apparatus
JPH0737822A (en) Chemical vapor growth device and formation of semiconductor thin film
JPH03256323A (en) Forming method for deposited film and deposited film forming apparatus used therefor
JPS61198733A (en) Method of forming thin-film
JPS62124737A (en) Low-pressure vapor growth device
JPH08236454A (en) Formation of semiconductor film
JPS63118068A (en) Method for selectively growing metallic thin film