JPH0410365A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0410365A
JPH0410365A JP2112023A JP11202390A JPH0410365A JP H0410365 A JPH0410365 A JP H0410365A JP 2112023 A JP2112023 A JP 2112023A JP 11202390 A JP11202390 A JP 11202390A JP H0410365 A JPH0410365 A JP H0410365A
Authority
JP
Japan
Prior art keywords
positive electrode
stainless steel
lithium
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112023A
Other languages
Japanese (ja)
Inventor
Hiroshi Hattori
浩 服部
Tatsu Nagai
龍 長井
Tadashi Kono
正 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2112023A priority Critical patent/JPH0410365A/en
Publication of JPH0410365A publication Critical patent/JPH0410365A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of a positive electrode can, and enable obtaining a lithium secondary battery free from a substantial drop in open circuit voltage and discharge capacity by using ferritic stainless steel containing the predetermined amount of chrome and molybdenum. CONSTITUTION:A polyaniline compact 1 is used as a positive electrode, and a positive electrode can 2 is fabricated with SUS 447J1 as per JIS, ferritic stainless steel containing 30wt.% of chrome and 2.05wt.% of molybdenum. Also, a negative electrode 3 comprises a lithium plate, and is press fitted to a negative power collector 5 of SUS 304 as per JIS, austenite stainless steel preliminarily spot welded to the inner surface of a negative electrode can 4 of SUS 304. According to the aforesaid construction, the corrosion resistance of the positive electrode can 2 is improved, and it is possible to obtain a lithium secondary battery free from a substantial drop in open circuit voltage and discharge capacity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はリチウム二次電池に係わり、さらに詳しくは、
正極缶または正極缶と正極集電体との耐腐食性を高めた
リチウム二次電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a lithium secondary battery, and more specifically,
The present invention relates to a lithium secondary battery in which the corrosion resistance of a positive electrode can or a positive electrode can and a positive electrode current collector is improved.

〔従来の技術] 従来のリチウム二次電池においては、正極缶や正極集電
体に5US304.5US316などのオーステナイト
系ステンレス鋼や5US430系のフェライト系ステン
レス鋼が用いられていた(例えば、特開昭6(]−66
1号公報特開昭62−91529号公報)。
[Prior art] In conventional lithium secondary batteries, austenitic stainless steels such as 5US304.5US316 and ferritic stainless steels such as 5US430 were used for positive electrode cans and positive electrode current collectors (for example, 6(]-66
No. 1 (Japanese Patent Application Laid-Open No. 62-91529).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、正極活物質として高電圧化が可能なポリ
アニリンなどを用い、高電圧、高容量化を目的として充
電終止電圧を高くしたり、充放電を繰り返すと、ステン
レス鋼で作製された正極缶や正極集電体表面の酸化物保
護膜が正極活物質の強力な酸化力などによって損傷を受
けて、孔食腐食が生しる。
However, if polyaniline, which can be used for high voltages, is used as a positive electrode active material, and if the end-of-charge voltage is increased for the purpose of high voltage and high capacity, or if charging and discharging are repeated, the positive electrode can or cathode made of stainless steel The oxide protective film on the surface of the current collector is damaged by the strong oxidizing power of the positive electrode active material, resulting in pitting corrosion.

そして、この孔食腐食が進行すると、負極表面にステン
レス鋼成分が析出して内部短絡の発生や自己放電を促進
して、開路電圧を低下させたり、充放電容量を減少させ
る。
As this pitting corrosion progresses, stainless steel components precipitate on the surface of the negative electrode, promoting the occurrence of internal short circuits and self-discharge, lowering the open circuit voltage and reducing the charge/discharge capacity.

したがって、本発明は、上記従来のリチウム二次電池が
持っていた正極缶や正極集電体が充放電の繰り返しなど
によって孔食腐食が生し、内部短絡の発生や自己放電を
促進するという問題点を解決し、正極缶や正極集電体の
耐腐食性を高めて、開路電圧の低下や充放電容量の低下
が少ないリチウム二次電池を提供することを目的とする
Therefore, the present invention solves the problem that pitting corrosion occurs in the positive electrode can and positive electrode current collector of the conventional lithium secondary battery due to repeated charging and discharging, which promotes internal short circuits and self-discharge. It is an object of the present invention to provide a lithium secondary battery in which the corrosion resistance of the positive electrode can and the positive electrode current collector is improved, and the decrease in open circuit voltage and charge/discharge capacity is minimized.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、正極缶または正極缶と正極集電体にクロムを
28.5〜32.0重量%、モリブデンを1.5〜2.
5重量%含有するフェライト系ステンレス鋼を使用する
ことによって、上記目的を達成したものである。
In the present invention, the positive electrode can or the positive electrode can and the positive electrode current collector contain 28.5 to 32.0% by weight of chromium and 1.5 to 2.0% by weight of molybdenum.
The above object was achieved by using ferritic stainless steel containing 5% by weight.

上記のフェライト系ステンレス鋼は、クロム含有量が2
8,5〜32.0重量%と高く (ちなみに、SUS 
430系のフェライト系ステンレス鋼ではクロム含有量
が16〜18重量%、オーステナイト系ステンレス網で
はクロム含有量が16〜20重量%)、シかもモリブデ
ンを1.5〜2.5重量%含有しているので、ステンレ
ス綱表面に形成される酸化物保護膜が強化され、耐腐食
性が優れている。特にモリブデンは孔食腐食の発生防止
に効果があり、充放電の繰り返しなどによって孔食腐食
が発生するのが防止される。したがって、上記クロムを
28.5〜32.0重量%、モリブデンを1.5〜2.
5重量%含有するフェライト系ステンレス鋼を正極缶や
正極集電体に使用することによって、孔食腐食に基づく
内部短絡の発生や自己放電の促進が防止され、開路電圧
の低下や充放電容量の低下が防止される。
The above ferritic stainless steel has a chromium content of 2
As high as 8.5 to 32.0% by weight (by the way, SUS
430 series ferritic stainless steel has a chromium content of 16 to 18% by weight, austenitic stainless steel has a chromium content of 16 to 20% by weight), and it also contains molybdenum of 1.5 to 2.5% by weight. As a result, the oxide protective film formed on the surface of the stainless steel is strengthened and has excellent corrosion resistance. Molybdenum is particularly effective in preventing pitting corrosion, and prevents pitting corrosion from occurring due to repeated charging and discharging. Therefore, the chromium content is 28.5 to 32.0% by weight, and the molybdenum content is 1.5 to 2.0% by weight.
By using ferritic stainless steel containing 5% by weight for the positive electrode can and positive electrode current collector, the occurrence of internal short circuits due to pitting corrosion and the promotion of self-discharge are prevented, reducing open circuit voltage and charging/discharging capacity. Deterioration is prevented.

また、フェライト系ステンレス鋼であるため、ニッケル
をほとんど含まないので、5O3304などのオーステ
ナイト系ステンレス鋼を正極缶や正極集電体に使用した
場合のようなニッケルに基づ(低電圧下での腐食が生じ
ない。
In addition, since it is a ferritic stainless steel, it contains almost no nickel, so if an austenitic stainless steel such as 5O3304 is used for the positive electrode can or positive electrode current collector, nickel-based (corrosion under low voltage) does not occur.

上記のクロムを28.5〜32,0重量%、モリブデン
を1.5〜2.5重量%を含有したフェライト系ステン
レス鋼の具体例としては、例えばS U S 447J
1などが挙げられる。
A specific example of the above-mentioned ferritic stainless steel containing 28.5 to 32.0% by weight of chromium and 1.5 to 2.5% by weight of molybdenum is, for example, SUS 447J.
1 etc.

本発明において、正極缶または正極缶と正極集電体に使
用するフェライト系ステンレス鋼のクロム含有量を28
.5〜32.0重量%、モリブデン含を量を1.5〜2
.5重置%に特定しているのは、次の理由によるもので
ある。
In the present invention, the chromium content of the ferritic stainless steel used for the positive electrode can or the positive electrode can and the positive electrode current collector is 28%.
.. 5-32.0% by weight, molybdenum content 1.5-2
.. The reason for specifying 5 overlapping percentages is as follows.

すなわち、クロム含有量が28.5重量%より少ない場
合は、耐腐食性が低下し、クロム含有量が32.0重置
%より多くなると、加工性が悪くなるからである。また
、モリブデンの含有量が1.51量%より少ない場合は
、耐腐食性が低下し、モリブデンの含有量が2.5重置
%より多(なると、加工性が悪くなるとともに、コスト
高になるからである。
That is, if the chromium content is less than 28.5% by weight, the corrosion resistance will decrease, and if the chromium content is more than 32.0% by weight, the workability will deteriorate. In addition, if the molybdenum content is less than 1.51% by weight, corrosion resistance will decrease, and if the molybdenum content is more than 2.5% by weight, processability will deteriorate and costs will increase. Because it will be.

負極にはリチウムまたはリチウム合金が用いられる。上
記リチウム合金としては、例えぼりチウム−アルミニウ
ム合金、リチウム−錫合金、リチウム−亜鉛合金、リチ
ウム−鉛合金、リチウムビスマス合金、リチウム−ケイ
素合金、リチウムアンチモン合金、リチウム−マグネシ
ウム合金、リチウム−インジウム合金、リチウム−ガリ
ウム合金、リチウム−ゲルマニウム合金、リチウムガリ
ウム−インジウム合金などが挙げられる。また、それら
のリチウム合金にさらに他の金属を少量添加したものも
負極に用いることができる。
Lithium or a lithium alloy is used for the negative electrode. Examples of the above lithium alloys include lithium-aluminum alloy, lithium-tin alloy, lithium-zinc alloy, lithium-lead alloy, lithium-bismuth alloy, lithium-silicon alloy, lithium-antimony alloy, lithium-magnesium alloy, and lithium-indium alloy. , lithium-gallium alloy, lithium-germanium alloy, lithium gallium-indium alloy, and the like. Moreover, those lithium alloys to which small amounts of other metals are added can also be used for negative electrodes.

電解液は、リチウム二次電池に通常使用されている有機
電解液をいずれも使用することができる。
As the electrolyte, any organic electrolyte commonly used in lithium secondary batteries can be used.

電解液を例示すると、例えば1,2−ジメトキシエタン
、1,2−ジェトキシエタン、エチレンカーボネート、
プロピレンカーボネート、γ−ブチロラクトン、テトラ
ヒドロフラン、1.3−ジオキソラン、4−メチル−1
,3−ジオキソランなどの有機溶媒の単独または2種以
上の混合溶媒に、例えばLic+o4 、LiPFa 
、LiAsF6、Li5bF、、LiBF4、LiCF
z SO3、LiB (C,HS)4などの溶質の1種
または2種以上を溶解させることによって調製した有機
電解液が挙げられる。
Examples of electrolytes include 1,2-dimethoxyethane, 1,2-jethoxyethane, ethylene carbonate,
Propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1
, 3-dioxolane or a mixture of two or more organic solvents, for example, Lic+o4, LiPFa.
, LiAsF6, Li5bF, , LiBF4, LiCF
Examples include organic electrolytes prepared by dissolving one or more solutes such as zSO3 and LiB(C,HS)4.

正極活物質としては、例えばポリアニリン、ポリビロー
ル、ポリチオフェン、ポリフェニレン、ポリアズレン、
ポリアセチレンなどのポリマー活物質、リチウム塩と二
酸化マンガンとを焼成して得られるリチウムマンガン複
合酸化物、LiC。
Examples of positive electrode active materials include polyaniline, polyvirol, polythiophene, polyphenylene, polyazulene,
LiC, a lithium manganese composite oxide obtained by firing a polymer active material such as polyacetylene, lithium salt, and manganese dioxide.

Oz 、Cri Os 、Vz Osなどが用いられる
Oz, CriOs, VzOs, etc. are used.

特にポリアニリンは、高電圧化が可能であり、充放電効
率が良く、自己放電が少ないので、本発明において好適
に使用される。
In particular, polyaniline is preferably used in the present invention because it can be used at a high voltage, has good charge/discharge efficiency, and has little self-discharge.

〔実施例〕〔Example〕

つぎに実施例を挙げて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 蒸留水150aii中に、アニリン10gと42重量%
HBF、水溶液67.1gを加え、フラスコ中で攪拌混
合しながら、二酸化マンガン10.3 gを約1時間か
けて徐々に添加した。二酸化マンガンの添加後、さらに
1時間攪拌を続けてアニリンの重合を行った。
Example 1 10 g of aniline and 42% by weight in 150 aii of distilled water
67.1 g of an aqueous solution of HBF was added, and while stirring and mixing in the flask, 10.3 g of manganese dioxide was gradually added over about 1 hour. After the addition of manganese dioxide, stirring was continued for an additional hour to polymerize aniline.

重合終了後、反応液を濾過し、重合生成物を250dの
蒸留水で1回、250社のアセトンで4回、洗浄と濾過
を繰り返した後、100’Cで5時間真空乾燥を行って
、ポリアニリン粉末9.2gを得た。
After the polymerization was completed, the reaction solution was filtered, and the polymerized product was washed and filtered once with 250 d of distilled water and 4 times with 250 acetone, and then vacuum dried at 100'C for 5 hours. 9.2 g of polyaniline powder was obtained.

得られたポリアニリン粉末50mgを金型に充填して1
.Oton/cfllの圧力で加圧成形し、直径15I
IIII+、厚さ0.35閣のペレット状の成形体を作
製した。
50 mg of the obtained polyaniline powder was filled into a mold and 1
.. Pressure molded at Oton/cfll pressure, diameter 15I
A pellet-shaped molded product having a thickness of 0.35 mm was produced.

このポリアニリン成形体を正極として用い、第1図に示
す構造のリチウム二次電池を作製した。
Using this polyaniline molded body as a positive electrode, a lithium secondary battery having the structure shown in FIG. 1 was produced.

第1図において、(1)は上記ポリアニリン成形体から
なる正極で、(2)は正極缶であり、この正極缶(2)
はクロムを30重量%、モリブデンを2.05重量%含
有するフェライト系ステンレス鋼である5US447J
1で作製されている。(3)は負極であり、この負極(
3)は厚さ0.2gm、直径15閣のリチウム板からな
り、オーステナイト系ステンレス鋼である5US304
製の負極缶(4)の内面にあらかしめスポット溶接して
おいた5US304製の負極集電体(5)に圧着されて
いる。(6)はセパレータで、このセパレータ(6)は
微孔性ポリプロピレンフィルムとポリプロピレン不織布
とを積重してなるものであり、(7)はポリプロピレン
製の環状ガスケットである。そして、この電池の電解液
としては、プロピレンカーボネートと1.2−ジメトキ
シエタンとの容量比1:1の混合溶媒に乾燥処理したL
iBFaを2eAol/ffi溶解した有機電解液が使
用されている。
In FIG. 1, (1) is a positive electrode made of the above-mentioned polyaniline molded body, and (2) is a positive electrode can.
5US447J is a ferritic stainless steel containing 30% by weight of chromium and 2.05% by weight of molybdenum.
It is made with 1. (3) is a negative electrode, and this negative electrode (
3) consists of a lithium plate with a thickness of 0.2 gm and a diameter of 15 cm, and is made of 5US304 austenitic stainless steel.
It is crimped to a negative electrode current collector (5) made of 5US304, which has been pre-spot welded to the inner surface of a negative electrode can (4) made of aluminum. (6) is a separator, and this separator (6) is made by stacking a microporous polypropylene film and a polypropylene nonwoven fabric, and (7) is an annular gasket made of polypropylene. The electrolyte for this battery is L, which has been dried and mixed with a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1:1.
An organic electrolyte in which 2eAol/ffi of iBFa is dissolved is used.

実施例2 本実施例2のリチウム二次電池は、第2図に示すように
、正極(1)の一方の端部に正極集電体(8)を配設し
たものである。
Example 2 As shown in FIG. 2, the lithium secondary battery of Example 2 has a positive electrode current collector (8) disposed at one end of the positive electrode (1).

上記正極集電体(8)は、クロムを30重量%、モリブ
デンを2.05重量%含有するフェライト系ステンレス
鋼であるS U S 447J1製の網からなるもので
、正極(1)の正極缶(2)の底部と接する側に配置さ
れている。
The positive electrode current collector (8) is made of a mesh made of SUS 447J1, which is a ferritic stainless steel containing 30% by weight of chromium and 2.05% by weight of molybdenum. (2) It is arranged on the side that contacts the bottom part.

正極缶(2)は、実施例1と同様に、クロムを30重量
%、モリブデンを2.05重量%含有するフェライト系
ステンレス鋼であるS U S 447J1によって作
製されたものであり、また、負極(3)、負極缶(4)
、負極集電体(5)、セパレータ(6)、ガスケット(
7)なども、実施例1の場合と同様の構成のものである
As in Example 1, the positive electrode can (2) was made of SUS 447J1, which is a ferritic stainless steel containing 30% by weight of chromium and 2.05% by weight of molybdenum. (3), negative electrode can (4)
, negative electrode current collector (5), separator (6), gasket (
7) etc. also have the same configuration as in the first embodiment.

比較例1 正極缶(2)をクロムを18重量%含有するフェライト
系ステンレス鋼製である5US430製のものに変えた
ほかは、実施例1と同様のリチウム二次電池を作製した
Comparative Example 1 A lithium secondary battery was produced in the same manner as in Example 1, except that the positive electrode can (2) was changed to one made of 5US430, which is a ferritic stainless steel containing 18% by weight of chromium.

比較例2 正極缶(2)をオーステナイト系ステンレス鋼である5
US304製のものに変えたほかは、実施例1と同様に
してリチウム二次電池を作製した。
Comparative Example 2 The positive electrode can (2) was made of austenitic stainless steel.
A lithium secondary battery was produced in the same manner as in Example 1, except that the battery was changed to one made of US304.

上記実施例1〜2の電池および比較例1〜2の電池を5
00μAで、3.0■、3.3■、3,5■まで充電し
た後、60°Cで20日間フローティング(各電圧を2
0日間印加し続けること)を行った。
The batteries of Examples 1 and 2 and the batteries of Comparative Examples 1 and 2 were
After charging to 3.0■, 3.3■, 3.5■ at 00μA, float at 60°C for 20 days (each voltage is set to 2).
(continued application for 0 days).

フローティング後の電池の開路電圧を測定し、その後、
充を電流、放電電流とも0.5mAで3.3〜2.OV
の電圧範囲で充放電させ、3サイクル後の放電容量を測
定し、初期放電容量に対する保持率を調べた。その結果
を第1表に示す。
Measure the open circuit voltage of the battery after floating, then
Charging current and discharging current are both 0.5 mA and 3.3 to 2. O.V.
The battery was charged and discharged in a voltage range of 3 cycles, and the discharge capacity was measured after 3 cycles to examine the retention rate with respect to the initial discharge capacity. The results are shown in Table 1.

第1表に示すように、実施例1〜2の電池は、いずれの
フローティング電圧においても、開路電圧の低下が少な
く、また比較例1〜2の電池に比べて、放電容量の保持
率が高かった。これは、実施例1〜2の電池では、正極
缶(2)や正極集電体(8)に耐腐食性の優れたS U
 S 447J1を使用しているので、正極缶(2)や
正極集電体(8)が孔食腐食を生しることが少なく、そ
のため、内部短絡の発生が少なく、自己放電の進行が少
なかったためであると考えられる。
As shown in Table 1, the batteries of Examples 1 and 2 had less drop in open circuit voltage at any floating voltage, and had a higher discharge capacity retention rate than the batteries of Comparative Examples 1 and 2. Ta. This is because in the batteries of Examples 1 and 2, the positive electrode can (2) and the positive electrode current collector (8) were made of S U with excellent corrosion resistance.
Since S447J1 is used, the positive electrode can (2) and the positive electrode current collector (8) are less prone to pitting corrosion, which results in fewer internal short circuits and less progression of self-discharge. It is thought that.

なお、比較例1〜2の電池を3.5■および3.7■で
フローティングを行った後、分解したところ、セパレー
タ上に黒い析出物がみられた。これは、正極缶の一部が
孔食腐食により電解液中に熔解し、それが負極側に移行
し、負極で還元されて生成したステンレス鋼成分の析出
物であると考えられる。
When the batteries of Comparative Examples 1 and 2 were floated at 3.5 and 3.7 square centimeters and then disassembled, black precipitates were observed on the separator. This is considered to be a precipitate of stainless steel components generated by a portion of the positive electrode can being dissolved in the electrolyte due to pitting corrosion, transferred to the negative electrode side, and reduced at the negative electrode.

上記セパレータ上の黒い析出物を蛍光χ線分析で分析し
た結果もそれと一致していた。
The results of analyzing the black precipitate on the separator by fluorescent chi-ray analysis were also consistent with this.

これに対し、実施例1〜2の電池では、3.5■および
3.7■でフローティングし、分解したところ、そのよ
うなセパレータ上への黒色物質の析出はまったく認めら
れなかった。
On the other hand, in the batteries of Examples 1 and 2, when they were floated and decomposed at 3.5 and 3.7 inches, no black substance was observed to be deposited on the separator.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、正極缶または正極缶
と正極集電体にクロムを28.5〜32.0重量%、モ
リブデンを1.5〜2.5重量%含有するフェライト系
ステンレス綱を用いることによって、正極缶や正極集電
体の耐腐食性を高め、内部短絡の発生や自己放電の進行
を防止して、充放電の繰り返しなどに伴う開路電圧の低
下や放電容量の低下が少ないリチウム二次電池を提供す
ることができた。
As explained above, in the present invention, the positive electrode can or the positive electrode can and the positive electrode current collector are made of ferritic stainless steel containing 28.5 to 32.0% by weight of chromium and 1.5 to 2.5% by weight of molybdenum. By using this, the corrosion resistance of the cathode can and cathode current collector is increased, preventing the occurrence of internal short circuits and the progression of self-discharge, and reducing the drop in open circuit voltage and discharge capacity due to repeated charging and discharging. We were able to provide fewer lithium secondary batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1のリチウム二次電池を示す断
面図であり、第2図は本発明の実施例2のリチウム二次
電池を示す断面図である。 (1)・・・正極、 (2)・・・正極缶、 (3)・
・・負極、(4)・・・負極缶、(6)・・・セパレー
タ、(8)・・・正極集電体
FIG. 1 is a cross-sectional view showing a lithium secondary battery according to Example 1 of the present invention, and FIG. 2 is a cross-sectional view showing a lithium secondary battery according to Example 2 of the present invention. (1)...Positive electrode, (2)...Positive electrode can, (3)...
... Negative electrode, (4) ... Negative electrode can, (6) ... Separator, (8) ... Positive electrode current collector

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムまたはリチウム合金を負極に用い、電解
液に有機電解液を用いたリチウム二次電池において、 正極缶または正極缶と正極集電体にクロムを28.5〜
32.0重量%、モリブデンを1.5〜2.5重量%含
有するフェライト系ステンレス鋼を使用したことを特徴
とするリチウム二次電池。
(1) In a lithium secondary battery that uses lithium or a lithium alloy for the negative electrode and an organic electrolyte for the electrolyte, the positive electrode can or the positive electrode can and the positive electrode current collector contain 28.5 to 28.5% chromium.
A lithium secondary battery characterized by using ferritic stainless steel containing 32.0% by weight and 1.5 to 2.5% by weight of molybdenum.
(2)正極活物質としてポリアニリンを使用した請求項
1記載のリチウム二次電池。
(2) The lithium secondary battery according to claim 1, wherein polyaniline is used as the positive electrode active material.
JP2112023A 1990-04-26 1990-04-26 Lithium secondary battery Pending JPH0410365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112023A JPH0410365A (en) 1990-04-26 1990-04-26 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112023A JPH0410365A (en) 1990-04-26 1990-04-26 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0410365A true JPH0410365A (en) 1992-01-14

Family

ID=14576058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112023A Pending JPH0410365A (en) 1990-04-26 1990-04-26 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0410365A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599654A1 (en) * 1992-11-26 1994-06-01 Seiko Electronic Components Ltd. Non-aqueous electrolyte electrochemical cell
JP2002063906A (en) * 2000-08-16 2002-02-28 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2015518278A (en) * 2012-04-13 2015-06-25 ポリジュール・インコーポレイテッドPolyJoule,Inc. Devices and methods comprising polyacetylene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599654A1 (en) * 1992-11-26 1994-06-01 Seiko Electronic Components Ltd. Non-aqueous electrolyte electrochemical cell
US5478670A (en) * 1992-11-26 1995-12-26 Seiko Electronic Components, Ltd. Non-aqueous electrolyte electrochemical cell comprising high Ni austenitic stainless steel positive electrode case
JP2002063906A (en) * 2000-08-16 2002-02-28 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2015518278A (en) * 2012-04-13 2015-06-25 ポリジュール・インコーポレイテッドPolyJoule,Inc. Devices and methods comprising polyacetylene

Similar Documents

Publication Publication Date Title
US7416813B2 (en) Lithium secondary battery
JP2697365B2 (en) Non-aqueous electrolyte secondary battery
US20020192554A1 (en) Lithium secondary battery
US7635542B2 (en) Non-aqueous electrolyte secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JPH06342673A (en) Lithium secondary battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
JPH10255767A (en) Set battery for use in electric vehicle
JPH0410365A (en) Lithium secondary battery
JPH0541251A (en) Nonaqueous electrolyte secondary battery
JP3262404B2 (en) Non-aqueous electrolyte battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPH07161382A (en) Nonaqueous electrolyte secondary battery
JPH0574423A (en) High capacity battery
JP3168600B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JPH1064542A (en) Nonaqueous electrolyte secondary battery
JPH06223833A (en) Chemical battery
JP3418715B2 (en) Organic electrolyte secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JPH05275079A (en) Secondary battery
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
US20030180614A1 (en) Nonaqueous electrolyte cell and its manufacturing method, and positive electrode active material and its manufacturing method
JP2001006733A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it
JPH02126554A (en) Nonaqueous solvent secondary cell
JP2000277113A (en) Lithium secondary battery