JPH04103012A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPH04103012A
JPH04103012A JP22196090A JP22196090A JPH04103012A JP H04103012 A JPH04103012 A JP H04103012A JP 22196090 A JP22196090 A JP 22196090A JP 22196090 A JP22196090 A JP 22196090A JP H04103012 A JPH04103012 A JP H04103012A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic gap
thin film
film magnetic
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22196090A
Other languages
Japanese (ja)
Inventor
Sadaichi Miyauchi
貞一 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22196090A priority Critical patent/JPH04103012A/en
Priority to US07/747,868 priority patent/US5274521A/en
Priority to DE69117389T priority patent/DE69117389T2/en
Priority to EP95112455A priority patent/EP0689196B1/en
Priority to EP91114008A priority patent/EP0472187B1/en
Priority to DE69130368T priority patent/DE69130368T2/en
Publication of JPH04103012A publication Critical patent/JPH04103012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve the characteristic by specifying an angle made against the magnetic gap length direction and selecting other end edges of each opposite side in parallel. CONSTITUTION:When the magnetic gap length direction, and the direction vertical to the magnetic gap length, that is, the track width direction are set as the X direction and the Y direction, respectively, an axis of easy magnetization becomes the Y direction. Accordingly, even in the case of narrow track width, magnetization of a thin film magnetic core 2 in the magnetic gap responds linearly to a magnetic flux which is led in from the magnetic gap 1 at the time of reproduction. Also, it is suppressed that a noise caused by a movement of a magnetic wall, what is called a Barkhausen noise is generated in a reproducing waveform, and magnetic permeability in the vicinity of the magnetic gap,k that is, in the tip part of the thin film magnetic core 2 is deteriorated. In such a way, a sufficient reproducing output can be obtained, and the characteristic can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜磁気ヘッド特に水平型いわゆるプレーナ
型薄膜磁気ヘッドに係わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film magnetic head, particularly a horizontal so-called planar thin film magnetic head.

〔発明の概要〕[Summary of the invention]

本発明は薄膜磁気ヘッドに係わり、磁気記録媒体とほぼ
平行に配置された磁気ギャップを有する薄膜磁気コアを
有し、この薄膜磁気コアは、磁気ギャップを挟んで対向
する両端面の幅によってトラック幅が規制され、磁気ギ
ャップから遠ざかる方向に漸次幅広に形成され、互いに
反対側の一端縁と磁気ギャップの磁気ギャップ長方向と
の成す角θは30″≦θ≦80@とされ、互いに反対側
の他の端縁は上記磁気ギャップ長方向とほぼ平行に選定
されてなることにより、狭トラツク再生の薄膜磁気へン
ドにおいて磁気ギャップ付近の透磁率の低下を回避して
再生出力の向上をはかり、オフトラックにおけるクロス
トークの発生を回避して、低雑音、高品位の再生をはか
り、特性の向上をはかる。
The present invention relates to a thin-film magnetic head, which has a thin-film magnetic core having a magnetic gap arranged substantially parallel to a magnetic recording medium, and the thin-film magnetic core has a track width determined by the width of both end faces facing each other across the magnetic gap. The angle θ formed between one end edge on opposite sides and the magnetic gap length direction of the magnetic gap is 30″≦θ≦80@, and The other edge is selected to be approximately parallel to the length direction of the magnetic gap, thereby improving the reproduction output by avoiding a decrease in magnetic permeability near the magnetic gap in the thin film magnetic head for narrow track reproduction. To avoid crosstalk in the track, achieve low noise, high quality playback, and improve characteristics.

〔従来の技術〕[Conventional technology]

従来の水平型いわゆるプレーナ型の薄膜磁気ヘッドを第
6図〜第8図に示す、第6図は磁気ヘットスライダーの
斜視図、第7図は薄膜磁気ヘッドのトラック幅方向の路
線的拡大断面図、第8図は薄膜磁気ヘッドの磁気ギャッ
プの路線的拡大斜視図である。
A conventional horizontal so-called planar type thin-film magnetic head is shown in FIGS. 6 to 8. FIG. 6 is a perspective view of a magnetic head slider, and FIG. 7 is an enlarged cross-sectional view of the thin-film magnetic head in the track width direction. , FIG. 8 is an enlarged perspective view of the magnetic gap of the thin film magnetic head.

磁気ヘッドスライダ−(30)は第6図に示すように、
基体(31)の磁気記録媒体と対向する側の面に走行方
向に延びる溝(32)が設けられ、この溝(32)によ
ってレール状のA B S (Air Bearing
 5urface)面(31)が構成される。そしてこ
のABS面(31)の走行方向に対して後部側には傾斜
面(34)が設けられ、磁気記録媒体上を滑らかに浮上
走行するようになされている。このABS面(31)の
走行方向に対して前部側に例えばブレーナ型薄膜磁気ヘ
ッド(20)が磁気ヘッドスライダ−(30)に形成さ
れて構成される。
As shown in FIG. 6, the magnetic head slider (30)
A groove (32) extending in the running direction is provided on the surface of the base (31) facing the magnetic recording medium, and this groove (32) allows a rail-shaped ABS (Air Bearing) to be formed.
5 surface) surface (31) is constructed. An inclined surface (34) is provided on the rear side of the ABS surface (31) with respect to the traveling direction, so that the magnetic recording medium can fly smoothly over the magnetic recording medium. For example, a Brenna type thin film magnetic head (20) is formed on a magnetic head slider (30) on the front side of the ABS surface (31) with respect to the running direction.

この薄膜磁気ヘッドは第7図に示すように、スライダー
本体を構成する絶縁材又はシリコン等よりなる基体(3
1)上に形成される。(52)はスルーホール、(53
)は磁性材例えばパーマロイより成る薄膜磁気コア、(
54)は導電層、(55)は絶縁層、(56)はコイル
、(57)は良好なABS面(11)の一部を形成する
被覆層、(58)は磁気ギャップである。
As shown in FIG. 7, this thin-film magnetic head has a base (3
1) Formed on top. (52) is a through hole, (53
) is a thin film magnetic core made of magnetic material such as permalloy, (
54) is a conductive layer, (55) is an insulating layer, (56) is a coil, (57) is a covering layer forming part of the good ABS surface (11), and (58) is a magnetic gap.

このような薄膜磁気コア(53)の磁気ギャップ(58
)付近の形状は、第8図にその斜視図を示すように、磁
気ギャップ(58)から遠ざかるにつれて例えば漸次ト
ラック幅方向に幅が広くなる裾広がり状に形成され、磁
気ギャップ(58)を構成する部分では、薄膜磁気コア
(53)は一定の幅をもった帯状のスロート部(59)
が形成され、このスロート部(59)の幅がトラック幅
TNとなる。(56)はコイルである。
The magnetic gap (58) of such a thin film magnetic core (53)
), as shown in a perspective view in FIG. 8, is formed in a widening shape in which the width gradually increases in the track width direction as it moves away from the magnetic gap (58), and constitutes the magnetic gap (58). The thin film magnetic core (53) has a belt-shaped throat part (59) with a constant width.
is formed, and the width of this throat portion (59) becomes the track width TN. (56) is a coil.

従来のトラック幅T−は約10μ謡程度であり、このよ
うな磁気ギャップ(58)付近では第9図Aに示すよう
に、磁区(60)はトラック幅方向に磁化容易軸を有す
る閉磁区構造を有し、磁気ギャップから流入した磁束に
対して磁化回転で動作し、線形応答をする。
The conventional track width T- is approximately 10μ, and near such a magnetic gap (58), as shown in FIG. 9A, the magnetic domain (60) has a closed domain structure with an axis of easy magnetization in the track width direction. It operates by magnetization rotation and has a linear response to the magnetic flux flowing in from the magnetic gap.

一方、近年磁気記録媒体において、記録の高密度化をは
かるために狭トランク化がはかられている。このため上
述したようなブレーナ型薄膜磁気ヘッドにおいてトラッ
ク幅T−が10μ■未満、例えば5μm程度となる。こ
のようにトランク幅丁−が小となると形状異方性が大と
なり、磁気ギャップ(58)付近の磁区(60)の構造
は、トラック幅方向に磁化が向(と静磁エネルギーが大
となるために、第9図Bに示すように、スロート部(5
9)において、トラック幅方向と直交する方向に磁化容
易軸を有する閉磁区構造となる。このため再生時に磁気
ギヤング(58)から導入した磁束に対して磁気ギャッ
プ付近の薄膜磁気コア(53)の磁壁がヒステリシスを
描きながら動き、非線形応答をすることとなる。
On the other hand, in recent years, efforts have been made to make magnetic recording media narrower in order to increase recording density. Therefore, in the Brehner type thin film magnetic head as described above, the track width T- is less than 10 μm, for example, about 5 μm. In this way, when the trunk width becomes small, the shape anisotropy becomes large, and the structure of the magnetic domain (60) near the magnetic gap (58) is such that the magnetization is oriented in the track width direction (and the static magnetic energy becomes large). Therefore, as shown in Figure 9B, the throat part (5
9), a closed magnetic domain structure having an axis of easy magnetization in a direction perpendicular to the track width direction is obtained. Therefore, during reproduction, the domain wall of the thin film magnetic core (53) near the magnetic gap moves with hysteresis to the magnetic flux introduced from the magnetic Guyang (58), resulting in a nonlinear response.

従って、磁壁移動に伴う雑音いわゆるバルクハウゼンノ
イズが再生波形に発生したり、磁気ギャップ(58)近
傍即ち薄膜磁気コア(53)先端部の透磁率が低下して
、充分な再生出力を得ることができなくなる。
Therefore, noise due to domain wall movement, so-called Barkhausen noise, may occur in the reproduced waveform, and the magnetic permeability near the magnetic gap (58), that is, at the tip of the thin-film magnetic core (53) may decrease, making it difficult to obtain sufficient reproduction output. become unable.

このようなスロート部(59)での磁化容易軸の方向の
回転を抑制するために、第10図に示すようにスロート
部(59)をなくした磁気ギャップ(53)の構造が提
案されている。この場合、薄膜磁気コア(53)は磁気
ギャップ(58)を構成する部分から漸次法がりをもっ
て裾広がりに構成されるため、トラック幅T−は磁気ギ
ャップ(58)での薄膜磁気コア(53)の幅で決まる
。この場合トラック幅T−を10μ−以下程度としても
、磁区(60)の磁化容易軸はトラック幅方向に対して
平行な方向となり、磁化が線形応答をするため再生出力
の低下等の上述の問題を回避できる。しかしながら、図
中A−Aで示すように磁気ギャップ(58)構成部から
離れた領域の薄膜磁気コア(53)間において見かけの
磁気ギャップを構成してしまい、ここにおいて隣接間ク
ロストーク又はオフトラッククロストークが発生すると
いう問題があった。
In order to suppress such rotation in the direction of the axis of easy magnetization at the throat part (59), a structure of the magnetic gap (53) without the throat part (59) has been proposed as shown in FIG. . In this case, since the thin film magnetic core (53) is configured to gradually widen from the part that constitutes the magnetic gap (58), the track width T- is the width of the thin film magnetic core (53) at the magnetic gap (58). determined by the width of In this case, even if the track width T- is approximately 10 μ- or less, the axis of easy magnetization of the magnetic domain (60) will be parallel to the track width direction, and the magnetization will have a linear response, resulting in the above-mentioned problems such as a decrease in reproduction output. can be avoided. However, as shown by A-A in the figure, an apparent magnetic gap is formed between the thin film magnetic cores (53) in a region away from the magnetic gap (58) component, and here, there is crosstalk between adjacent ones or off-track. There was a problem that crosstalk occurred.

上述した例ではブレーナ型薄膜磁気ヘッドについて述べ
たが、上述の巻線コイルで磁束を拾う巻線型磁気ヘッド
のみならず、磁気コア下に磁気抵抗素子いわゆるMR素
子を設けてこれを感磁部として用いた磁気抵抗効果型磁
気ヘッドでも同様に、上述した狭トラック軸化に伴うノ
イズ発生や透磁率低下等が問題となってくる。
In the above example, a Brenna-type thin-film magnetic head was described, but in addition to the above-mentioned wire-wound magnetic head that picks up magnetic flux with a wire-wound coil, it is also possible to use a magnetoresistive element, a so-called MR element, provided under the magnetic core and use this as a magnetic sensing part. Similarly, the magnetoresistive magnetic head used also has problems such as noise generation and decreased magnetic permeability due to the narrower track axis described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上述したような狭トラツク幅化に伴う磁化容易
軸の移動による非線形応答、ノイズの発生、再生出力の
低下等の問題を解決して、狭トラツク幅磁気ヘッドの特
性の向上をはかる。
The present invention aims to improve the characteristics of a narrow track width magnetic head by solving the above-mentioned problems such as nonlinear response, noise generation, and reduction in reproduction output due to movement of the axis of easy magnetization due to the narrowing of the track width.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による磁気ヘッドの一例の要部の路線的拡大上面
図を第1図に示す。
FIG. 1 shows an enlarged top view of essential parts of an example of a magnetic head according to the present invention.

本発明は第1図に示すように、磁気記録媒体とほぼ平行
に配置された磁気ギャップ(1)を有する薄膜磁気コア
(2)を有し、この薄膜磁気コア(2)は、磁気ギャッ
プ(1)を挟んで対向する両端面(3)の幅T−によっ
てトラック幅が規制され、磁気ギャップ(1)から遠ざ
かる方向に漸次幅広に形成され、互いに反対側の一端縁
(4A)及び(5A)と磁気ギャップ(1)の磁気ギャ
ップ長方向との成す角θは30゜≦θ≦80゜とされ、
互いに反対側の他の端縁(4B)及び(5B)は磁気ギ
ャップ長方向とほぼ平行に選定されてなる。
As shown in FIG. 1, the present invention has a thin film magnetic core (2) having a magnetic gap (1) arranged almost parallel to a magnetic recording medium, and this thin film magnetic core (2) has a magnetic gap ( The track width is regulated by the width T- of both end surfaces (3) facing each other with the magnetic gap (1) in between, and the track width is gradually widened in the direction away from the magnetic gap (1). ) and the magnetic gap length direction of the magnetic gap (1), the angle θ is 30°≦θ≦80°,
The other opposite edges (4B) and (5B) are selected to be substantially parallel to the longitudinal direction of the magnetic gap.

〔作用〕[Effect]

上述したように、本発明による薄膜磁気ヘッドによれば
、薄膜磁気コア(2)の形状が、スロート部を設けず、
磁気ギャップ(1)を挟んで対向する両端面(3)の幅
によってトラック幅を規制し、また磁気ギャップ(1)
から遠ざかる方向に漸次幅広に形成される。従って、例
えば20幅T−を10μ−以下程度としても、磁区の構
造は第2図にその路線的上面図を示すように、磁気ギャ
ップ長方向をX方向、磁気ギャップ長に垂直な即ちトラ
ック幅方向をX方向とすると、磁化容易軸がX方向とな
る。
As described above, according to the thin film magnetic head according to the present invention, the shape of the thin film magnetic core (2) is such that the throat portion is not provided;
The track width is regulated by the width of both end surfaces (3) facing each other across the magnetic gap (1), and
The width gradually increases in the direction away from the center. Therefore, for example, even if the 20 width T- is about 10 μ- or less, the magnetic domain structure is such that the magnetic gap length direction is the X direction, and the track width is perpendicular to the magnetic gap length, as shown in the top view of FIG. When the direction is the X direction, the axis of easy magnetization is the X direction.

従って、このような狭トラツク幅としても、再生時に磁
気ギャップ(1)から導入した磁束に対して磁気ギャッ
プ付近の薄膜磁気コア(2)の磁化が線形応答すること
となり、再生波形に磁壁移動に伴う雑音いわゆるバルク
ハウゼンノイズが発生したり、磁気ギャップ(1)近傍
即ち薄膜磁気コア(2)先端部の透磁率の低下すること
を抑制して、充分な再生出力を得ることが可能となる。
Therefore, even with such a narrow track width, the magnetization of the thin film magnetic core (2) near the magnetic gap will respond linearly to the magnetic flux introduced from the magnetic gap (1) during reproduction, and the reproduction waveform will be affected by domain wall movement. It is possible to obtain a sufficient reproduction output by suppressing the occurrence of accompanying noise, so-called Barkhausen noise, and a decrease in magnetic permeability near the magnetic gap (1), that is, at the tip of the thin film magnetic core (2).

また、スロート部をなくして、かつ磁気ギャップ(1)
を構成する薄膜磁気コア(2)の形状を、対向する薄膜
磁気コア(2)において、互いに反対側の一端縁(4八
)及び(5A)と磁気ギャップ(1)の磁気ギャップ長
方向即ちX方向との成す角θを30゜≦θ≦80゜とし
て、互いに反対側の他の端縁(4B)及び(5B)をX
方向とほぼ平行に選定したことにより、トラック幅T−
をlOμ蒙以下程度としても、第1図中AA線で示すよ
うに、磁気ギャップ(1)構成部から離れた領域では、
対向する薄膜磁気コア(2)による磁気ギャップが形成
されないため、隣接間クロストーク又はオフトラックク
ロストークの発生を回避して、低雑音、高品位な再生を
はかり、特性の向上をはかることができる。
In addition, the throat part is eliminated and the magnetic gap (1)
The shape of the thin film magnetic core (2) constituting the thin film magnetic core (2) facing each other is determined in the magnetic gap length direction of the opposite end edge (48) and (5A) of the magnetic gap (1), that is, X The other edges (4B) and (5B) on opposite sides are
The track width T-
Even if it is about 10 μm or less, as shown by line AA in Fig. 1, in the region away from the magnetic gap (1) component,
Since no magnetic gap is formed by the opposing thin film magnetic cores (2), it is possible to avoid the occurrence of adjacent crosstalk or off-track crosstalk, achieve low noise, high quality reproduction, and improve characteristics. .

〔実施例〕〔Example〕

以下、第1図〜第5図を参照して本発明による薄膜磁気
ヘッドの一例を詳細に説明する。第3図は第1図に示す
薄膜磁気ヘッドのB−B線上の路線的拡大断面図、第4
図はMR素子の一例の側面図、第5図は薄膜磁気ヘッド
の再生態様を示す断面図で、第3図〜第5図において第
1図と対応する部分には同一符号を付して示す。
Hereinafter, an example of a thin film magnetic head according to the present invention will be described in detail with reference to FIGS. 1 to 5. FIG. 3 is an enlarged cross-sectional view along line B-B of the thin-film magnetic head shown in FIG.
The figure is a side view of an example of an MR element, and FIG. 5 is a cross-sectional view showing the reproduction state of a thin-film magnetic head. In FIGS. 3 to 5, parts corresponding to those in FIG. .

この場合MR素子を具備したヨーク型ブレーナMRヘッ
ドの例で、第3図に示すように、パーマロイNiFeメ
ツキ膜等よりなる薄膜磁気コア(2)が上部ヨーク(2
A)及び下部ヨーク(2B)とより成り、上部ヨーク(
2A)と下部ヨーク(2B)との間にコイル(8)が設
けられ、上部ヨーク(2A)は、磁気記録媒体と対向す
る側即ちABS面(11)に向かって例えば漸次傾斜し
て、磁気ギャップ(1)を構成する部分が磁気記録媒体
との対向面即ちABS面(11)と同一平面上に形成さ
れる構成を採る。そして磁気ギャップ(1)の下側には
MR素子(6)が配置されて、このMR素子(6)の下
にはMR素子(6)のバイアス磁界を発生するためのバ
イアス磁界発生用導体(7)が形成される。(12)は
SiO2等より成る絶縁層である。
In this case, in an example of a yoke-type brainer MR head equipped with an MR element, as shown in FIG.
A) and a lower yoke (2B), and an upper yoke (2B).
A coil (8) is provided between the upper yoke (2A) and the lower yoke (2B), and the upper yoke (2A) is, for example, gradually inclined toward the side facing the magnetic recording medium, that is, the ABS surface (11). A configuration is adopted in which the portion constituting the gap (1) is formed on the same plane as the surface facing the magnetic recording medium, that is, the ABS surface (11). An MR element (6) is arranged below the magnetic gap (1), and a bias magnetic field generating conductor ( 7) is formed. (12) is an insulating layer made of SiO2 or the like.

このような薄膜磁気ヘッドの形成方法は、例えばAlt
os ・TiC,CaTi01.フェライト系セラミッ
ク。
A method for forming such a thin film magnetic head is, for example, Alt.
os・TiC, CaTi01. Ferrite ceramic.

結晶化ガラス等より成る絶縁基体(21)上に下部ヨー
ク(2B)を例えばいわゆるフレームメツキにょって形
成し、これの上に5ift等より成る絶縁層(12)を
介して更にCu等の導電薄膜パターンより成るコイル(
8)を形成し、このコイル(8)上を覆うように全面的
にSing等より成る絶縁層(12)を被着する。そし
て絶縁層(12)に孔開けを例えばRIE(反応性イオ
ンエツチング)によって行い、この孔にN1ce等の磁
性体を埋込んで下部ヨーク(2B)と後述する上部ヨー
ク(2A)との接続部(2C)を形成し、更に絶縁11
(12)を被着し、Cu等より成るバイアス磁界発生用
導体(7)と、絶縁層(12)を介してMR素子(6)
をフォトリソグラフィによるパターンエツチング等によ
って形成する。
A lower yoke (2B) is formed on an insulating substrate (21) made of crystallized glass or the like by, for example, so-called frame plating, and on top of this, an insulating layer (12) made of 5ift or the like is interposed, and then a conductive layer of Cu or the like is further formed. A coil consisting of a thin film pattern (
8), and an insulating layer (12) made of Sing or the like is deposited over the entire surface of the coil (8). Then, a hole is made in the insulating layer (12) by, for example, RIE (reactive ion etching), and a magnetic material such as N1ce is filled in the hole to connect the lower yoke (2B) and the upper yoke (2A), which will be described later. (2C) and further insulation 11
(12), a bias magnetic field generating conductor (7) made of Cu or the like, and an MR element (6) via an insulating layer (12).
is formed by pattern etching using photolithography.

このMR素子(6)は例えば第4図にその路線的側面図
を示すように、膜厚300人程程度2層NiFeより成
る構造とし、それぞれトラック幅方向即ちX方向に磁化
容易軸を有する第1及び第2のMR薄II (6A)及
び(6B)が、互いに静磁的結合が生じるも交換相互作
用がほとんど生じることのない例えば30人程度の5i
Otよりなる非磁性層(14)を介在させて積層して構
成する。
This MR element (6) has a structure made of two layers of NiFe with a film thickness of about 300 layers, as shown in a linear side view in FIG. The first and second MR thin II (6A) and (6B) are 5i of about 30 people, for example, where magnetostatic coupling occurs with each other but almost no exchange interaction occurs.
It is constructed by laminating layers with a nonmagnetic layer (14) made of Ot interposed therebetween.

そして第3図に示すように、バイアス磁界発生用導体m
及びMR素子(6)上を覆って絶縁層(12)を厚く被
着した後これを磁気ギャップ形成部に向かってテーパ状
となすようにテーバエツチングを行う、その後磁気ギャ
ップ(1)を構成する部分の絶縁層(12)を残して異
方性エツチングを行う、そして接続部(2C)のNiF
e層に接続させてこの上にNiFe等をメツキ等により
被着した後所要のパターンにバターニングして上部ヨー
ク(2A)を形成する。上部ヨーク(2A)上に再びS
iO□等より成る絶縁層(12)による保護膜を被着し
た後表面を研磨してABS面(11)を形成して、薄膜
磁気ヘッド(20)を得る。
As shown in Fig. 3, a bias magnetic field generating conductor m
After depositing a thick insulating layer (12) over the MR element (6), the insulating layer (12) is taper-etched so as to taper toward the magnetic gap forming portion, and then the magnetic gap (1) is formed. Anisotropic etching is performed leaving the insulating layer (12) in the part, and the NiF in the connection part (2C) is etched.
After connecting to the e layer and depositing NiFe or the like by plating or the like, the upper yoke (2A) is formed by patterning into a desired pattern. S again on the upper yoke (2A)
After a protective film of an insulating layer (12) made of iO□ or the like is deposited, the surface is polished to form an ABS surface (11) to obtain a thin film magnetic head (20).

そしてこのような構成において、第1図に示すように、
薄膜磁気コア(2)の、磁気ギヤ・ンプ(1)を挟んで
対向する両端面(3)の幅即ちトラック幅T−を5μ−
とした。また、薄膜磁気コア(2)は磁気ギヤ・ノブ(
1)から遠ざかる方向に漸次幅広に形成され、互いに反
対側の一端縁(4A)及び(5A)と磁気ギヤ、ノブ(
1)のギャップ長方向即ちX方向との成す角度θを約4
5°とし、互いに反対側の他の端縁(5A)及び(5B
)は磁気ギヤツブ長方向X方向とほぼ平行に形成した。
In such a configuration, as shown in Figure 1,
The width of both end faces (3) of the thin film magnetic core (2) facing each other across the magnetic gear amplifier (1), that is, the track width T-, is 5 μ-.
And so. In addition, the thin film magnetic core (2) has a magnetic gear knob (
1), and is formed to gradually become wider in the direction away from the edge (4A) and (5A) on opposite sides, magnetic gear, knob (
1) The angle θ formed with the gap length direction, that is, the X direction, is approximately 4.
5°, and the other opposite edges (5A) and (5B
) was formed substantially parallel to the longitudinal direction of the magnetic gear.

また、この磁気ギャップ(1)の下にMR素子(6)を
X方向に配置し、更にMR素子(6)の下にこれと垂直
に即ちX方向にバイアス用磁界発生用導体(7)を配置
する。そしてこの場合、上部ヨーク(2A)の、互いに
反対側の一端縁(4A)及び(5A)がX方向に対して
45°としたので、全体としてX方向から時計回りに4
5°回転した斜め方向に上部ヨーク(2A)が延長する
ように形成されているため、コイル(8)を介して45
°傾いた方向に沿って下部ヨーク(2B)を形成した。
Further, an MR element (6) is placed under the magnetic gap (1) in the X direction, and a bias magnetic field generating conductor (7) is placed under the MR element (6) perpendicularly thereto, that is, in the X direction. Deploy. In this case, one end edge (4A) and (5A) on the opposite sides of the upper yoke (2A) are set at 45 degrees with respect to the X direction, so the total angle is 45 degrees clockwise from the
Since the upper yoke (2A) is formed to extend in the diagonal direction rotated by 5 degrees, the upper yoke (2A) is
The lower yoke (2B) was formed along the tilted direction.

この場合、トラック幅Twを5μ園程度としても磁気ギ
ャップ(1)を構成する薄膜磁気コア(2)が実質的に
幅広に形成されるため、その磁区構造は第2図に示すよ
うに、磁化容易軸がトラック幅方向即ちX方向となし得
、透磁率の低下を回避して良好な再生出力を得ることが
できる。
In this case, even if the track width Tw is about 5 μm, the thin film magnetic core (2) constituting the magnetic gap (1) is formed substantially wide, so that its magnetic domain structure is The easy axis can be set in the track width direction, that is, the X direction, and it is possible to avoid a decrease in magnetic permeability and obtain a good reproduction output.

また、第1図中A−A線で示すオフトランク領域におい
て、上部ヨーク(2A)の片側が磁気ギヤ・ノブ長方向
即ちX方向にほぼ平行に形成されているため、即ち片側
のみの構成となってギャップが構成されないため、ここ
における隣接間クロス) −り及びオフトラックのクコ
ストークを回避することができる。
In addition, in the off-trunk region shown by line A-A in FIG. 1, one side of the upper yoke (2A) is formed almost parallel to the magnetic gear knob length direction, that is, the X direction, that is, it is configured with only one side. Since no gap is formed in this case, it is possible to avoid inter-adjacent cross-over and off-track space talk.

尚、上述したようなMR素子(6)にはオフトラック領
域においてシールドとなる上部ヨーク(2A)の片側が
欠けた状態となることによって、ここにおけるシールド
効果が失われる恐れがあると考えられるが、実際上は、
オフトラック信号による磁束はMR素子(6)に対しそ
の磁化容易軸方向にかかることから、この信号は殆ど再
生されることがない。
Furthermore, in the MR element (6) as described above, if one side of the upper yoke (2A) that serves as a shield is missing in the off-track region, there is a possibility that the shielding effect here may be lost. , in practice,
Since the magnetic flux due to the off-track signal is applied to the MR element (6) in the direction of its axis of easy magnetization, this signal is hardly reproduced.

即ち、第5図に路線的断面図を示すように、磁気記録媒
体(15)の磁化遷移部(16)が磁気ギャップ(1)
の直上以外の位置となって、上部ヨーク(2A)の−部
から矢印aで示す方向に入ってきた磁束がMR素子(6
)を困難軸方向に流れたときに再生信号が得られる。
That is, as shown in a cross-sectional view in FIG.
At a position other than directly above the MR element (6
) flows in the direction of the difficult axis, a reproduced signal is obtained.

尚、上述した例では薄膜磁気コア(2)の上部ヨーク(
2八)の形状を、互いに反対側の一端縁(4八)及び(
5A)とX方向との成す角θを45″としたが、この角
θは30゜≦θ≦80@では殆ど問題になるクロストー
クが生じないことが確かめられた。また互いに反対側の
他の端縁(4B)及び(5B)はX方向とほぼ平行とし
たが、上述のクロストークの問題が生じない程度であれ
ば、X方向に対して多少の角度をもって形成しても良い
In the above example, the upper yoke (
28), one end edge (48) on the opposite side and (
5A) and the X direction was set to 45'', but it was confirmed that when this angle θ is 30°≦θ≦80@, almost no problematic crosstalk occurs. Although the edges (4B) and (5B) are substantially parallel to the X direction, they may be formed at some angle to the X direction as long as the above-mentioned crosstalk problem does not occur.

また上述した例においては、薄膜磁気コア(2)をNi
Feメツキ膜としたが、その他FeCoNiメツキ膜、
NiFeスパッタ膜、FeAZSiスパッタ膜等、また
その他Fe系スパッタ膜、CoZrNb、 CoZrT
a等のアモルファス磁性膜を用いてもよい。記録用コイ
ル(8)やバイアス磁界発生用導体(7)はCuと共に
、AZなどの各スパッタ膜、メツキ膜を用いてもよい。
Further, in the above example, the thin film magnetic core (2) is made of Ni.
Although it is a Fe-plated film, other FeCoNi-plated films,
NiFe sputtered film, FeAZSi sputtered film, etc., other Fe-based sputtered films, CoZrNb, CoZrT
An amorphous magnetic film such as a may also be used. For the recording coil (8) and the bias magnetic field generating conductor (7), in addition to Cu, a sputtered film such as AZ or a plating film may be used.

更にまた、上述の例はMR素子を用いたヨーク型プレー
ナ薄膜磁気ヘッドに適用した場合であるが、その他巻線
コイルによ、って記録再生を行ういわゆる薄膜磁気ヘッ
ド等にも本発明構造を適用することができる。
Furthermore, although the above example is applied to a yoke-type planar thin-film magnetic head using an MR element, the structure of the present invention can also be applied to other so-called thin-film magnetic heads that perform recording and reproduction using wire-wound coils. Can be applied.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明による薄膜磁気ヘッドによれば
、I膜磁気コア(2)の形状が、スロート部を設けず、
磁気ギャップ(1)を挟んで対向する両端面(3)の幅
によってトラック幅を規制し、また磁気ギャップ(1)
から遠ざかる方向に漸次幅広に形成される。従って、例
えばこの幅T−を10μ−以下程度としても、磁区の構
造は第2図にその路線的上面図を示すように、磁気ギャ
ップ長方向をX方向、磁気ギャップ長に垂直な、即ちト
ラック幅方向をY方向とすると、磁化容易軸がY方向と
なる。従って、このような狭トラツク幅としても、再生
時に磁気ギャップ(1)から導入した磁束に対して磁気
ギャップ付近の薄膜磁気コア(2)の磁化が線形応答す
ることとなり、再生波形に磁壁移動に伴う雑音いわゆる
バルクハウゼンノイズが発生したり、磁気ギャップ(1
)近傍即ち薄膜磁気コア(2)先端部の透磁率の低下す
ることを抑制して、充分な再生出力を得ることが可能と
なる。
As described above, according to the thin-film magnetic head according to the present invention, the shape of the I-film magnetic core (2) is such that the throat portion is not provided;
The track width is regulated by the width of both end surfaces (3) facing each other across the magnetic gap (1), and
The width gradually increases in the direction away from the center. Therefore, for example, even if this width T- is about 10 μ- or less, the structure of the magnetic domain is such that the magnetic gap length direction is the X direction and the magnetic gap length is perpendicular to the When the width direction is the Y direction, the axis of easy magnetization is the Y direction. Therefore, even with such a narrow track width, the magnetization of the thin film magnetic core (2) near the magnetic gap will respond linearly to the magnetic flux introduced from the magnetic gap (1) during reproduction, and the reproduction waveform will be affected by domain wall movement. Accompanying noise, so-called Barkhausen noise, may occur, or the magnetic gap (1
) It is possible to suppress the decrease in magnetic permeability in the vicinity of the thin film magnetic core (2), that is, at the tip of the thin film magnetic core (2), and to obtain sufficient reproduction output.

また、スロート部をなくして、かつ磁気ギヤノブ(1)
を構成する薄膜磁気コア(2)の形状を、互いに反対側
の一端縁(4A)及び(5A)と磁気ギャップ(1)の
磁気ギャップ長方向即ちX方向との成す角θを30゜≦
θ≦80°として、互いに反対側の他の端縁(4B)及
び(5B)をX方向とほぼ平行に選定したことにより、
トラック幅T−をlOp園以下程度としても、第1図中
A−A線で示すように、磁気ギャップ(1)構成部から
離れた領域のでは対向する薄膜磁気コア(2)が形成さ
れないため、隣接間クロストーク又はオフトラッククロ
ストークの発生を回避して、低雑音、高品位な再生をは
かり、特性の向上をはかることができる。
In addition, the throat part is eliminated and the magnetic gear knob (1)
The shape of the thin film magnetic core (2) constituting the magnetic gap (1) is such that the angle θ formed by the opposite end edges (4A) and (5A) and the magnetic gap length direction, that is, the X direction of the magnetic gap (1) is 30°≦
By setting θ≦80° and selecting the other edges (4B) and (5B) on opposite sides to be approximately parallel to the X direction,
Even if the track width T- is less than lOp, as shown by line A-A in Fig. 1, the opposing thin film magnetic core (2) is not formed in the area away from the magnetic gap (1) component. , it is possible to avoid the occurrence of adjacent crosstalk or off-track crosstalk, achieve low noise, high quality reproduction, and improve characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気ヘッドの要部の路線的拡
大断面図、第2図は本発明による薄膜磁気ヘッドの磁気
ギャップにおける磁区構造を示す上面図、第3図は薄膜
磁気ヘッドの一例を示す断面図、第4回はMR素子の一
例を示す路線的断面図、第5図は薄膜磁気へノドの再生
態様を示す断面図、第6図は磁気ヘッドスライダ−を示
す斜視図、第7図は薄膜磁気ヘッドを示す断面図、第8
図は従来の磁気ギャップを示す斜視図、第9図は従来の
薄膜磁気ヘッドの磁気ギャップにおける磁区構造を示す
上面図、第10図は従来の磁気ギャップの他の例を示す
上面図である。 (1)は磁気ギャップ、(2)は薄膜磁気コア、(2A
)は上部ヨーク、(2B)は下部ヨーク、(3)は端面
、(4A)、(4B)、(5A)及び(5B)は端縁、
(6)はMR素子、(7)はバイアス磁界発生用導体、
(8)はコイル、(10)は磁区、(11)はABS面
、(12)は絶縁層、(14)は非磁性層、(15)は
磁気記録媒体、(16)は磁化遷移部、(20)は薄膜
磁気ヘッドである。
FIG. 1 is an enlarged cross-sectional view of the main parts of the thin-film magnetic head according to the present invention, FIG. 2 is a top view showing the magnetic domain structure in the magnetic gap of the thin-film magnetic head according to the present invention, and FIG. 3 is an example of the thin-film magnetic head. The fourth part is a cross-sectional view showing an example of an MR element, the fifth part is a cross-sectional view showing how a thin film magnetic head is regenerated, the sixth part is a perspective view showing a magnetic head slider, and the fourth part is a cross-sectional view showing an example of an MR element. Figure 7 is a cross-sectional view showing a thin film magnetic head;
9 is a perspective view showing a conventional magnetic gap, FIG. 9 is a top view showing the magnetic domain structure in the magnetic gap of a conventional thin film magnetic head, and FIG. 10 is a top view showing another example of the conventional magnetic gap. (1) is a magnetic gap, (2) is a thin film magnetic core, (2A
) is the upper yoke, (2B) is the lower yoke, (3) is the end surface, (4A), (4B), (5A) and (5B) are the edges,
(6) is an MR element, (7) is a conductor for generating a bias magnetic field,
(8) is a coil, (10) is a magnetic domain, (11) is an ABS surface, (12) is an insulating layer, (14) is a non-magnetic layer, (15) is a magnetic recording medium, (16) is a magnetization transition part, (20) is a thin film magnetic head.

Claims (1)

【特許請求の範囲】 磁気記録媒体とほぼ平行に配置された磁気ギャップを有
する薄膜磁気コアを有し、 該薄膜磁気コアは、上記磁気ギャップを挟んで対向する
両端面の幅によってトラック幅が規制され、 該磁気ギャップから遠ざかる方向に漸次幅広に形成され
、互いに反対側の一端縁と上記磁気ギャップの磁気ギャ
ップ長方向との成す角θは 30゜≦θ≦80゜ とされ、 上記互いに反対側の他の端縁は上記磁気ギャップ長方向
とほぼ平行に選定されてなる ことを特徴とする薄膜磁気ヘッド。
[Claims] A thin film magnetic core having a magnetic gap arranged substantially parallel to a magnetic recording medium, the track width of the thin film magnetic core being regulated by the width of both end faces facing each other across the magnetic gap. The angle θ formed by one end edge on opposite sides and the magnetic gap length direction of the magnetic gap is 30°≦θ≦80°, and the opposite sides The other edge of the thin film magnetic head is selected to be substantially parallel to the longitudinal direction of the magnetic gap.
JP22196090A 1990-08-23 1990-08-23 Thin film magnetic head Pending JPH04103012A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP22196090A JPH04103012A (en) 1990-08-23 1990-08-23 Thin film magnetic head
US07/747,868 US5274521A (en) 1990-08-23 1991-08-20 Planar thin film magnetic head
DE69117389T DE69117389T2 (en) 1990-08-23 1991-08-21 Flat thin film magnetic head
EP95112455A EP0689196B1 (en) 1990-08-23 1991-08-21 Planar thin film magnetic head
EP91114008A EP0472187B1 (en) 1990-08-23 1991-08-21 Planar thin film magnetic head
DE69130368T DE69130368T2 (en) 1990-08-23 1991-08-21 Planar thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22196090A JPH04103012A (en) 1990-08-23 1990-08-23 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH04103012A true JPH04103012A (en) 1992-04-06

Family

ID=16774857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22196090A Pending JPH04103012A (en) 1990-08-23 1990-08-23 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH04103012A (en)

Similar Documents

Publication Publication Date Title
EP0472187B1 (en) Planar thin film magnetic head
US5831801A (en) Thin film magnetic head with special pole configuration
KR100319035B1 (en) Thin film magnetic head and recording reproducing separate type magnetic head, and magnetic recording reproducing apparatus using them
JPH08185612A (en) Mr head and its production
US5880910A (en) Magneto-resistive reading head with two slanted longitudinal bias films and two slanted leads
US5792547A (en) Low noise magnetic head for high frequency recording
JPH0512628A (en) Composite thin film head
JP2002208110A (en) Thin film magnetic head and manufacturing method therefor
US5581427A (en) Peak enhanced magnetoresistive read transducer
JPH064832A (en) Combine thin film magnetic head
JP2001331909A (en) Thin film magnetic head and its manufacturing method
JPH04103012A (en) Thin film magnetic head
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JP2822640B2 (en) Thin film magnetic head
JPH026490Y2 (en)
JPS61134913A (en) Magnetoresistance type thin film head
JPH08185613A (en) Magneto-resistive thin-film magnetic head and its production
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JP2778230B2 (en) Planar type thin film magnetic head
JP2000339638A (en) Thin-film magnetic head and its slider as well as magnetic recording and reproducing device
JPH08138215A (en) Magneto-resistive head and magnetic recording and reproducing head using the same
JP3474533B2 (en) Thin film magnetic head and method of manufacturing the same
JPS5971124A (en) Magneto-resistance effect magnetic head
JP4010702B2 (en) Manufacturing method of thin film magnetic head
JPH10154313A (en) Shield type magneto-resistance effect thin film magnetic head and production therefor