JPH04102303A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPH04102303A
JPH04102303A JP2220500A JP22050090A JPH04102303A JP H04102303 A JPH04102303 A JP H04102303A JP 2220500 A JP2220500 A JP 2220500A JP 22050090 A JP22050090 A JP 22050090A JP H04102303 A JPH04102303 A JP H04102303A
Authority
JP
Japan
Prior art keywords
tray
rare earth
film
magnet
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2220500A
Other languages
Japanese (ja)
Inventor
Hidetoshi Hiroyoshi
秀俊 廣吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP2220500A priority Critical patent/JPH04102303A/en
Publication of JPH04102303A publication Critical patent/JPH04102303A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prevent fusion between a magnet and a tray or a core during sintering process by covering the tray or a ring magnet core with a film of rare earth oxide composed of the same rare earth as the major constituent of rare earth magnet raw material. CONSTITUTION:Prior to covering the surface of a tray with an oxide of rare earth, fats and oils are cleaned out of the surface of each tray with an organic solvent and then, the solvent is removed by running water. Next, in order to cover the surface of a base tray firmly with an Sm film, the surface is washed with a 5% dilute acid to obtain a clean surface and at the same time, the surface is roughened finely by an etching effect. These trays subjected to a pretreatment are placed at the upper portion of a crucible in a high frequency vacuum melting furnace to melt a Sm metal in the crucible. As an evaporated Sm adheres to the tray, an uniform Sm film is formed by moving the tray from the outside of the furnace. After that, the tray is taken out of the furnace and put into the atmosphere thus oxidizing the surface of the Sm film. This is used as a sintered tray for SmCo magnet of 2-17 series.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、モータ、アクチュエータ、各種電子製品、
コンピュータ周辺機器分野で、幅広く実用に供されてい
る希土類磁石の製法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is applicable to motors, actuators, various electronic products,
This article relates to a method for manufacturing rare earth magnets that are widely used in the field of computer peripherals.

〔従来の技術〕[Conventional technology]

焼結温度が高い希土類磁石を焼結する場合、従来は高融
点金属のMo板を成形体の下に敷いてきたが(セッター
)、希土類磁石は反応性が高いので、それと溶着し、焼
結収縮の均等性を阻害し、歩留り低下、あるいは製品の
品質に影響していた。
When sintering rare earth magnets, which have a high sintering temperature, conventionally a Mo plate of high melting point metal was placed under the compact (setter), but since rare earth magnets have high reactivity, it is welded to it and sintered. This hinders the uniformity of shrinkage, lowering yield and affecting product quality.

これまでセンターとして耐熱性の酸化物、窒化物等積々
の材質が検討されている0例えばセラミックス・アルミ
ナ(A1. oz)はそれ単独では、高温で寸法、強度
の劣化のないものであるが、希土類は活性度が高く、ア
ルミナの酸素をも還元するため、トレーとして使用した
場合、溶着が発生してしまい使用に耐えない、又、上記
MO板セッターの場合もMoの結晶粒が成長し、素材が
劣化、曲がりや反りが出るという欠点があった。
Until now, many materials such as heat-resistant oxides and nitrides have been studied as centers. For example, ceramic alumina (A1. oz) alone does not deteriorate in size or strength at high temperatures. Rare earths have high activity and also reduce oxygen in alumina, so if used as a tray, welding will occur and it will not be usable.Also, in the case of the MO plate setter mentioned above, Mo crystal grains will grow. However, there were drawbacks such as the material deteriorating, bending, and warping.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

希土類焼結磁石はSmCo系、NdFeB系磁石ともに
、磁気特性を向上するため一般的に、化学量論的組成よ
りも希土類が多い組成が選択される、特に2〜17系S
mCo磁石の場合は、いわゆる液相焼結を施すのでトレ
ーとの溶着が生しやすい状態にある。又NdFeB系リ
ング磁石の場合は、磁場配向方向に平行と直角方向とで
焼結収縮率が約10%異なるので、その配向方向が径方
向の場合、リングに歪みが大きく生じ、楕円の円筒リン
グになる欠点がある。従って、本発明が解決しようとし
ている課題は、焼結体に直接接触するトレーや歪み規制
の中子が高温焼結時に焼結体と溶着することである。
For rare earth sintered magnets, for both SmCo and NdFeB magnets, compositions containing more rare earths than the stoichiometric composition are generally selected to improve magnetic properties, especially 2-17 S.
In the case of mCo magnets, so-called liquid phase sintering is performed, so welding with the tray is likely to occur. In addition, in the case of NdFeB ring magnets, the sintering shrinkage rate differs by about 10% between parallel and perpendicular to the magnetic field orientation direction, so if the orientation direction is radial, the ring will be greatly distorted, resulting in an elliptical cylindrical ring. There are drawbacks to it. Therefore, the problem to be solved by the present invention is that the tray and strain control core, which are in direct contact with the sintered body, are welded to the sintered body during high-temperature sintering.

〔tJ題を解決するための手段〕[Means for solving the tJ problem]

上記問題点を解決するために、トレーや中子を希土類磁
石原料の主成分と同じ希土類からなる希土類酸化物粉末
、あるいは膜で被覆することによって溶着を防止する手
段を採用した。
In order to solve the above-mentioned problems, we adopted a means to prevent welding by coating the tray and core with a rare earth oxide powder or film made of the same rare earth as the main component of the rare earth magnet raw material.

〔作用〕[Effect]

一般的に高エネルギー積を有する希土類磁石の組成は、
化学量論的組成よりも希土類量が多く、そのため焼結、
容体化処理中に粒界に希土類リッチ相が析出する。希土
類リッチ相が磁石の表面に滲み出てきて、それがトレー
や歪み規謂の中子と接触したとき、希土類簡素は非常に
活性なので、他の元素、すなわちトレー元素と反応する
ために、溶着現象が生じる。希土類元素の活性度は高く
、それ単独では、およそ1800℃の高温でも寸法変化
や、強度の劣化のない安定したアルミナ(A1.03)
に対しても、アルミナの酸素を還元し、それが原因で溶
着が発生してしまう。このような活性度の高い希土類に
対しては、全く同様の希土類の酸化物であれば、還元が
できず溶着も防止できる。
Generally, the composition of rare earth magnets with high energy product is:
The amount of rare earths is higher than the stoichiometric composition, so sintering,
A rare earth rich phase precipitates at the grain boundaries during the compaction treatment. When the rare earth rich phase oozes out to the surface of the magnet and it comes into contact with the tray or the core of the strained specification, the rare earth rich phase is so active that it reacts with other elements, i.e. the tray elements, causing welding. A phenomenon occurs. The activity of rare earth elements is high, and by themselves, they can produce stable alumina (A1.03) without dimensional changes or strength deterioration even at high temperatures of approximately 1800°C.
Also, it reduces oxygen in alumina, which causes welding. For such a highly active rare earth, an oxide of exactly the same rare earth cannot be reduced and welding can be prevented.

(実施例〕 以下、本発明について、実施例に基づき詳細に説明する
。トレーや中子の材質早< 1200℃の高温で焼結処
理を行うために、MoやSUSを選ぶ。
(Example) The present invention will be described in detail based on Examples below.The material of the tray and the core is selected from Mo and SUS in order to carry out the sintering process at a high temperature of <1200°C.

実施例−1 トレーの表面を希土類の酸化物で被覆する前に、まず、
それらの表面に油脂分を有fR,fJ剤で洗浄し、流水
で溶剤を除去した0次に下地のトレーの表面にSm膜が
強固に付着し被覆するために、5%希酸で洗い清浄表面
を出すと共に、エツチング効果で表面の微細な凹凸を作
った。これら前処理を施された、約30mx30mmの
トレーを高周波真空溶解炉の坩堝の上部に設置し、坩堝
でSm金属を熔解する。蒸発Smがトレーに付着するの
で、炉の外部よりトレーを移動させて、均一なSmll
1を形成させた。その後、大気中に取り出してSm1l
Jの表面を酸化させた。これを2−17系のSmCo磁
石の焼結トレーとして用いて、繰り返し実験を行った。
Example-1 Before coating the surface of the tray with rare earth oxide, first,
The oil and fat content on those surfaces was washed with fR and fJ agents, and the solvent was removed with running water.Next, in order to firmly adhere and coat the Sm film on the surface of the underlying tray, it was washed with 5% dilute acid and cleaned. In addition to exposing the surface, the etching effect created minute irregularities on the surface. A tray of approximately 30 m x 30 mm that has been subjected to these pretreatments is placed above a crucible in a high frequency vacuum melting furnace, and Sm metal is melted in the crucible. Evaporated Sm adheres to the tray, so move the tray from outside the furnace to ensure uniform Smll.
1 was formed. After that, take it out into the atmosphere and
The surface of J was oxidized. Repeated experiments were conducted using this as a sintered tray for 2-17 series SmCo magnets.

2回までは防ぐことができたが3回目で溶着が生し膜が
剥がれる結果になった。
Although it was possible to prevent the damage up to two times, the third time resulted in welding and the film peeling off.

実施例−2 実施例1と同様に、Sm膜を形成させた後、トレーを外
熱式真空加熱炉に入れ、Q、 l Lorr程度の酸素
中で600℃に加熱して、強固な酸化膜を形成した。こ
れを同様に2−17系のSmcoiff石の焼結トレー
として用いて、繰り返し実験を行った。
Example 2 In the same manner as in Example 1, after forming the Sm film, the tray was placed in an external heating vacuum heating furnace and heated to 600°C in oxygen of about Q, l Lorr to form a strong oxide film. was formed. This was similarly used as a sintered tray for 2-17 series Smcoiff stone, and repeated experiments were conducted.

8回まで溶着を防ぐことができた。Welding could be prevented up to 8 times.

実施例−3 トレーの表面の油脂分を除去後、RFスパッタ装買のサ
ブストレートにセツティングし、まずトレー表面を逆ス
パツタとして、面を清浄にしてからターゲットのSmを
スパッタした。トレー上に強固なSm膜が形成され、そ
れを実施例2と同様にトレーを外熱式真空加熱炉に入れ
、0.1 torr程度の酸素中で600℃に加熱して
強固な酸化膜を形成した。これを同様に2−17系のS
mCo磁石の焼結トレーとして用いて、繰り返し実験を
行った。
Example 3 After removing oil and fat from the surface of the tray, it was set on a substrate for RF sputtering, and the surface of the tray was first subjected to reverse sputtering to clean the surface and then sputtered with Sm as a target. A strong Sm film was formed on the tray, and as in Example 2, the tray was placed in an external vacuum heating furnace and heated to 600°C in oxygen at about 0.1 torr to form a strong oxide film. Formed. Similarly, 2-17 series S
Repeated experiments were conducted using this as a sintered tray for mCo magnets.

20回まで剥がれることなく溶着を防ぐことができた。Welding could be prevented without peeling up to 20 times.

実施例−4 1Qwmφxi(1wtO中子の表面を希土類の酸化膜
で被覆する前に、まず、それらの表面の油脂分を有機溶
剤で洗浄し流水で溶剤を除去した。RFスパフタ装置の
サブストレートにセツティングし、まず中子表面を逆ス
パッターして、面を清浄にしてからターゲットのNdを
スパンターした。トレー上に強固なNd膜が形成され、
それを実施例2と同様にトレーを外熱式真空加熱炉に入
れ、0.1torr程度の酸素中で600℃に加熱して
、強固な酸化膜を形成した。これをNd系の径方向に磁
場配向したリング磁石の焼結処理時の中子として、繰り
返し実験を行った。これも又20回まで溶着することな
く、かつリングの歪みを防止することができた。
Example-4 Before coating the surface of the 1Qwmφxi (1wtO core with a rare earth oxide film, the oil and fat on the surface was first washed with an organic solvent and the solvent was removed with running water. After setting, the core surface was first reverse sputtered to clean the surface, and then the Nd target was sputtered.A strong Nd film was formed on the tray.
The tray was placed in an external heating vacuum heating furnace in the same manner as in Example 2, and heated to 600° C. in oxygen at approximately 0.1 torr to form a strong oxide film. Repeated experiments were conducted using this as a core during the sintering process of a Nd-based ring magnet with magnetic field orientation in the radial direction. This also allowed us to avoid welding up to 20 times and prevent distortion of the ring.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の希土類磁石原料の主成分と
同じ希土類からなる希土類酸化物の膜でトレーやリング
磁石の中子を強固に被覆して用いると、従来被覆を施し
てない場合100%発注していた溶着に対し、表1に示
したように、焼結処理時に磁石とトレーまたは中子との
間の溶着が防止できる効果がある。
As mentioned above, when the core of a tray or ring magnet is strongly coated with a rare earth oxide film made of the same rare earth as the main component of the rare earth magnet raw material of the present invention, As shown in Table 1, this method has the effect of preventing welding between the magnet and the tray or core during the sintering process, compared to the welding that had been ordered.

表  1Table 1

Claims (2)

【特許請求の範囲】[Claims] (1)磁石の熱処理工程において、粉末成形体の下に原
料の主成分と同じ希土類からなる希土類酸化物粉末、あ
るいは膜で被覆されたトレーを敷くことを特徴とする希
土類磁石の製造方法。
(1) A method for producing a rare earth magnet, which comprises placing a tray coated with a rare earth oxide powder or film made of the same rare earth as the main component of the raw material under the powder compact in the magnet heat treatment process.
(2)リング磁石の熱処理工程において、原料の主成分
と同じ希土類からなる希土類酸化物の膜を被覆された円
柱または円筒等を、リングの中に入れて焼結体の変形規
制を行うことを特徴とする希土類磁石の製造方法。
(2) In the heat treatment process of ring magnets, a cylinder or cylinder coated with a rare earth oxide film made of the same rare earth as the main component of the raw material is placed inside the ring to control the deformation of the sintered body. Features: A manufacturing method for rare earth magnets.
JP2220500A 1990-08-22 1990-08-22 Manufacture of rare earth magnet Pending JPH04102303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220500A JPH04102303A (en) 1990-08-22 1990-08-22 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220500A JPH04102303A (en) 1990-08-22 1990-08-22 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPH04102303A true JPH04102303A (en) 1992-04-03

Family

ID=16752016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220500A Pending JPH04102303A (en) 1990-08-22 1990-08-22 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPH04102303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130279A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Method of manufacturing permanent magnet
CN111145973A (en) * 2018-11-06 2020-05-12 中国科学院宁波材料技术与工程研究所 Samarium-cobalt permanent magnet containing grain boundary phase and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354703A (en) * 1986-08-25 1988-03-09 Daido Steel Co Ltd Manufacture of rare earth magnet
JPS63118031A (en) * 1986-11-05 1988-05-23 Hitachi Metals Ltd Manufacture of permanent magnet alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354703A (en) * 1986-08-25 1988-03-09 Daido Steel Co Ltd Manufacture of rare earth magnet
JPS63118031A (en) * 1986-11-05 1988-05-23 Hitachi Metals Ltd Manufacture of permanent magnet alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130279A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Method of manufacturing permanent magnet
CN111145973A (en) * 2018-11-06 2020-05-12 中国科学院宁波材料技术与工程研究所 Samarium-cobalt permanent magnet containing grain boundary phase and preparation method thereof
CN111145973B (en) * 2018-11-06 2021-01-05 中国科学院宁波材料技术与工程研究所 Samarium-cobalt permanent magnet containing grain boundary phase and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH04102303A (en) Manufacture of rare earth magnet
JPH0549730B2 (en)
CN114231917B (en) Preparation method of high-purity rare earth and alloy target material
JPH01108362A (en) Production of magnetic metal layer having low thermal expansion factor
JPH03100157A (en) Production of shape memory alloy
JP2003119560A (en) Sputtering target
JPS62207863A (en) High-speed sputtering device
JP4823486B2 (en) Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same
JP2818343B2 (en) Substrate holder for single crystal growth
JPS63453A (en) Oxidation resistant permanent magnet material and its production
JPS6354703A (en) Manufacture of rare earth magnet
JPH01242406A (en) Production of superconductor
JPH11288812A (en) High coercive force r-irone-b thin-film magnet and manufacture thereof
Kulchin et al. Experimental Study of Magnetic Materials Obtained via Fusing with Laser Radiation
JPS60170915A (en) Formation of magnetic thin film
JPH0525509A (en) Production of metallic wire by extrusion
JPS63307228A (en) Manufacture of rare-earth alloy
JPH03237071A (en) Production of oxide superconductor
JPH0193463A (en) Production of superconducting ceramic material
JPH02204308A (en) Production of thick film of oxide superconductor
JPS6060999A (en) Manufacture of thin film of iron-garnet crystal
JPH05319829A (en) Production of oxide superconductor
JPS63255371A (en) Heat treatment of amorphous soft magnetic material
JPS63289725A (en) Manufacture of compound superconductive thin film
JPS63269422A (en) Manufacture of superconductive unit