JPH0410209B2 - - Google Patents
Info
- Publication number
- JPH0410209B2 JPH0410209B2 JP56115088A JP11508881A JPH0410209B2 JP H0410209 B2 JPH0410209 B2 JP H0410209B2 JP 56115088 A JP56115088 A JP 56115088A JP 11508881 A JP11508881 A JP 11508881A JP H0410209 B2 JPH0410209 B2 JP H0410209B2
- Authority
- JP
- Japan
- Prior art keywords
- projection
- wafer
- pattern
- exposure
- glass substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 29
- 239000000758 substrate Substances 0.000 claims description 25
- 239000011521 glass Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 235000012431 wafers Nutrition 0.000 description 30
- 238000003384 imaging method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70325—Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
- G03F7/70333—Focus drilling, i.e. increase in depth of focus for exposure by modulating focus during exposure [FLEX]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】
本発明はプロジエクシヨンアライナ等の投影露
光に際し、露光寸法のばらつきの低減を図つた投
影露光方法および装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a projection exposure method and apparatus for reducing variations in exposure dimensions during projection exposure using a projection aligner or the like.
半導体装置の製造に利用されるプロジエツシヨ
ンアライナ、特に1/10縮小プロジエクシヨンアラ
イナでは微細なパターンの寸法精度を高くするこ
とが望まれているが、実際上は次の理由によつて
寸法にばらつきが生じている。即ち、第1図は
IEEE(April 1979、P698〜704)号に発表された
データであり、横軸に寸法、縦軸に照度を示して
4μmピツチの2μm巾パターンを露光する際のデ
フオーカス量による照度プロフアイル差を表わし
ている。矩形濃度分布のマスクパターンは投影光
学系を通してウエーハ上に投影されるが、その時
の投影される像内の照度分布は理想的には破線の
ように矩形状のImaxか0のはずであるが、実際
には回折等により実線および鎖線のように複雑な
ものとなる。そして、この照度プロフアイルはデ
フオーカス量によつて変化し、デフオーカス△
F1=0μm、即ち焦点面におけるプロフアイルは
矩形に略沿うような2次曲線であるが、デフオー
カスが大きくなつて△F2=2μm、△F3=3μmに
なると露光、未露光部の差のない平坦に近いプロ
フアイルとなる。このように、プロフアイルガ変
化されることによりパターン寸法も変化され、例
えば△F1の場合の凹パターン巾XP1は△F2や△
F3の場合のパターン巾XP2、XP3よりも小さくな
る。したがつて、この種の投影露光に際しては焦
点合せが寸法精度を高めるために最も重要であ
る。 In projection aligners used in the manufacture of semiconductor devices, especially 1/10 reduction projection aligners, it is desired to improve the dimensional accuracy of fine patterns, but in practice, the dimensional accuracy is limited due to the following reasons. There are variations in the results. That is, Figure 1 is
This is data published in the IEEE (April 1979, P698-704) issue, with dimensions on the horizontal axis and illuminance on the vertical axis.
It shows the difference in illuminance profile due to the amount of defocus when exposing a 2 μm wide pattern with a 4 μm pitch. A mask pattern with a rectangular density distribution is projected onto a wafer through a projection optical system, and the illuminance distribution within the projected image at that time should ideally be a rectangular Imax or 0 as shown by the broken line. In reality, it becomes complicated as shown by the solid line and the dashed line due to diffraction and the like. Then, this illuminance profile changes depending on the amount of defocus, and the illuminance profile changes depending on the amount of defocus.
F 1 = 0 μm, that is, the profile at the focal plane is a quadratic curve that roughly follows a rectangle, but as the defocus increases and becomes △F 2 = 2 μm and △F 3 = 3 μm, the difference between exposed and unexposed areas increases. The result is a nearly flat profile. In this way, by changing the profile, the pattern dimensions also change. For example, the concave pattern width XP 1 in the case of △F 1 becomes △F 2 or △
The pattern width XP 2 in the case of F 3 is smaller than XP 3 . Therefore, in this type of projection exposure, focusing is most important for improving dimensional accuracy.
このような焦点合せを行なうため、従来ではエ
アマイクロ法や光反射法が利用されており、前者
は露光面積全体の平均値を出して焦点合せする方
法であり、後者は面積の微小1点のレベルを用い
て合わせる方法である。しかしこれらの方法で
は、ウエーハ面度、厚さむら、チヤツク平面度等
が原因とされる光軸に対するウエーハ表面の傾き
に対してウエーハの露光面積全域を最適焦点面に
合わせることは困難である。この対策としては、
ウエーハ表面の加工精度を上げればよいが、実際
にはφ125、φ150のウエーハをサブミクロンの表
面加工精度に上げることは難かしく、またウエー
ハ自体の形状精度を上げねばらならないため不可
能に近い。これにより、従来ではウエーハ表面各
部において焦点の合わない部分が生じることいな
りウエーハ各部におけるパターン寸法にバラツキ
が生じるという問題がある。 Conventionally, the air micro method and the light reflection method have been used to perform such focusing.The former method calculates the average value of the entire exposed area and focuses, while the latter focuses on a single point with a very small area. This is a method of matching using levels. However, with these methods, it is difficult to align the entire exposed area of the wafer to the optimum focal plane with respect to the inclination of the wafer surface with respect to the optical axis caused by wafer surfaceness, thickness unevenness, chuck flatness, etc. As a countermeasure for this,
It would be possible to improve the processing accuracy of the wafer surface, but in reality it is difficult to improve the surface processing accuracy of φ125 or φ150 wafers to submicron level, and it is almost impossible because the shape accuracy of the wafer itself must be improved. As a result, in the conventional method, there are problems in that some portions of the wafer surface are out of focus, and pattern dimensions vary in each portion of the wafer.
したがつて本発明の目的は、ガラス基板上に形
成した被露光パターンを感光材を塗布した薄板基
板上に投影光学系を用いて露光するに際し、ガラ
ス基板、薄板基板、投影光学系の少なくとも一つ
を光軸方向に移動させることにより、ウエーハ表
面各部の露光量を平均化し、これによりパターン
寸法のばらつきの低減を図ることにある。 Therefore, it is an object of the present invention to provide at least one of the glass substrate, the thin substrate, and the projection optical system when exposing a pattern to be exposed formed on a glass substrate onto a thin substrate coated with a photosensitive material using a projection optical system. By moving the two in the optical axis direction, the exposure amount for each part of the wafer surface is averaged, thereby reducing variations in pattern dimensions.
以下、本発明を図示の実施例に基づいて説明す
る。 Hereinafter, the present invention will be explained based on illustrated embodiments.
第2図は本発明装置の全体構成図であり、1は
所要の被露光パターンを形成したガラス基板とし
てのマスク(レチクル)、2は表面に感光材を塗
布した薄板基板としてのウエーハである。前記マ
スク1のパターンをウエーハ2上に露光する投影
光学系3は、ハロゲンランプ4、反射鏡5、アパ
ーチヤ6、コンデンサレンズ7を有する照明部8
と、縮小用の結像レンズ9を有する結像部10と
からなり、照明部8にてマスク1を照明した上で
結像部10にてウエーハ2表面にマスク像を結像
させる。そして、本実施例にあつては前記ウエー
ハ2を載置してウエーハ支持台11に振動源12
を付設しウエーハを上下方向、即ち光軸方向に微
小振動させて露光中にウエーハを光軸方向に移動
させるように構成している。この振動源12には
電磁式、機械式等の公知の起振機を採用すること
ができる。 FIG. 2 is an overall configuration diagram of the apparatus of the present invention, in which 1 is a mask (reticle) as a glass substrate on which a required pattern to be exposed is formed, and 2 is a wafer as a thin substrate whose surface is coated with a photosensitive material. The projection optical system 3 that exposes the pattern of the mask 1 onto the wafer 2 includes an illumination section 8 having a halogen lamp 4, a reflecting mirror 5, an aperture 6, and a condenser lens 7.
and an imaging section 10 having a reduction imaging lens 9. After the illumination section 8 illuminates the mask 1, the imaging section 10 forms a mask image on the surface of the wafer 2. In this embodiment, the wafer 2 is placed and the vibration source 12 is placed on the wafer support 11.
is attached so that the wafer is slightly vibrated in the vertical direction, that is, in the optical axis direction, so that the wafer is moved in the optical axis direction during exposure. As this vibration source 12, a known electromagnetic type, mechanical type, or the like can be used.
以上のように構成した本実施例装置において
は、投影光学系3を用いてマスク1のパターンを
ウエーハ2表面に露光するが、この露光に際して
前記振動源12を作動してウエーハ2を光軸方向
に微小振動させる。このようにウエーハを光軸方
向に移動させると、ウエーハは全露光域が投影光
学系8の焦点面及びその前後で露光され、焦点が
合う瞬間とデフオーカスの瞬間とが交互に生じる
ことになる。したがつて、第3図にデフオーカス
量△Fに対する露光量E(照度×露光時間)の変
化を示すように、露光量は焦点面で最大デフオー
カスが正、負いずれに進んでも漸減する特性を有
しているため、焦点面を中心に移動されるウエー
ハの各部は図示特性曲線に沿つて露光量が変化さ
れ、結果として同図の鎖線Emで示す露光量に平
均化されることになる。具体的に言えば焦点合せ
状態△F1時の露光量EはEF1で最大Emaxであり、
デフオーカス△F2,△F3のときはEF2,EF3で
Emaxより小さい。したがつて、フオーカスを±
△F2の範囲で移動させると露光量EはEF1からEF2
の積分値の平均値Enとなる。そして、露光量E
はパターン寸法XP(第1図参照)に変換できる値
であり、Eが大きい程XPは大きくなることから、
ウエーハの各部のパターン寸法は前述のように平
均化された露光量Enによつて決定されることに
なり、ウエーハの各部において均一なパターン巾
を得ることになる。なお、ウエーハの移動はデフ
オーカス±△F2の範囲で行うことが好ましく、
また、移動時の振動周波数は露光時間tが0.1秒
の場合もあるので10〜50Hz程度の範囲で露光時間
に合わせて適宜に制御するようにする。 In the apparatus of this embodiment configured as described above, the projection optical system 3 is used to expose the pattern of the mask 1 onto the surface of the wafer 2. During this exposure, the vibration source 12 is operated to move the wafer 2 in the optical axis direction. vibrate slightly. When the wafer is moved in the optical axis direction in this manner, the entire exposure area of the wafer is exposed at and before and after the focal plane of the projection optical system 8, and moments of focus and moments of defocus occur alternately. Therefore, as shown in Figure 3, which shows the change in exposure amount E (illuminance x exposure time) with respect to the amount of defocus ΔF, the amount of exposure has the characteristic of gradually decreasing regardless of whether the maximum defocus progresses in the positive or negative direction at the focal plane. Therefore, the exposure amount of each part of the wafer that is moved around the focal plane is changed along the illustrated characteristic curve, and as a result, the exposure amount is averaged to the one shown by the dashed line Em in the figure. Specifically, the exposure amount E when the focusing state △ F1 is the maximum Emax at E F1 ,
When the focus is △F 2 and △F 3 , use E F2 and E F3 .
Smaller than Emax. Therefore, the focus is ±
If you move within the range of △ F2 , the exposure amount E will change from E F1 to E F2.
becomes the average value E n of the integral value. And the exposure amount E
is a value that can be converted to the pattern dimension X P (see Figure 1), and since the larger E is, the larger X P is,
The pattern dimensions of each part of the wafer are determined by the averaged exposure amount E n as described above, and a uniform pattern width is obtained in each part of the wafer. In addition, it is preferable to move the wafer within a range of ±△ F2 of the differential focus.
Furthermore, since the exposure time t may be 0.1 seconds, the vibration frequency during movement is appropriately controlled within the range of about 10 to 50 Hz according to the exposure time.
ここで、本発明ではマスクパターンの焦点面に
対してウエーハ表面を光軸方向に相対的に微小振
動させてウエーハを移動させればよく、したがつ
てウエーハを移動する代りにマスク、投影光学系
(特に結像部)を移動させてもよく、あるいはこ
れらを組合わせて移動させるようにしてもよい。 Here, in the present invention, it is sufficient to move the wafer by slightly vibrating the wafer surface in the optical axis direction relative to the focal plane of the mask pattern. Therefore, instead of moving the wafer, the mask and projection optical system (especially the imaging section) may be moved, or a combination of these may be moved.
本発明者の実験によれば無振動状態の露光で±
0.3μmの範囲にばらついていたパターン寸法を、
本発明方法では±0.15μmの範囲に抑制すること
が可能となつた。 According to the inventor's experiments, ±
The pattern dimensions, which varied within a range of 0.3 μm, were
With the method of the present invention, it has become possible to suppress the thickness within the range of ±0.15 μm.
以上のように本発明方法および装置によれば、
ガラス基板上に形成した被露光パターンを感光材
を塗布した薄板基材上に投影光学系を用いて露光
するに際し、ガラス基板、薄板基材、投影光学系
の少なくとも一つを光軸方向に移動させるように
しているので、薄板基材の表面が傾斜したり表面
凹凸が存在している場合にも薄板基材の露光面全
域のパターン寸法のばらつきを低減して均一な寸
法のパターンを得ることができるという効果を奏
する。さらに、ガラス基板、薄板基材投影光学系
の少なくとも一つを光軸方向に微少振動させるこ
とにより、ウエーハ表面各部の露光量をより平均
化でき、パターン寸法のバラツキをより低減する
ことができるという効果を奏する。 As described above, according to the method and apparatus of the present invention,
When exposing a pattern formed on a glass substrate onto a thin substrate coated with a photosensitive material using a projection optical system, at least one of the glass substrate, the thin substrate, and the projection optical system is moved in the optical axis direction. Therefore, even if the surface of the thin substrate is inclined or has surface irregularities, variations in pattern dimensions over the entire exposed surface of the thin substrate can be reduced and a pattern with uniform dimensions can be obtained. It has the effect of being able to. Furthermore, by slightly vibrating at least one of the glass substrate and the thin plate projection optical system in the optical axis direction, it is possible to further average the exposure amount for each part of the wafer surface and further reduce variations in pattern dimensions. be effective.
第1図はデフオーカスの露光量の関係を示す
図、第2図は本発明装置の一実施例の構成図、第
3図は本発明の作用効果を説明するための図であ
る。
1……マスク(ガラス基板)、2……ウエーハ
(薄板基材)、3……投影光学系、8……照明部、
10……結像部。
FIG. 1 is a diagram showing the relationship between the exposure amount of defocus, FIG. 2 is a block diagram of an embodiment of the apparatus of the present invention, and FIG. 3 is a diagram for explaining the effects of the present invention. 1... Mask (glass substrate), 2... Wafer (thin plate base material), 3... Projection optical system, 8... Illumination section,
10...imaging section.
Claims (1)
布した薄板基材上に投影光学系を用いて露光する
投影露光方法において、露光中に前記ガラス基
板、薄板基材、投影光学系の少なくとも一つを光
軸方向に移動し、焦点位置を変化させて多重露光
することを特徴とする投影露光方法。 2 露光中に上記ガラス基板、薄板基材、投影光
学系の少なくとも一つを振動させることにより光
軸方向に移動させる特許請求の範囲第1項記載の
投影露光方法。 3 被露光パターンを有するガラス基板と、感光
材を塗布した薄板基材と前記ガラス基板のパター
ンを薄板基材上に結像させる投影光学系と、露光
中に前記ガラス基板、薄板基材、投影光学系の少
なくとも一つを光軸方向に移動させて、焦点位置
を変化させて多重露光する手段とを備えたことを
特徴とする投影露光装置。[Scope of Claims] 1. A projection exposure method in which a pattern to be exposed on a glass substrate is exposed onto a thin plate substrate coated with a photosensitive material using a projection optical system, in which the glass substrate, the thin plate substrate, the projection A projection exposure method characterized by moving at least one of the optical systems in the optical axis direction and changing the focal position to perform multiple exposure. 2. The projection exposure method according to claim 1, wherein during exposure, at least one of the glass substrate, thin plate base material, and projection optical system is moved in the optical axis direction by vibrating. 3. A glass substrate having a pattern to be exposed, a thin substrate coated with a photosensitive material, a projection optical system for forming an image of the pattern of the glass substrate on the thin substrate, and a projection optical system that images the glass substrate, the thin substrate, and the projection during exposure. 1. A projection exposure apparatus comprising: means for performing multiple exposure by moving at least one of the optical systems in the optical axis direction to change the focal position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56115088A JPS5817446A (en) | 1981-07-24 | 1981-07-24 | Projection exposing method and its device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56115088A JPS5817446A (en) | 1981-07-24 | 1981-07-24 | Projection exposing method and its device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5817446A JPS5817446A (en) | 1983-02-01 |
JPH0410209B2 true JPH0410209B2 (en) | 1992-02-24 |
Family
ID=14653893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56115088A Granted JPS5817446A (en) | 1981-07-24 | 1981-07-24 | Projection exposing method and its device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5817446A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342122A (en) * | 1986-08-08 | 1988-02-23 | Hitachi Ltd | Pattern formation |
JP2619473B2 (en) * | 1987-06-17 | 1997-06-11 | 株式会社日立製作所 | Reduction projection exposure method |
US4869999A (en) * | 1986-08-08 | 1989-09-26 | Hitachi, Ltd. | Method of forming pattern and projection aligner for carrying out the same |
JP2530833B2 (en) * | 1987-02-07 | 1996-09-04 | 株式会社日立製作所 | Method of forming photoresist pattern |
JPH02137216A (en) * | 1988-11-17 | 1990-05-25 | Yamaha Corp | Method of projection exposure |
JPH02137217A (en) * | 1988-11-17 | 1990-05-25 | Yamaha Corp | Method of projection exposure |
JP3234891B2 (en) * | 1990-10-30 | 2001-12-04 | 株式会社ニコン | Projection exposure equipment |
US5343270A (en) * | 1990-10-30 | 1994-08-30 | Nikon Corporation | Projection exposure apparatus |
JP2705312B2 (en) * | 1990-12-06 | 1998-01-28 | ソニー株式会社 | Projection exposure method |
JP2654418B2 (en) * | 1993-11-17 | 1997-09-17 | 株式会社日立製作所 | Projection exposure equipment |
JPH08153661A (en) | 1994-11-28 | 1996-06-11 | Sony Corp | Projection exposure method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS516565A (en) * | 1974-06-06 | 1976-01-20 | Ibm | |
JPS53132270A (en) * | 1977-04-20 | 1978-11-17 | Thomson Csf | Optical device for projecting pattern |
-
1981
- 1981-07-24 JP JP56115088A patent/JPS5817446A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS516565A (en) * | 1974-06-06 | 1976-01-20 | Ibm | |
JPS53132270A (en) * | 1977-04-20 | 1978-11-17 | Thomson Csf | Optical device for projecting pattern |
Also Published As
Publication number | Publication date |
---|---|
JPS5817446A (en) | 1983-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0410209B2 (en) | ||
JP2506616B2 (en) | Exposure apparatus and circuit manufacturing method using the same | |
US5604779A (en) | Optical exposure method and device formed by the method | |
JP3796294B2 (en) | Illumination optical system and exposure apparatus | |
JPH08153661A (en) | Projection exposure method | |
JP3097620B2 (en) | Scanning reduction projection exposure equipment | |
US5459003A (en) | Exposure method for forming sloping sidewalls in photoresists | |
EP1486830A2 (en) | Device manufacturing method | |
JP2503696B2 (en) | Projection exposure device | |
JP2010118403A (en) | Scanning aligner and method of manufacturing device | |
JPH1092729A (en) | Illumination device and scanning projection aligner using the same | |
JP2624193B2 (en) | Illumination optical system and illumination method for semiconductor exposure apparatus | |
JP2000133563A (en) | Exposure method and aligner | |
KR100677985B1 (en) | Exposure device for manufacturing semiconductor | |
JP4242745B2 (en) | Exposure method and apparatus | |
JP3109946B2 (en) | Exposure apparatus and device manufacturing method | |
JP2000252192A (en) | Projection exposure method and projection aligner | |
JP2847915B2 (en) | Projection exposure apparatus and its exposure method | |
JPH09304917A (en) | Exposure method | |
JPH11320963A (en) | Optical image forming method and apparatus, optical machining apparatus and exposing unit | |
JPH0574681A (en) | Reduction stepper | |
JP2962257B2 (en) | Scanning projection exposure method and apparatus | |
JPH0620923A (en) | Exposing method | |
JP2606797B2 (en) | Illumination device and illumination method using the same | |
JPH09260260A (en) | Projection aligner |