JPH04100682A - Diffusion joining method for alpha+beta type titanium alloys - Google Patents

Diffusion joining method for alpha+beta type titanium alloys

Info

Publication number
JPH04100682A
JPH04100682A JP21438990A JP21438990A JPH04100682A JP H04100682 A JPH04100682 A JP H04100682A JP 21438990 A JP21438990 A JP 21438990A JP 21438990 A JP21438990 A JP 21438990A JP H04100682 A JPH04100682 A JP H04100682A
Authority
JP
Japan
Prior art keywords
joining
bonding
vicinity
temperature
beta phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21438990A
Other languages
Japanese (ja)
Other versions
JP2691059B2 (en
Inventor
Takayuki Tsuzuki
都筑 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2214389A priority Critical patent/JP2691059B2/en
Publication of JPH04100682A publication Critical patent/JPH04100682A/en
Application granted granted Critical
Publication of JP2691059B2 publication Critical patent/JP2691059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To form coarse grains or layer structure and to improve damage admissibility for a joining defect by performing diffusion joining with material containing beta phase forming elements put between the joining faces of the alpha+beta type alloys and increasing a rate of beta phase in the vicinity of the joining interfaces at the joining temperature. CONSTITUTION:When heating and pressurizing are performed with the material 6 containing the beta phase forming elements (Ni, Fe, V, etc.) put between the joining interfaces 3, the beta phase forming elements are diffused to main phases 1 and 2 in the vicinity of the joining interfaces at the joining temperature and the rate of beta phase in the vicinity of the joining faces increases. Consequently, while the joining temperature being maintained, only the vicinity of the joining faces is formed into the coarse grains or layer structure locally and the structure where breakdown or crack propagation with the joining defect 5 as the starting point is hardly generated is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα+β型チタン合金の拡散接合法に関し、特に
強度特性の向上した接合部が得られる同合金の拡散接合
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of diffusion bonding of α+β type titanium alloys, and particularly to a method of diffusion bonding of the same alloys that yields a joint with improved strength characteristics.

〔従来の技術〕[Conventional technology]

チタン合金の拡散接合は第2図(a)に示すように被接
合材1.2の接合表面3を平滑に仕上げた後、被接合材
表面を直接重ね合わせて、真空もしくは不活性ガス中で
行っている。
Diffusion bonding of titanium alloys is performed by smoothing the joining surfaces 3 of the materials 1 and 2 to be joined, as shown in Figure 2 (a), directly overlapping the surfaces of the materials 1 and 2, and then bonding them in a vacuum or inert gas. Is going.

拡散接合条件は材質によって若干具るが、はぼ次の通り
である。
Diffusion bonding conditions vary slightly depending on the material, but are generally as follows.

温度:900℃、接合荷重: 0.3 kgf/mm’
保持時間:2時間 〔発明が解決しようとする課題〕 α+β型チタン合金の拡散接合は、接合温度での保持中
に組織の粗大化が生じないよう、β相の割合が50%を
越えない温度範囲で行われ、接合後の組織は、第2図ら
)に示すように母材部、接合部4ともに接合前よほぼ同
等の徹細な等釉粒組織となっている。この徹細等軸粒の
組織は強度、延性、疲労強度に優れているが、破壊靭性
、亀裂伝播特性(抵抗)の観点からは好ましくなく、接
合欠陥5が存在する場合には、それを起点とする破壊や
亀裂進展が生じ易いという欠点がある。
Temperature: 900℃, bonding load: 0.3 kgf/mm'
Holding time: 2 hours [Problem to be solved by the invention] Diffusion bonding of α+β type titanium alloys is carried out at a temperature where the proportion of β phase does not exceed 50% to prevent coarsening of the structure during holding at the joining temperature. As shown in Fig. 2, etc., both the base metal part and the joint part 4 have a fine, uniform glaze grain structure that is almost the same as that before joining. Although this fine equiaxed grain structure has excellent strength, ductility, and fatigue strength, it is unfavorable from the viewpoint of fracture toughness and crack propagation characteristics (resistance). It has the disadvantage of being susceptible to destruction and crack propagation.

本発明は上記技術水準に羅み、接合部に破壊や亀裂進展
が生じないα+β型チタン合金の拡散接合法を提供しよ
うとするものである。
The present invention is within the above-mentioned state of the art and provides a diffusion bonding method for alpha+beta type titanium alloys that does not cause destruction or crack propagation at the bonded portion.

〔課題を解決するための手段〕[Means to solve the problem]

破壊靭性、亀裂伝播特性を向上させるためには粗大粒も
しくは層状組織とするのが好ましく、このような組織を
形成させるためにはβ相の割合が50%を越える温度に
加熱、保持すればよい。従って接合温度を高約るか、あ
るいは接合後に高温での加熱保持を行えば粗大粒もしく
は層状組織を得ることが可能であるが、この場合には欠
陥の全く存在しない母材も含と、全てが粗大粒もしくは
層状組織となり、今度は部品全体の静強度、延性の低下
を招くことになる。
In order to improve fracture toughness and crack propagation characteristics, it is preferable to form a coarse-grained or layered structure, and in order to form such a structure, heating and holding at a temperature where the proportion of β phase exceeds 50% is sufficient. . Therefore, it is possible to obtain a coarse grained or layered structure by increasing the joining temperature or by heating and holding at a high temperature after joining, but in this case, it is possible to obtain a coarse grained or layered structure. becomes a coarse grain or layered structure, which in turn causes a decrease in the static strength and ductility of the entire part.

このことから、本発明者は欠陥の存在する接合界面の近
傍のみを接合温度を高めることなく粗大粒もしくは層状
組織として、接合部の近傍についてのみ材料組成的にβ
相の割合を増加させればよいことに思い至った。
Based on this, the present inventor developed a coarse grain or layered structure only in the vicinity of the bonding interface where defects exist without increasing the bonding temperature, and the material composition was changed to β only in the vicinity of the bonding part.
It occurred to me that it would be better to increase the ratio of the phases.

本発明は上記の知見に基いて慣性されたものであって、
被接合材であるα+β型チタン合金の接合面の間にβ相
生成元素を含む材料を挟んで拡散接合し、接合温度にお
ける接合界面近傍でのβ相の割合を増加させることによ
り、破壊靭性、亀裂伝播特性に優れる粗大粒や層状組織
を形成させて接合欠陥に対する損傷許容性を向上させる
ことを特徴とするα+β型チタン合金の拡散接合法であ
る。
The present invention is based on the above findings, and includes:
By sandwiching a material containing a β-phase forming element between the joint surfaces of the α+β type titanium alloy to be joined and performing diffusion bonding, increasing the proportion of β phase near the joint interface at the joining temperature, the fracture toughness and This is a diffusion bonding method for α+β type titanium alloys, which is characterized by forming coarse grains and a layered structure with excellent crack propagation characteristics to improve damage tolerance against bonding defects.

〔作用〕[Effect]

接合界面にβ相形成元素(例えばNi 、 Fe 。 Beta phase forming elements (for example, Ni, Fe) at the bonding interface.

Vなど)を含有する材料を挟んで加熱、加圧すると接合
温度においてβ相形成元素が接合界面近傍の母相中へ拡
散して、接合面近傍におけるβ相の割合が増加する。
When a material containing V, etc.) is sandwiched and heated and pressurized, the β phase-forming elements diffuse into the parent phase near the bonding interface at the bonding temperature, increasing the proportion of the β phase near the bonding surface.

これにより、接合温度での保持中に、接合面近傍だけが
局所的に粗粒化あるいは層状組織化し、接合欠陥を起点
とする破壊や亀裂伝播が発生し難い組織となる。
As a result, only the vicinity of the bonding surface becomes locally coarse grained or layered while being held at the bonding temperature, resulting in a structure in which fracture or crack propagation originating from a bonding defect is difficult to occur.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図を参照しながら説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

代表的なα→−β型チタン合金であるTi−6Ai4V
合金は真空中(あるいは不活性ガス中〉で900℃、0
.3 kgf/mm22時間の条件で拡散接合される。
Ti-6Ai4V, a typical α→-β type titanium alloy
The alloy is heated at 900°C in vacuum (or in an inert gas) at 0.
.. Diffusion bonding is performed under the conditions of 3 kgf/mm for 22 hours.

この材料は900℃におけるβ相の割合いは約40%で
あることから、接合中の結晶粒の成長は少い(組織変化
の少い温度として900℃という接合温度条件が設定さ
れている) このことから、接合後の組織は前述の第2
図(b)に示すように母材部、接合界面4部ともに微細
な等釉粒となっており、優れた静強度特性を有するが、
微細等軸粒組織は破壊靭性、亀裂伝播特性の観点からは
好ましくなく、接合欠陥5が存在する場合には、これを
起点とする破壊や亀裂進展が発生し易い。
Since this material has a β phase ratio of approximately 40% at 900°C, the growth of crystal grains during bonding is small (the bonding temperature condition of 900°C is set as the temperature at which there is little structural change). From this, the structure after bonding is the same as the above-mentioned second structure.
As shown in Figure (b), both the base material and the four bonding interfaces have fine glaze grains, and have excellent static strength characteristics.
A fine equiaxed grain structure is unfavorable from the viewpoint of fracture toughness and crack propagation characteristics, and if a bonding defect 5 exists, fracture or crack propagation is likely to occur from this as a starting point.

このことから本発明実施例では、第1図(a)に示すよ
うに被接合材1.2の接合面3の一方にβ相形成元素で
あるN1を蒸着し、極めて薄いN1層6を介して拡散接
合することにより、第1図(b)に示すように接合界面
4近傍だけを破壊靭性、亀裂伝播特性に優れる粗大粒も
しくは層状組織とした。
For this reason, in the embodiment of the present invention, as shown in FIG. By performing diffusion bonding, only the vicinity of the bonding interface 4 was formed into a coarse-grained or layered structure with excellent fracture toughness and crack propagation characteristics, as shown in FIG. 1(b).

この実施例は、被接合部材の接合面に蒸着されたNiが
接合温度において母相中に拡散し、接合界面近傍でのβ
相の割合を増加させて粗大粒あるいは層状組織を形成し
たものであるが、蒸着物質はβ相形成元素(Fe、V等
)であれば何でも適用可能であり、更にこれらの元素を
含有する合金(含アモルファス)でもよい。また蒸着に
限らずメツキ法や箔材を利用することも可能であり、こ
れらのフィラーメタルは接合温度において固相状態にあ
るものでも液相となるものでもかまわない。
In this example, Ni deposited on the bonding surface of the members to be bonded diffuses into the matrix at the bonding temperature, and β
Although the phase ratio is increased to form a coarse grain or layered structure, any β phase-forming element (Fe, V, etc.) can be used as the vapor deposition material, and alloys containing these elements can also be used. (contains amorphous). Further, it is not limited to vapor deposition, but it is also possible to use a plating method or a foil material, and these filler metals may be in a solid phase state or in a liquid phase at the bonding temperature.

〔発明の効果〕〔Effect of the invention〕

接合界面の近傍に形成された粗大粒や層状組織は、等軸
微細な組織に比較して破壊靭性、亀裂伝播特性に優れて
いることから、接合欠陥を起点とする破壊や亀裂進展は
発生し難く、接合欠陥に対する損傷許容性が大幅に向上
する。
Coarse grains and layered structures formed near the joint interface have superior fracture toughness and crack propagation characteristics compared to equiaxed microstructures, so fractures and crack propagation starting from joint defects do not occur. damage tolerance against bonding defects is greatly improved.

粗大な組織の材料は微細な組織に比較して強度が低下す
る傾向にあるが、本発明における接合部界面近傍の粗大
粒は、βリッチな熱処理性のある材質となっていること
から、必要に応じて熱処理を行えば接合部の強度を母相
強度よりも高くすることが可能であり、この場合には静
的強度特性、動的強度特性ともに優れた接手とすること
ができる。
Materials with a coarse structure tend to have lower strength than those with a fine structure, but since the coarse grains near the joint interface in the present invention are made of a β-rich heat treatable material, it is necessary to If heat treatment is performed in accordance with the above, the strength of the joint can be made higher than the matrix strength, and in this case, a joint with excellent static strength characteristics and dynamic strength characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図で、(a)は接合前
、(b)は接合後の組織の模式図を示し、第2図は従来
法による拡散接合法の説明図で、(a)は接合前、ら)
は接合後の組織の模式図を示す。
Fig. 1 is an explanatory diagram of an embodiment of the present invention, (a) shows a schematic diagram of the structure before bonding, (b) shows a schematic diagram of the structure after bonding, and Fig. 2 is an explanatory diagram of a conventional diffusion bonding method. , (a) before joining, et al.
shows a schematic diagram of the structure after joining.

Claims (1)

【特許請求の範囲】[Claims]  被接合材であるα+β型チタン合金の接合面の間にβ
相生成元素を含む材料を挟んで拡散接合し、接合温度に
おける接合界面近傍でのβ相の割合いを増加させること
を特徴とするα+β型チタン合金の拡散接合法。
There is a β
A diffusion bonding method for α+β type titanium alloys, which is characterized by performing diffusion bonding by sandwiching materials containing phase-generating elements, and increasing the proportion of the β phase near the bonding interface at the bonding temperature.
JP2214389A 1990-08-15 1990-08-15 Diffusion bonding method of α + β type titanium alloy Expired - Lifetime JP2691059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214389A JP2691059B2 (en) 1990-08-15 1990-08-15 Diffusion bonding method of α + β type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214389A JP2691059B2 (en) 1990-08-15 1990-08-15 Diffusion bonding method of α + β type titanium alloy

Publications (2)

Publication Number Publication Date
JPH04100682A true JPH04100682A (en) 1992-04-02
JP2691059B2 JP2691059B2 (en) 1997-12-17

Family

ID=16654982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214389A Expired - Lifetime JP2691059B2 (en) 1990-08-15 1990-08-15 Diffusion bonding method of α + β type titanium alloy

Country Status (1)

Country Link
JP (1) JP2691059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896221B2 (en) * 2009-04-22 2011-03-01 Rolls-Royce Plc Method of manufacturing an aerofoil
FR2997644A1 (en) * 2012-11-08 2014-05-09 Technicatome BROADCAST WELDING METHOD

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896221B2 (en) * 2009-04-22 2011-03-01 Rolls-Royce Plc Method of manufacturing an aerofoil
FR2997644A1 (en) * 2012-11-08 2014-05-09 Technicatome BROADCAST WELDING METHOD
WO2014072310A1 (en) * 2012-11-08 2014-05-15 Société Technique pour l'Energie Atomique TECHNICATOME Diffusion welding method
CN104781033A (en) * 2012-11-08 2015-07-15 原子能技术公司 Diffusion welding method

Also Published As

Publication number Publication date
JP2691059B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US4499156A (en) Titanium metal-matrix composites
US4691856A (en) Diffusion bonding method using a high energy beam
US5102747A (en) High temperature-resistant composite
US3713207A (en) Method for diffusion bonding utilizing superplastic interlayer
US3276113A (en) Method of brazing tungsten
JPH04100682A (en) Diffusion joining method for alpha+beta type titanium alloys
JP3079116B2 (en) Coating film and method of forming the same
JP2651847B2 (en) Aluminum alloy for ceramic joining
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPS60191679A (en) Liquid phase diffusion joining method of heat resistant superalloy
JP3187876B2 (en) Method of joining composite material at least partially composed of intermetallic compound
Kirihara et al. Application of an intermetallic compound Ti5Si3 to functionally graded materials.
JP2862494B2 (en) Heat treatment method for TiAl intermetallic compound
JPH0647188B2 (en) Bonding material and bonding method for graphite and metal material
JPS61183178A (en) Method of joining silicon nitride ceramic to metal
JPH06226468A (en) Solid state diffusion joining method
JP3247865B2 (en) Surface treatment of iron alloy by carbide generated by reaction diffusion method
JPH01224280A (en) Ceramic-metal conjugate form
JPH0355232B2 (en)
WO1994023077A1 (en) Ductile titanium alloy matrix fiber reinforced composites
JPS62235270A (en) Method and structure of joining sintered ceramic to metal
JP3930566B2 (en) Titanium member joining method using superplastic intermediate layer
JPH0292875A (en) Formation of thermal stress relaxing layer in bonding between ceramic and metal
JPS61209965A (en) Method of bonding silicon nitride ceramic to aluminum
JPH1180866A (en) Titanium-aluminum intermetallic compound enough in low temperature strength and toughness and its production