JPH0399586A - Automatic exposure adjustor - Google Patents

Automatic exposure adjustor

Info

Publication number
JPH0399586A
JPH0399586A JP1236244A JP23624489A JPH0399586A JP H0399586 A JPH0399586 A JP H0399586A JP 1236244 A JP1236244 A JP 1236244A JP 23624489 A JP23624489 A JP 23624489A JP H0399586 A JPH0399586 A JP H0399586A
Authority
JP
Japan
Prior art keywords
brightness
area
value
rule
priority
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1236244A
Other languages
Japanese (ja)
Other versions
JP2517407B2 (en
Inventor
Toshinobu Haruki
春木 俊宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1236244A priority Critical patent/JP2517407B2/en
Publication of JPH0399586A publication Critical patent/JPH0399586A/en
Application granted granted Critical
Publication of JP2517407B2 publication Critical patent/JP2517407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)

Abstract

PURPOSE:To facilitate the detection of the brightness distribution on a picked-up screen and to attain smooth exposure adjustment by adopting the fuzzy deduction employing a ratio of brightness evaluations of two optional areas among plural areas resulting from divisions of the screen as an input variable for the detection. CONSTITUTION:A picked-up screen is divided into areas A1-A6, and normalized brightness evaluation values V1-V6 are outputted from normalizing circuits 51-56. Then a brightness decision circuit 57 detects the brightness distribution of each area based on the evaluation values V1-V6 and the priority of each area is decided. Then the fuzzy deduction employing a ratio of brightness evaluations of two optional areas as an input variable is adopted from the decision processing. Since ambiguous border information is used as it is, the detection of the brightness distribution is facilitated. Moreover, the exposure adjustment in which the contrast change in the screen is smooth is implemented by using the priority as the result of the detection for the exposure control.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、露出の自動整合を行うビデオカメラ等の撮像
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an imaging device such as a video camera that automatically adjusts exposure.

(ロ)従来の技術 ビデオカメラに於て、絞り及びゲイン等による撮像映像
信号の輝度レベルの制御、所謂露出調整は焦点制御と並
んで非常に重要な課題である。
(B) Conventional Technology In video cameras, control of the brightness level of a captured video signal using aperture, gain, etc., or so-called exposure adjustment, is a very important issue along with focus control.

従来、この自動露出調整機構としては、撮像画面の輝度
レベルの平均やピーク値等のレベルを検出し、これらを
基に絞り及び撮像映像信号に対するゲインを制御する方
法が賞月されている。この方法では、画面内に光源等の
高輝度部が存在したり、逆に背景が暗い等の場合には、
周囲の影響で主要被写体に適切な露出を得られないこと
がある。
Conventionally, as this automatic exposure adjustment mechanism, a method of detecting the average brightness level, peak value, etc. of the brightness level of the image capturing screen, and controlling the aperture and the gain for the captured image signal based on these levels has been popular. With this method, if there are high-brightness areas such as light sources on the screen, or if the background is dark,
Appropriate exposure may not be obtained for the main subject due to surrounding effects.

そこで、本件出願人は、先に特願昭63−4344号に
て、これらの問題点に対する対策を提案している。
Therefore, the applicant of the present invention previously proposed countermeasures for these problems in Japanese Patent Application No. 4344/1983.

この対策とは、撮像画面を複数の領域に予め分割し、各
領域毎に撮像映像信号を取り出し、その低域成分を1フ
イ一ルド分積分することにより、各領域の輝度レベルを
示す輝度評価値を算出し、各輝度評価値を予め光源等の
異常輝度部が領域内に存在する時に得られると予想され
る基準値と比較し、基準値を越える領域については異常
輝度部が存在するものと判断し、この異常輝度部が存在
する領域以外の領域の輝度評価値の平均値を目標値に合
致させることにより、異常輝度部の撮像画面全体への影
響を排除し、異常輝度部が存在しない領域内にある被写
体が最適露出状態となる様に露出調整が為される構成と
することである。
This measure involves dividing the image capture screen into multiple areas in advance, extracting the captured video signal for each area, and integrating the low-frequency components over one field to evaluate the brightness that indicates the brightness level of each area. Each brightness evaluation value is compared with a standard value that is expected to be obtained when an abnormal brightness part such as a light source exists in the area, and if the area exceeds the standard value, it is determined that an abnormal brightness part exists. By determining that the abnormal brightness area exists, the average value of the brightness evaluation values of the area other than the area where the abnormal brightness area exists matches the target value, thereby eliminating the influence of the abnormal brightness area on the entire imaging screen and confirming that the abnormal brightness area exists. In other words, the exposure is adjusted so that the subject in the area where the subject is not photographed is in the optimum exposure state.

(ハ)発明が解決しようとする課題 前述の如く、撮像画面を分割して、異常輝度部の有無あ
るいは異常輝度部の画面上での位置を検出する、所謂撮
像画面の輝度分布の検出結果に応じて露出調整を実行す
ることは、逆光または道順光状態での撮影に極めて有効
である。
(c) Problems to be Solved by the Invention As mentioned above, the detection result of the so-called brightness distribution of the image capturing screen is divided into two parts, and the presence or absence of an abnormally bright area or the position of the abnormally bright area on the screen is detected by dividing the image capturing screen. Executing exposure adjustment accordingly is extremely effective when photographing in backlit or road lighting conditions.

ところが、前記従来例の様に輝度分布の検出に際して、
輝度評価値が基準値を越えるか否かにより単純に場合分
けをする構成では、輝度評価値が基準値を僅かに上回る
状態と、極端に上回る状態とを区別することは不可能で
ある。従って、例えば異常輝度部を含む領域の輝度評価
値が基準値と略等しい場合には、この輝度評価値がある
時点では基準値以上になり、またある時点では以下にな
り、異常輝度部の影響を無視して異常輝度部が存在しな
い領域を最適露出状態に保持したり、異常輝度部の影響
を受けて異常輝度部が存在する領域のみを最適露出状態
に保持する露出制御がその都度為され、これに伴って画
面全体の明るさが断続的に変化し、見苦しい画面となる
However, when detecting the luminance distribution as in the conventional example,
In a configuration where cases are simply classified based on whether the brightness evaluation value exceeds the reference value, it is impossible to distinguish between a state in which the brightness evaluation value slightly exceeds the reference value and a state in which the brightness evaluation value extremely exceeds the reference value. Therefore, for example, if the brightness evaluation value of an area that includes an abnormal brightness area is approximately equal to the reference value, this brightness evaluation value will be greater than or equal to the reference value at a certain point, and will be less than the reference value at a certain point, and the influence of the abnormal brightness area will be Exposure control is performed each time, such as ignoring the abnormal brightness area and keeping the area where there is no abnormal brightness part in the optimal exposure state, or maintaining only the area where the abnormal brightness part exists under the influence of the abnormal brightness part in the optimal exposure state. As a result, the brightness of the entire screen changes intermittently, resulting in an unsightly screen.

また、初期状態では低輝度であった光源が徐々に高輝度
になると、この光源を含む領域の輝度評価値がいずれ基
準値を越えることになり、基準値を越える直前と直後で
光源の露出調整に対する影響度が大きく変化するために
、撮像画面(光源を含まない領域)の明るさはここを境
界にして暗から明へと急激に切り換わり見苦しい画面と
なる。
In addition, if a light source that was initially low brightness gradually becomes high brightness, the brightness evaluation value of the area containing this light source will eventually exceed the standard value, and the exposure of the light source will be adjusted just before and after exceeding the standard value. Since the degree of influence on the image changes greatly, the brightness of the image capture screen (area that does not include the light source) abruptly switches from dark to bright at this boundary, resulting in an unsightly screen.

(ニ)課題を解決するための手段 本発明は、撮像画面の輝度分布の検出を、撮像画面を分
割した複数の領域の任意の2領域の輝度評価値の比を入
力変数とするファジィ推論を用いて行うことを特徴とす
る。
(d) Means for Solving the Problems The present invention detects the luminance distribution of the imaging screen by using fuzzy inference using the ratio of the luminance evaluation values of any two regions of a plurality of regions into which the imaging screen is divided as an input variable. It is characterized by the fact that it is carried out using

(ホ)作用 本発明は上述の如く構成したので、撮像画面の輝度分布
の検出が極めて容易に行え、またこの検出結果を用いて
露出制御を行えば、撮像画面の明るさが急激に変化する
ことのない滑らかな露出調整が可能となる。
(E) Function Since the present invention is constructed as described above, it is extremely easy to detect the brightness distribution of the image capturing screen, and if exposure control is performed using this detection result, the brightness of the image capturing screen changes rapidly. This allows smooth exposure adjustment without any hassle.

(へ)実施例 以下、図面に従い本発明の一実施例について説明する。(f) Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は本実施例装置の回路ブロック図である。FIG. 1 is a circuit block diagram of the device of this embodiment.

入射光は、レンズ(1)を通過し、絞り機til!(2
)で光量を調節された後、撮像回路(3)で光電変換さ
れて撮像映像信号として出力される。この撮像映像信号
は、利得可変アンプ(4)にて増幅されてビデオ回路に
送られ、またL P F (22)、同期分離回路(2
3)、積分器(80)に供給される。
The incident light passes through the lens (1) and the diaphragm til! (2
), the light is photoelectrically converted by the imaging circuit (3) and output as a captured video signal. This imaged video signal is amplified by a variable gain amplifier (4) and sent to a video circuit, and is also amplified by a variable gain amplifier (4) and sent to a video circuit.
3), is supplied to the integrator (80).

L P F (22)は撮像映像信号中の輝度信号の低
域成分を取り出して、後段の切換回路(26)に出力す
る。
L P F (22) extracts the low frequency component of the luminance signal in the captured video signal and outputs it to the subsequent switching circuit (26).

同期分離回路(23)は、撮像映像信号より垂直及び水
平同期信号を抜き出し、後段の切換制御回路(25)で
は、この垂直及び水平同期信号と撮像回路(3)のCC
Dの駆動に用いられる固定の発振器出力に基いて、第3
図の6個の領域(A1)乃至(A6)にわたる画面分割
のための切換信号を発する。
The synchronization separation circuit (23) extracts vertical and horizontal synchronization signals from the imaged video signal, and the subsequent switching control circuit (25) combines these vertical and horizontal synchronization signals with the CC of the imaging circuit (3).
Based on the fixed oscillator output used to drive D, the third
A switching signal for screen division over six areas (A1) to (A6) in the figure is issued.

切換回路(26)は、前記切換信号を受けて、各領域(
AI)乃至(A6)に応じて順次切換わり、L P F
 (22)出力はこの切換回路(26)により領域毎に
時分割されて、夫々積算回路(31)乃至(36)に供
給される。
The switching circuit (26) receives the switching signal and switches each region (
AI) to (A6) are switched sequentially, L P F
(22) The output is time-divided for each region by this switching circuit (26) and supplied to integration circuits (31) to (36), respectively.

積算回路(31)乃至(36)は、いずれも第4図の如
く切換回路(26)出力をA/D変換するA/D変換!
(27)と、このA/D切換出力と後段のラッチ回路(
28)出力を加算する加算器(29)と、この加算出力
をラッチするラッチ回路(28)により構成されるディ
ジタル積分器であり、該当する領域内での輝度信号の低
域成分が所定のサンプリング周期にてA/D変換され、
1フイ一ルド期間にわたってこのA/D変換データが積
分されることになる。ここで積算回路(31)は、領域
(A1)内での輝度信号の低域成分の1フイ一ルド分の
積分値をメモリ(41)に出力し、以下同様に領域(A
2)(A3)(A4)(A5)(A6)内での輝度信号
の1フイ一ルド分の積分値は、積算回路(32)(33
)(34,)(35)(36)から夫々メモリ(42)
(43)(4,4)(45)(46)に出力されること
になる。尚、前記ラッチ回路(28)は1フイールド毎
にリセットされ、また各メモリは各ラッチ回路のリセッ
ト直前のデータを保持し、lフィールド毎にデータ更新
が為される。
The integrating circuits (31) to (36) all perform A/D conversion of the output of the switching circuit (26) as shown in FIG.
(27), this A/D switching output and the subsequent latch circuit (
28) A digital integrator consisting of an adder (29) that adds the output and a latch circuit (28) that latches the added output, and the low frequency component of the luminance signal in the corresponding area is sampled at a predetermined sampling rate. A/D converted at regular intervals,
This A/D converted data is integrated over one field period. Here, the integration circuit (31) outputs the integrated value for one field of the low frequency component of the luminance signal within the area (A1) to the memory (41), and similarly thereafter
2) The integrated value for one field of the luminance signal in (A3) (A4) (A5) (A6) is determined by the integration circuit (32) (33
)(34,)(35)(36) respectively memory(42)
It will be output to (43) (4, 4) (45) (46). The latch circuit (28) is reset for each field, and each memory retains the data immediately before the reset of each latch circuit, and the data is updated for every l field.

ところで、領域(AI)乃至(八6)は、その面積が夫
々(Sl)乃至(S6)で、領域(A1)は第3図の様
に画面中央に位置し、領域(A2)は領域(A1)の外
周に位置する。更にこの領域(A2)の周囲に領域(A
3)乃至(A6)が配置されている。
By the way, the areas (AI) to (86) have the areas (Sl) to (S6), respectively, area (A1) is located at the center of the screen as shown in FIG. 3, and area (A2) is located at the area ( It is located on the outer periphery of A1). Furthermore, an area (A2) is formed around this area (A2).
3) to (A6) are arranged.

1画面分である1フイ一ルド分の積算が完了すると、メ
モリ(41)乃至(46)に保持された最新の各領域で
の1フイ一ルド分の積算値は、各領域の輝度評価値(Y
l)乃至(Y6)として後段の単純平均回路(68)、
各正規化回路及び各重み付は回路に出力される。
When the integration for one field, which is one screen, is completed, the latest integrated value for one field in each area held in the memory (41) to (46) is the brightness evaluation value of each area. (Y
l) to (Y6) are the subsequent simple average circuits (68),
Each normalization circuit and each weighting are output to the circuit.

正規化回路(51)乃至(56)は、各領域での輝度評
価値(Yl)乃至(Y6)を各面積(Sl)乃至(S6
)にて割り算して、各領域の単位面積当りの輝度評価値
を正規化輝度評価値(vl)乃至(V6)(但しV1=
Y1/Sl、V 2 =Y 2/S2、・・・ンとして
出力する。
The normalization circuits (51) to (56) convert the brightness evaluation values (Yl) to (Y6) in each region into respective areas (Sl) to (S6
), and the brightness evaluation value per unit area of each region is normalized brightness evaluation value (vl) to (V6) (however, V1=
Y1/Sl, V 2 =Y 2/S2, . . .

優先度決定回路(57)は、各正規化輝度評価値(Vl
)乃至(■6)に基づいて各領域の優先度(重み)を決
定する。この優先度決定回路(57)での優先度決定処
理は、第2図の如きフローチャートにより実行され、ま
たこの優先度決定処理には、境界のあいまいな情報をあ
いまいなまま扱う所謂ファジィ推論が用いられ、具体的
には以下の6個のルールが使用されている。
The priority determination circuit (57) determines each normalized luminance evaluation value (Vl
) to (6), the priority (weight) of each area is determined. The priority determination process in this priority determination circuit (57) is executed according to a flowchart as shown in FIG. Specifically, the following six rules are used.

[ルール(1)] rif  VlとV2が近いandV 1とv3が近く
ない then領域(AI)(A2)優先j [ルール(2)] rif  Vlとv2が近くないandV 1と■3が
近い then領域(AI)、(A3)優先」[ルール(3)
コ rifVlと■2が近くないandV 1とV3が近く
ない then領域(AI)優先」 [ルール(4)] rirVlとV2が近いandV 1と■3が近いth
en領域(A1)、(A2)、(A3)優先」 [ルール(5)] 「百 max(Vi)(i=1〜6)が小さいthen
全領域同一優先度」 [ルール(6)] rif  max (V i )が小さくないand単
純平均値が小さい then領域(A1)優先」 これらのルールは、第6図乃至第11図に示す様に、「
近い」 「小さい」といった条件が、「V2/VIJ 
 rmax  (Vi)J といった各入力変数に対す
るメンバーシップ関数で定義され、結論部として各領域
の優先度(wik)をもっている。尚、推論は通常のm
in−max法で行なわれる。
[Rule (1)] rif Vl and V2 are close and V 1 and v3 are not close then area (AI) (A2) priority j [Rule (2)] rif Vl and v2 are not close and V 1 and ■3 are close then Area (AI), (A3) Priority” [Rule (3)
CorifVl and ■2 are not close andV 1 and V3 are not close then area (AI) priority" [Rule (4)] rirVl and V2 are close andV 1 and ■3 are closeth
en area (A1), (A2), (A3) priority" [Rule (5)] "100 max(Vi) (i=1 to 6) is small then
``All areas have the same priority'' [Rule (6)] Prioritize areas (A1) where rif max (V i ) is not small and the simple average value is small.'' These rules are as shown in Figures 6 to 11. , “
Conditions such as “close” and “small” are “V2/VIJ
It is defined by a membership function for each input variable such as rmax (Vi)J, and has the priority (wik) of each area as a conclusion part. In addition, the inference is the usual m
The in-max method is used.

次に各ルールについて詳述する。Next, each rule will be explained in detail.

[ルール(1)]は第66図a )(b )の如きメン
バーシップ関数で定義されている。第6図(a)はrV
lとv2が近い」というルール(1)の条件(1)の成
立度を示す、入力変数(V2/Vl)に対するメンバー
シップ関数である。即ち、領域(A1)の正規化輝度評
価値(vl)と領域(A2)の正規化輝度評価値(v2
)がどの程度近いかを示す近さの度合を判断するために
、入力変数をV2/Vlとし、V2/V1.〜1となる
場合に極大値となる山型のメンバーシップ関数に最新の
フィールドでの入力変数(V 2/V 1 )を代入す
ることによりメンバーシップ値(u、、)が求まる。尚
、V2/V1=1の時、メンバーシップ値(u、、)は
最大となる。
[Rule (1)] is defined by membership functions such as those shown in FIGS. 66a and 66b. Figure 6(a) shows rV
This is a membership function for the input variable (V2/Vl) that indicates the degree to which condition (1) of rule (1) "l and v2 are close" is satisfied. That is, the normalized brightness evaluation value (vl) of area (A1) and the normalized brightness evaluation value (v2) of area (A2)
), the input variable is V2/Vl, and V2/V1 . The membership value (u, . . . ) is determined by substituting the input variable (V 2 /V 1 ) in the latest field into the chevron-shaped membership function that takes a maximum value when ˜1. Note that when V2/V1=1, the membership value (u, .) is maximum.

第6図(b)はrVlとV3が近くない」というルール
(1)の条件(2)の成立度を示す、入力変数(V3/
Vl)に対するメンバーシップ関数である。即ち、領域
(A1)の正規化輝度評価値(Vl)と領域(A3)の
正規化輝度評価値(U3)がどの程度近くないかを示す
近くない度合を判断するために、入力変数をV3/Vl
とし、V3/v1=1となる場合に極小値となる谷型の
メンバーシップ関数に最新のフィールドでの入力変数(
V3/Vl)を代入することによりメンバーシップ値(
u、、)が求まる。尚、V3/V1=1の時に、メンバ
ーシップ値(u、、)は最小となる。こうして第6図(
a)(b)によりルール(1)の条件(1)(2)のメ
ンバーシップ値(u、、)(u。
Figure 6(b) shows the input variable (V3/
is a membership function for Vl). That is, in order to determine the degree to which the normalized brightness evaluation value (Vl) of the area (A1) and the normalized brightness evaluation value (U3) of the area (A3) are not close, the input variable is set to V3. /Vl
Then, the input variable in the latest field (
V3/Vl) by substituting the membership value (
u, , ) can be found. Incidentally, when V3/V1=1, the membership value (u, ,) becomes the minimum. In this way, Figure 6 (
a) By (b), the membership value (u, , ) (u.

、)の算出が為されることになる。尚、この算出は第2
図のフローチャートのS T E P (100)に該
当する。
, ) will be calculated. Note that this calculation is based on the second
This corresponds to S T E P (100) in the flowchart in the figure.

前記メンバーシップ値(u、、)(u、、)は、ST 
E P (101)にて両者の最小値、即ち小さい方の
メンバーシップ値がルール(1)の成立度(Ul)とし
て選択される。第6図の例ではa ll< u +tと
なるので、U1=u、、に設定される。
The membership value (u, ,) (u, ,) is ST
In E P (101), the minimum value of both, that is, the smaller membership value is selected as the degree of fulfillment (Ul) of rule (1). In the example of FIG. 6, since a ll<u +t, U1=u is set.

上述のS T E P (100)(101)の動作は
、残りの5つのルールについても実行される。
The operations of S T E P (100) and (101) described above are also executed for the remaining five rules.

[ルール(2)]は第77図a )(b )の如く谷型
及び山型のメンバーシップ関数で定義され、第6図の場
合と同様に、rVlとU2が近くない」というルール(
2)の条件(1)についてのメンバーシップ値(u、、
)が(a)より、またrVlとU3が近い」というルー
ル(2)の条件(2)についてのメンバーシップ値(u
o)が(b)より求まり、5TEP (101)にてメ
ンバーシップ値(u、、)(u、、)の小さい方がルー
ル(2)の成立度(U2)として選択される。第7図の
例ではu@)>ustとなるのでU2=uxtに設定さ
れる。
[Rule (2)] is defined by valley-shaped and mountain-shaped membership functions as shown in Figure 77a) and (b), and as in the case of Figure 6, the rule that rVl and U2 are not close (
2) Membership value (u, , for condition (1))
) is closer to (a), and rVl and U3 are closer.'' Membership value (u
o) is determined from (b), and in 5TEP (101), the smaller membership value (u, , ) (u, , ) is selected as the degree of fulfillment (U2) of rule (2). In the example of FIG. 7, since u@)>ust, U2=uxt is set.

[ルール(3)]は第8図(a )(b )の如く谷型
のメンバーシップ関数で定義され、第6図の場合と同様
に、rVlとU2が近くない」というルール(3)の条
件(1)についてのメンバーシップ値(Ul、)が(a
)より、またrVlとU3が近くない」というルール(
3)の条件(2)についてのメンバーシップ値(u、、
)が(b)より求まり、S T E P (101)に
てメンバーシップ値(u、、)(u、、)の小さい方が
ルール(3)の成立度(U3)として選択される。第8
図の例では、ust<ustとなるのでU 3 ” u
 s 1に設定される。
[Rule (3)] is defined by a valley-shaped membership function as shown in Figures 8(a) and (b), and as in the case of Figure 6, rule (3) states that rVl and U2 are not close. The membership value (Ul,) for condition (1) is (a
), and the rule that rVl and U3 are not close (
3) Membership value (u, , for condition (2))
) is determined from (b), and in S T E P (101), the smaller membership value (u, , ) (u, , ) is selected as the degree of fulfillment (U3) of rule (3). 8th
In the example shown in the figure, ust<ust, so U 3 ” u
s is set to 1.

[ルール(4)]は第99図a)(b)の如く山型のメ
ンバーシップ関数で定義され、「vlとU2が近い」と
いうルール(4)の条件(1)についてのメンバーシッ
プ値(u、、)が(a)より、またrVlとU3が近い
」というルール(4)の条件(2)についてのメンバー
シップ値(u、’、)が(b)より求まり、S T E
 P (101)にてメンバーシップ値(u。
[Rule (4)] is defined by a mountain-shaped membership function as shown in Figures 99a and (b), and the membership value for condition (1) of rule (4) that "vl and U2 are close" is The membership value (u,',) for condition (2) of rule (4), ``u,,) is closer than (a), and rVl and U3 are closer,'' is determined from (b), and S T E
Membership value (u.

、)(U、、)の小さい方がルール(4)の成立度(U
4)として選択される。第9図の例では、Ull>uJ
tどなるのでU 4 = u 4 tに設定される。
, )(U, ,) is smaller than the probability that rule (4) holds true (U
4) is selected. In the example of FIG. 9, Ull>uJ
t, so U 4 = u 4 t is set.

[ルール(5)]は]第1図の如く、全正規化輝度評価
値(Vl)乃至(U6)の中の最大値(max(Vi)
)(但し、i=1〜6)を入力変数とし、このmax 
(Vi)の小さい度合を示す単純減少直線で示されるメ
ンバーシップ関数で定義され、max(Vi)が決まる
と一義的にメンバーシップ値(U、、)が求まる。尚、
このメンバーシップ値(u、、)はmax (Vi)が
大きくなるにつれて小さくなる。S T E P (1
01)では、ルール(5)に関してメンバーシップ値は
1つだけであるため、ルール(5)の成立後(U5)は
U5=u、1に設定される。
[Rule (5)] is] As shown in Figure 1, the maximum value (max (Vi) of all normalized luminance evaluation values (Vl) to (U6)
) (where i=1 to 6) is the input variable, and this max
It is defined by a membership function shown by a simple decreasing straight line indicating the degree to which (Vi) is small, and once max(Vi) is determined, the membership value (U, , ) is uniquely determined. still,
This membership value (u, ,) becomes smaller as max (Vi) becomes larger. S T E P (1
In 01), since there is only one membership value for rule (5), U5=u, 1 is set after rule (5) is established (U5).

[ルール(6)]は第11図(a)(b)の如く、ルー
ル(5)と同様にmax (Vi)を入力変数とする単
純増加直線を有するメンバーシップ関数と、全正規化輝
度評価値(vl)乃至(U6)の入力変数とする単純減
少直線のメンバーシップ関数で定義されている。即ち、
第11図(a)のメンバーシップ関数では、rmax(
Vi)が小さくない」というルール(6)の条件(1)
においてmax(Vi)が小さくない度合を判断するた
めに、入力変数としてmax(Vi)が決まれば、メン
バーシップ値(U、、)が決定できる。尚、このメンバ
ーシップ値(u、、)はmax (Vi)が小さくなる
につれて小さくなる。また、第11図(b)のメンバー
シップ関数では、「単純平均値が小さい」というルール
(6)の条件(2)において前記単純平均値(Z、)が
小さい度合を判断するために入力変数として単純平均値
が決まれば、メンバーシップ値(U、、、)が決定でき
る。尚、このメンバーシップ値(u、、)は単純平均値
が大きくなるにつれて小さくなる。S T E P (
101)では、メンバーシップ値(u、、)と(121
)の小さい方を選択して、ルール(6)の成立度(U6
)はU6=ustと設定される。
[Rule (6)], as shown in Figures 11(a) and (b), is a membership function with a simple increasing straight line with max (Vi) as an input variable, as in rule (5), and a total normalized luminance evaluation. It is defined by a membership function of a simple decreasing straight line with values (vl) to (U6) as input variables. That is,
In the membership function of FIG. 11(a), rmax(
Condition (1) of rule (6) that “Vi) is not small”
In order to determine the degree to which max(Vi) is not small in , if max(Vi) is determined as an input variable, the membership value (U, , ) can be determined. Note that this membership value (u, ,) becomes smaller as max (Vi) becomes smaller. In addition, in the membership function of FIG. 11(b), input variables are used to determine the degree to which the simple average value (Z, ) is small in condition (2) of rule (6) that "the simple average value is small". If the simple average value is determined as , then the membership value (U, . . . ) can be determined. Note that this membership value (u,,) becomes smaller as the simple average value becomes larger. S T E P (
101), the membership value (u,,) and (121
) to determine the degree of establishment of rule (6) (U6
) is set as U6=ust.

以上の様にS T E P (100)(101)での
全ルールについての成立度(Ui)(i=1〜6)の算
出が完了したとS T E I) (102)にて判断
されると、STE P (103)にて各領域について
の優先度(Wk)(k=1〜6)の算出が為される。こ
の優先度(Wk)は次式の如く各ルールの成立度で結論
部を加重平均することで算出される。
As described above, it is determined in STE I) (102) that the calculation of the degree of fulfillment (Ui) (i = 1 to 6) for all rules in STE P (100) (101) has been completed. Then, in STE P (103), the priority (Wk) (k=1 to 6) for each area is calculated. This priority (Wk) is calculated by weighted averaging of the conclusions based on the degree of establishment of each rule, as shown in the following equation.

この式(A)においてwikは各ルールに関する各領域
についての優先度であり、ルール毎に個々に定められて
いる。
In this formula (A), wik is the priority for each area regarding each rule, and is determined individually for each rule.

例えば、ルール(1)については、「領域(A1)、(
A2)を優先する」を数値にて示すために、結論部とし
て領域(A1)乃至(八6)の優先度(W、、)乃至(
w 、、)は w、、=w、!=3 w 、3= w 、、: w 、、= w 、、= 1
と予め設定されている。即ち、ルール(1)についての
領域(AI)(A2)の他の領域に対する優先度は3倍
に設定されている。尚、この優先度の設定は予め行なわ
れた実験に基づく。
For example, regarding rule (1), "area (A1), (
In order to numerically indicate "prioritize A2)," the priorities (W, , ) to (
w,,) is w,,=w,! = 3 w , 3= w , ,: w , , = w , , = 1
is set in advance. That is, the priority of area (AI) (A2) for rule (1) with respect to other areas is set to three times. Note that this priority setting is based on experiments conducted in advance.

ルール(2)については、「領域(AI)、(A3)を
優先する」を結論部として示すために、各領域の優先度
(W、、)乃至(W□)はW鵞、=W、、=3 W言霊=w、4=w、、=w、、=1 と予め設定されている。
Regarding rule (2), in order to indicate "areas (AI) and (A3) are given priority" as the conclusion part, the priority of each area (W, ) to (W□) is W鵞,=W, , = 3 W Kotodama = w, 4 = w, , = w, , = 1 are set in advance.

ルール(3)については、「領域(A1)を優先する」
を結論部として示すために、各領域の優先度(W、、)
乃至(W3.)は w3.=3 W3亥” W s I= W s + = W s l
= W x * = 1と予め設定されている。
Regarding rule (3), "give priority to area (A1)"
In order to show as a conclusion, the priority of each area (W,,)
〜(W3.) is w3. =3 W3亥” W s I= W s + = W s l
= W x * = 1 is set in advance.

ルール(4)については、「領域(A1)、(A2)、
(A3)を優先する」を結論部として示すために、各領
域の優先度(w、、)乃至(W4゜)はW + + =
 W t s = W 4 s = 3W + + =
 W口=W、、=1 と予め設定されている。
Regarding rule (4), "area (A1), (A2),
In order to show "Prioritize (A3)" as the conclusion part, the priority of each area (w,,) to (W4゜) is W + + =
W t s = W 4 s = 3W + + =
It is preset that W port=W,,=1.

ルール(5)については、「全領域同一優先度とする」
を結論部として示すために、各領域の優先度(W、、)
乃至(W、)は W s1= Vl 51 = W S 3 = W g
 4 = W 65 = W 5 @ ”  lと予め
設定されている。
Regarding rule (5), "All areas have the same priority"
In order to show as a conclusion, the priority of each area (W,,)
〜(W,) is W s1 = Vl 51 = W S 3 = W g
4=W65=W5@”l is set in advance.

ルール(6)については、「領域(AI)を優先する」
を結論部として示すために、各領域の優先度(W、、)
乃至(was)は、 w、、=3 w 、、:: w 、、: w 、、= w 、、= 
w 、、:  1と予め設定されている。尚、単純平均
値(Z、)は、後述の如く単純平均回路(68)にて算
出される。
Regarding rule (6), "give priority to area (AI)"
In order to show as a conclusion, the priority of each area (W,,)
〜(was) is w,,=3 w,,:: w,,: w,,= w,,=
w , , : is preset as 1. Note that the simple average value (Z, ) is calculated by a simple average circuit (68) as described later.

この様に設定された各ルールにおける各領域の優先度を
用いて全ルールを考慮した優先度(Wk)を、第6図乃
至第11図の例で考えると、領域(AI)については、
式(A)が となる。この式(B)において、 ”u ++’3+u **・3+u 3+’3”11 
、!−3+u、1・1+u、・3 ”u  t+”u  !鵞+u  3++u  +t”
u s++u stであるため、 領域(A )の優先度 (Wl) は、 W t=(3ut+”3uis+3us+”3tL*”
ui+”3ust)/(u++”uts”us++u4
t+us++u@*)となるO優先度(W、)乃至(W
6)は 同様に と算出される。こうして全ルールについてファジィ推論
により決定された各領域の優先度(Wk)は、重み付は
回路(61)乃至(66)に発せられる。重み付は回路
(61)乃至(66)は、領域毎の優先度(Wl)乃至
(W、)にて重み付け、所謂優先処理を行う。即ち、各
輝度評価値(Yl)乃至(Y4)に該当する領域の優先
度(W、)乃至(W、)を乗算してYi−Wi(i=1
〜6)を算出する。こうして重み付けされた輝度評価値
は全て重み付は平均回路(67)に供給される。重み付
は平均回路(67)は、重み付は回路(61)乃至(6
6)出力の加算値を、各優先度と面積の積の和で割り算
して重み付は平均値(Z、)を出力する。即ちを算出す
る。尚、Si  (i=1〜6)は各領域の面積を示す
Considering the priority (Wk) considering all rules using the priority of each area in each rule set in this way using the examples shown in Figures 6 to 11, for the area (AI),
Formula (A) becomes. In this formula (B), ``u ++'3+u **・3+u 3+'3''11
,! -3+u, 1・1+u,・3 “ut+”u! Goose+u 3++u +t”
Since u s++u st, the priority (Wl) of area (A) is W t=(3ut+"3uis+3us+"3tL*"
ui+”3ust)/(u++”uts”us++u4
O priority (W, ) to (W
6) is calculated similarly. The priority (Wk) of each area determined by fuzzy inference for all rules is sent to the weighting circuits (61) to (66). The weighting circuits (61) to (66) perform so-called priority processing by weighting based on the priorities (Wl) to (W,) for each area. That is, each brightness evaluation value (Yl) to (Y4) is multiplied by the priority of the corresponding area (W, ) to (W,) to yield Yi-Wi (i=1
~6) is calculated. All of the luminance evaluation values weighted in this way are supplied to the weighted averaging circuit (67). The weighting is performed by the average circuit (67), and the weighting is performed by the circuits (61) to (6).
6) Divide the added value of the output by the sum of the products of each priority and area, and output the weighted average value (Z,). That is, calculate. Note that Si (i=1 to 6) indicates the area of each region.

単純平均回路(68)は、各輝度評価値(Yi)を全て
加算して、この加算値を画面全体の面積(S。
The simple averaging circuit (68) adds up all of the respective brightness evaluation values (Yi) and calculates the added value as the area (S) of the entire screen.

+S、+・・・S、)で割り算して画面全体の単純平均
となる。尚、この単純平均値(Zl)は各輝度評価値(
Y i )に重み付は回路(61)乃至(66)にて優
先度(W、)乃至(W、)を全て“1”として重み付け
を行い、重み付は平均回路(67)にて式(C)の算出
を行ったものと同等の値である。
+S, +...S,) to obtain the simple average of the entire screen. Note that this simple average value (Zl) is calculated based on each brightness evaluation value (
Y i ) is weighted by circuits (61) to (66) with priorities (W, ) to (W,) all set to "1", and weighted by averaging circuit (67) using equation This is the same value as that calculated in C).

上述の如く算出された単純平均値(zl)と重み付は平
均値(2,)とは割算器(69)に入力され、m=zl
/zlの割算が為され、この割算値(m)は利得制御回
路(70)及び目標レベル制御回路(71)に入力され
る。
The simple average value (zl) and weighted average value (2,) calculated as described above are input to the divider (69), and m=zl
/zl is performed, and this division value (m) is input to the gain control circuit (70) and target level control circuit (71).

利得制御回路(70)は、可変利得アンプ(4)のゲイ
ンを制御する比較器(5)に目標レベル(P)を供給す
るものである。この目標レベル(P)はm=1の時、即
ち単純平均値(Zl)と重み付は平均値Z、)とが等し
く撮像画面の輝度分布を考慮しない時に、撮像画面に最
適な露出を得られる最適目標レベル(Po)に設定され
、常にP = m P 、を満足する様に補正値である
割算値(m)に追従する。
The gain control circuit (70) supplies a target level (P) to a comparator (5) that controls the gain of the variable gain amplifier (4). This target level (P) obtains the optimum exposure for the image capture screen when m=1, that is, when the simple average value (Zl) and the weighted average value Z,) are equal and the brightness distribution of the image capture screen is not considered. It follows the division value (m) which is a correction value so as to always satisfy P = m P .

従って結果的には、露出調整にて重み付は平均値(Z、
)が最適目標レベル(Po)となる様に目標レベル(P
)が変化することになる。
Therefore, in the end, the weighting in exposure adjustment is the average value (Z,
) becomes the optimal target level (Po).
) will change.

比較器(5)は、撮像映像信号を十分に長い時定数(例
えば1フイ一ルド期間)にて積分して、該当フィールド
の輝度レベルを示す積分!(90)出力と前記目標レベ
ル(P)とを比較するもので、この比較出力を利得可変
アンプ(4)に供給して、積分出力が目標レベル(P)
に一致する様にゲインを制御するとにより、映像信号に
は重み付は処理を考慮したAGCが付与されることにな
る。
The comparator (5) integrates the captured video signal over a sufficiently long time constant (for example, one field period) to obtain an integral value that indicates the brightness level of the corresponding field! (90) The output is compared with the target level (P), and this comparison output is supplied to the variable gain amplifier (4) so that the integrated output reaches the target level (P).
By controlling the gain so as to match , AGC is applied to the video signal in consideration of weighting and processing.

目標レベル制御回路(71)は、絞り機構(2)の絞り
量を制御する比較器(72)に目標レベル(Q)を供給
するもので、この目標レベル(Q)は前記目標レベル(
P)と同様に、前記割算値(m)がm=1の条件を満足
する時にはQ = q oの最適目標レベルに設定され
、割算値(m)との間にQ = m q 、の式を満足
する様に変化し、結果的に露出調整にて重み付は平均値
(Z、)が最適目標レベル(qo)に常に一致する様に
目標レベル(Q)が変化することになる。
The target level control circuit (71) supplies a target level (Q) to a comparator (72) that controls the aperture amount of the aperture mechanism (2), and this target level (Q) is equal to the target level (
Similarly to P), when the division value (m) satisfies the condition of m=1, it is set to the optimal target level of Q = q o, and between it and the division value (m), Q = m q , As a result, the target level (Q) changes so that the average weighting value (Z,) always matches the optimal target level (qo) during exposure adjustment. .

比較器(72)は前記目標レベル(Q)と積分!(80
)出力とを比較するもので、この比較出力を絞り機構(
2)に供給し、この比較出力に基づいて絞り機構(2)
を駆動させて、該当フィールドの輝度レベルを示す積分
出力が目標レベル(Q)に一致する様に絞り機構(2)
の絞り量が制御される。尚、積分器(80)の時定数は
、積分器(90)のそれに等しく、絞り機構(2)が撮
像映像信号の瞬時的な変化には追従しない様に設定され
ている。
The comparator (72) integrates the target level (Q)! (80
) output, and this comparison output is compared with the aperture mechanism (
2), and based on this comparison output, the aperture mechanism (2)
the aperture mechanism (2) so that the integral output indicating the brightness level of the relevant field matches the target level (Q).
The aperture amount is controlled. Note that the time constant of the integrator (80) is equal to that of the integrator (90), and is set so that the aperture mechanism (2) does not follow instantaneous changes in the captured video signal.

以上の様に、可変利得アンプ(4)及び絞り機構(2)
の駆動を制御する比較器(5)(72)の目標レベル(
P)(Q)は、重み付は処理が施された重み付は平均値
(Z、)に応じて変化するため、可変利得アンプ(4)
による電気的な、また絞り機III(2)による光学的
な露出調整には重み付は処理が十分に考慮され、例えば
、画面全体の単純平均値(Zl)が“120”で、平均
値(Z、)が“100”の場合、画面全体にわたっては
十分な明るさが得られているが、ルール(1)乃至(6
)にて優先しなければならない領域にのみ注目すると十
分な明るさが得られておらず、中央の領域が暗い等の状
況にあることになり、割算値(m)はm=1.2となっ
て目標レベル(P )(Q )は夫々P=mP、、Q=
 m q 、と」−昇し、この結果、利得可変アンプ(
4)のゲインも上昇し、絞り機構(2)の絞り量も小さ
くなり、優先領域に対して最適な露出調整が為される。
As mentioned above, the variable gain amplifier (4) and the aperture mechanism (2)
The target level (
P) (Q) is a variable gain amplifier (4) because the weighting that has been processed changes according to the average value (Z, ).
The weighting process is fully taken into consideration for the electrical exposure adjustment by the diaphragm III (2) and the optical exposure adjustment by the iris III (2). For example, if the simple average value (Zl) of the entire screen is "120", the average value ( Z,) is "100", sufficient brightness is obtained over the entire screen, but rules (1) to (6)
), if we focus only on the area that must be prioritized, sufficient brightness will not be obtained and the central area will be dark, and the division value (m) will be m = 1.2 Therefore, the target levels (P) and (Q) are respectively P=mP,,Q=
As a result, the variable gain amplifier (
The gain of step 4) also increases, the aperture amount of the aperture mechanism (2) also decreases, and optimal exposure adjustment is performed for the priority area.

次にルール(1)乃至(6)が露出調整にどの様な影響
を与えることになるのかをルール毎に説明する。ルール
(1)乃至(4)は、優先処理の基本をなす部分で、領
域(AI)(A2)(A3)の中で互いに輝度評価値が
近い時、その領域の優先度を高める様に作用する。
Next, how the rules (1) to (6) affect exposure adjustment will be explained for each rule. Rules (1) to (4) are the basics of priority processing, and when the brightness evaluation values of areas (AI), (A2, and A3) are close to each other, they work to increase the priority of that area. do.

例えば、前記従来技術の如く、被写体が最も存在する確
率の高い領域(A1.)(A2)(A3)について単純
に領域(A4)(A5)(A6)に対して同一優先度を
もたせて、第5図の様に逆光の状況下で被写体(S)を
撮影すると、領域(A2)にのみ太陽等の明るい背景が
入ってくるため被写体(S)に対して適正な補正ができ
ない。そこでルール(1)乃至(4)を適用すると、領
域(A1)(A3)は共に暗く、領域(A2)のみが明
るいので正規化輝度評価値(Vl)(V2)(V3)に
は、V1#V:lV2が成り立ち、ルール(1)の条件
(1)(2)、ルール(3)の条件(2)、ルール(4
)の条件(1)が成り立ち難いのでルール(2)の成立
度のみが極めて高くなり領域(A1)(A3)の優先度
が高くなり、これらの領域(A1)(A3)に納まって
いる被写体(S)を重視してこの被写体(S)に対して
最適な露出状態となる。これら一連のルールは、逆光時
に特に有効である。
For example, as in the prior art, the areas (A1.) (A2) (A3) with the highest probability of containing the subject are simply given the same priority as the areas (A4) (A5) (A6), When the subject (S) is photographed in a backlit situation as shown in FIG. 5, a bright background such as the sun appears only in the area (A2), making it impossible to correct the subject (S) appropriately. Therefore, if rules (1) to (4) are applied, both areas (A1) and (A3) are dark and only area (A2) is bright, so the normalized brightness evaluation values (Vl) (V2) (V3) include V1 #V: lV2 holds, conditions (1) and (2) of rule (1), condition (2) of rule (3), and rule (4)
) is difficult to hold, so only the probability of rule (2) being satisfied is extremely high, and the priority of areas (A1) and (A3) becomes high, and the objects that fall within these areas (A1) and (A3) (S), and the optimum exposure condition for this subject (S) is obtained. These series of rules are particularly effective when backlit.

ルール(5)は画面全体が暗い場合に対応し、正規化輝
度評価値の最大値が大きくない時は、優先処理をせず画
面の平均値を代表値にしようとする。また、この画面全
体が暗い場合のルールとして、次に示すルール(5)′
をルール(5)に代用するも可能である。
Rule (5) corresponds to the case where the entire screen is dark, and when the maximum value of the normalized brightness evaluation value is not large, priority processing is not performed and the average value of the screen is used as the representative value. In addition, as a rule when the entire screen is dark, the following rule (5)'
It is also possible to substitute rule (5).

[ルール(5)’] [if絞りがかなり開いている。[Rule (5)’] [If the aperture is wide open.

then全領域同一優先度とする」 このルール(5)“は撮像画面の暗さを絞り機構(2)
の絞りの開放度で検出しようとするもので、絞りがかな
り開いている、即ち開放度がかなり大きい場合には、撮
像画面が暗いとして、全領域での優先度を同一にし、不
必要な補正を抑える働きをする。尚、この開放度を入力
変数とするルール(5)゛のメンバーシップ関数を図示
すると第12図の如くなり、各領域の優先度は、w、、
=w、、=w、、=w、、=w、、=w□=1となる。
Then all areas have the same priority.'' This rule (5) is based on the aperture mechanism (2) that reduces the darkness of the image capture screen.
If the aperture is quite open, that is, the aperture is quite large, the imaging screen is assumed to be dark, and the priority is set the same for all areas, making unnecessary corrections possible. It works to suppress The membership function of rule (5) with this degree of openness as an input variable is illustrated in Figure 12, and the priority of each area is w,...
=w, , =w, , =w, , =w, , =w□=1.

この際、絞りの開放度の検出には、絞り機構(2)を作
動させる駆動電圧値を第14図の如(A/D変換器(2
00)にてA/D変換して優先度決定回路(57)にフ
ィードバックして得るか、あるいは絞り機構(2)の駆
動をロータの位置が計数可能なステッピングモータにて
行い、このモータの開放方向へのステップ数に開放度を
対応させ、更にほこの開放度を検出するセンサーを別途
設ける等、様々な方法が考えられる。尚、絞り機111
(2)の絞り量は比較器(72)の電圧値に反比例して
変化する。即ち開放度は前記電圧値に比例して変化する
。尚、画面全体が暗い場合に対応するルールとして、ル
ール(5)及び(5)゛ を両方用いることも可能であ
る。
At this time, to detect the opening degree of the aperture, the driving voltage value for operating the aperture mechanism (2) is set as shown in Fig. 14 (A/D converter (2)
00) and feeding it back to the priority determination circuit (57), or the aperture mechanism (2) is driven by a stepping motor whose rotor position can be counted, and this motor is opened. Various methods can be considered, such as making the degree of opening correspond to the number of steps in the direction and further providing a separate sensor to detect the degree of opening. In addition, wringer 111
The aperture amount (2) changes in inverse proportion to the voltage value of the comparator (72). That is, the degree of opening changes in proportion to the voltage value. Note that it is also possible to use both rules (5) and (5)' as rules corresponding to the case where the entire screen is dark.

ルール(6)は、画面内に光源の様に極めて高輝度なも
−の、所謂異常輝度部が入った場合に対応し、異常輝度
部がいずれかの領域に入っているために、正規化輝度評
価値(Vi)の最大値は小さくないが、単純平均値(Z
l)が小さく異常輝度部が存在している領域以外の領域
全体が暗いときには、無条件に領域(A1)を優先して
いる。
Rule (6) corresponds to the case where there is a so-called abnormal brightness part, such as an extremely high brightness part such as a light source, in the screen, and since the abnormal brightness part is in one of the areas, normalization is Although the maximum value of the brightness evaluation value (Vi) is not small, the simple average value (Z
When l) is small and the entire area other than the area where the abnormal brightness portion is present is dark, the area (A1) is given priority unconditionally.

そこで、撮影者が暗い背景の状況下で異常輝度部を撮影
するために画面中央の領域(A1)内に、この異常輝度
部を位置させると、上述の如く、正規化輝度評価値(V
i)の最大値は(Vl)となって大きな値となるが、単
純平均値(Z、)は小さく、領域(AI)が優先される
。従って、領域(A1)の輝度レベルが最適なレベルに
、即ち領域(A1)中の異常輝度部が最適露出状態とな
る様に露出調整が為され、結果的に異常輝度部の撮影が
可能となる。この際、領域(A2)乃至(A6)は、上
述の露出調整で極めて低輝度な暗い状態となるが、異常
輝度部の撮影を最優先としているのでこの点はやむ得な
い。
Therefore, if the photographer positions the abnormal brightness area within the area (A1) at the center of the screen in order to photograph the abnormal brightness area under a dark background, the normalized brightness evaluation value (V
The maximum value of i) is (Vl), which is a large value, but the simple average value (Z,) is small, and priority is given to the area (AI). Therefore, the exposure is adjusted so that the brightness level of area (A1) is at the optimal level, that is, the abnormal brightness part in area (A1) is in the optimal exposure state, and as a result, it is possible to photograph the abnormal brightness part. Become. At this time, the areas (A2) to (A6) become dark with extremely low brightness due to the above-mentioned exposure adjustment, but this is unavoidable since the highest priority is given to photographing the abnormally bright parts.

また、異常輝度部が領域(AI)以外のいずれかの領域
に存在し、領域(A1)には異常輝度部より低輝度な別
の被写体が存在する時には逆光状態となり、正規化輝度
評価値(Vi)の最大値は異常輝度部が存在する領域の
正規化輝度評価値となって大きく、逆光状態であるため
に異常輝度部が存在する領域以外の領域は暗くなり、単
純平均値(Z、)が小さくなり、この場合にも領域(A
1)の優先度が高くなる。従って、異常輝度部の影響を
低減させて、領域(A1)の主要被写体が最適露出状態
となる様に露出調整が為される。
In addition, when the abnormal brightness area exists in any area other than the area (AI) and another object with lower brightness than the abnormal brightness area exists in the area (A1), a backlight condition will occur, and the normalized brightness evaluation value ( The maximum value of Vi) becomes the normalized brightness evaluation value of the area where the abnormal brightness part exists and is large, and because it is a backlight condition, the area other than the area where the abnormal brightness part exists becomes dark, and the simple average value (Z, ) becomes smaller, and in this case also the area (A
1) has a higher priority. Therefore, the exposure adjustment is performed so that the influence of the abnormal brightness portion is reduced and the main subject in the area (A1) is brought to the optimum exposure state.

尚、領域の分割及び各ルールの設定は本実施例に限らず
、様々な形態が考えられる。また、第1図の切換回路(
26)乃至割算器(69)の動作をマイクロコンピュー
タを用いてソフトウェア的に処理可能であることは言う
までもない。
Note that the division of regions and the setting of each rule are not limited to this embodiment, and various forms can be considered. In addition, the switching circuit in Figure 1 (
It goes without saying that the operations of the divider (26) to (69) can be processed by software using a microcomputer.

また、前記実施例では、輝度分布を考慮しない撮像画面
の最適目標レベル(Po)を予め設定し、重み付は平均
値(Z、)に対する単純平均値(Z、)の比である割算
値(m)を補正値として最適目標レベル(P、)に乗算
して、撮像映像信号の輝度レベルを示す積分器(90)
出力と比較することにより、最適な露出制御を実現して
いるが、第13図に示す様に、最適目標レベル(Po)
を重み付は平均値(2,)と目標レベルメモリ(91)
に記憶されている目標レベル(P6°)(但し、Poo
は前記目標レベル(P、)をディジタル化した値である
)とを比較tW(92)にて直接比較し、この比較結果
により利得可変アンプ(4)のゲインを制御し、また絞
り機構(2)の絞り量を制御して電気的及び光学的露出
調整も為すことも可能である。例えば、重み付は平均値
(2,)が目標レベル(P@’)より小さい時には、輝
度分布を考慮した上での撮像画面が最適露出状態に比べ
露出不足であるとして、Zt=P、°になる様に利得可
変アンプ(4)のゲインを上昇させると共に絞り機構(
2)の絞り量を小さくして輝度を上昇させ、逆に、重み
付は平均値(Zりが目標レベル(peo)より大きい時
には、最適露出状態に比べ露出過多であるとしてZt=
P、゛ となる様に利得可変アンプ(4)のゲインを降
下させると共に絞り機構(2)の絞り量を大きくして輝
度を低下させればよい。
Further, in the above embodiment, the optimal target level (Po) of the imaging screen without considering the brightness distribution is set in advance, and the weighting is a division value that is the ratio of the simple average value (Z, ) to the average value (Z, ). An integrator (90) that multiplies the optimal target level (P, ) by (m) as a correction value to indicate the brightness level of the captured video signal.
Optimum exposure control is achieved by comparing with the output, but as shown in Figure 13, the optimal target level (Po)
The weighting is the average value (2,) and the target level memory (91)
The target level (P6°) stored in (Poo
is a value obtained by digitizing the target level (P, )) at a comparison tW (92), and based on this comparison result, the gain of the variable gain amplifier (4) is controlled, and the aperture mechanism (2 ) It is also possible to perform electrical and optical exposure adjustment by controlling the aperture amount. For example, with weighting, when the average value (2,) is smaller than the target level (P@'), it is assumed that the image capture screen is underexposed compared to the optimal exposure state after considering the brightness distribution, and Zt = P, ° The gain of the variable gain amplifier (4) is increased so that the aperture mechanism (
2) The aperture amount is reduced to increase the brightness, and conversely, the weighting is set to the average value (when Z is larger than the target level (peo), it is assumed that the exposure is overexposed compared to the optimal exposure state, and Zt=
The brightness can be reduced by lowering the gain of the variable gain amplifier (4) and increasing the aperture amount of the aperture mechanism (2) so that P, ゛.

(ト)発明の効果 上述の如く本発明によれば、撮像画面の輝度分布の検出
が極めて容易に行え、しかも輝度分布に応じて撮像画面
の明るさが急激に変化することのない滑らかな露出調整
が可能となる。
(G) Effects of the Invention As described above, according to the present invention, the brightness distribution of the image capturing screen can be detected extremely easily, and the brightness of the image capturing screen does not change suddenly depending on the brightness distribution, resulting in smooth exposure. Adjustment is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第12図は本発明の一実施例に係り、第1図
は全体の回路ブロック図、第2図はフローチャート、第
3図は画面分割の説明図、第4図は要部回路ブロック図
、第5図は撮像画面の一例を示す図、第6図はルール(
1)の説明図、第7図はルール(2)の説明図、第8図
はルール(3)の説明図、第9図はルール(4)の説明
図、第10図はルール(5)の説明図、第11図はルー
ル(6)の説明図、第12図はルール(5)′の説明図
であり、第13図及び第14図は本発明の他の実施例の
回路ブロック図である。 (31)(32)(33)(34)(35)(36)・
・・積算回路、(61)(62)(63)(64)(6
5)(66)・・・重み付は回路、(70)・・・利得
制御回路、(71)・・・目標レベル制御回路、(57
)・・・優先度決定回路
1 to 12 relate to an embodiment of the present invention, in which FIG. 1 is an overall circuit block diagram, FIG. 2 is a flowchart, FIG. 3 is an explanatory diagram of screen division, and FIG. 4 is a main circuit. The block diagram, Figure 5 is a diagram showing an example of the imaging screen, and Figure 6 is the rule (
Figure 7 is an explanatory diagram of rule (2), Figure 8 is an explanatory diagram of rule (3), Figure 9 is an explanatory diagram of rule (4), and Figure 10 is an explanatory diagram of rule (5). FIG. 11 is an explanatory diagram of rule (6), FIG. 12 is an explanatory diagram of rule (5)', and FIGS. 13 and 14 are circuit block diagrams of other embodiments of the present invention. It is. (31) (32) (33) (34) (35) (36)・
... Integration circuit, (61) (62) (63) (64) (6
5) (66)... Weighting circuit, (70)... Gain control circuit, (71)... Target level control circuit, (57
)...priority determination circuit

Claims (1)

【特許請求の範囲】[Claims] (1)撮像画面を複数の領域に分割し、各領域の輝度レ
ベルを輝度評価値として検出する輝度レベル検出手段と
、 前記撮像画面の輝度分布の検出を、前記複数の領域の任
意の2領域の輝度評価値の比を入力変数とするファジィ
推論を用いて行う輝度分布検出手段と、 該輝度分布検出手段出力に応じて露出制御を行う露出制
御手段を備える自動露出調整装置。
(1) Brightness level detection means that divides an imaging screen into a plurality of regions and detects the brightness level of each region as a brightness evaluation value, and detects the brightness distribution of the imaging screen in any two regions of the plurality of regions. An automatic exposure adjustment device comprising: a brightness distribution detection means that uses fuzzy inference using a ratio of brightness evaluation values of as an input variable; and an exposure control means that performs exposure control according to the output of the brightness distribution detection means.
JP1236244A 1989-09-12 1989-09-12 Automatic exposure adjustment device Expired - Fee Related JP2517407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236244A JP2517407B2 (en) 1989-09-12 1989-09-12 Automatic exposure adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236244A JP2517407B2 (en) 1989-09-12 1989-09-12 Automatic exposure adjustment device

Publications (2)

Publication Number Publication Date
JPH0399586A true JPH0399586A (en) 1991-04-24
JP2517407B2 JP2517407B2 (en) 1996-07-24

Family

ID=16997914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236244A Expired - Fee Related JP2517407B2 (en) 1989-09-12 1989-09-12 Automatic exposure adjustment device

Country Status (1)

Country Link
JP (1) JP2517407B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575506B2 (en) 2009-02-02 2013-11-05 Tokyo Parts Industrial Co., Ltd. Push switch
US9058060B2 (en) 2011-10-19 2015-06-16 Acer Incorporated Keyboard module and method for fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254940A (en) * 1985-05-07 1986-11-12 Ricoh Co Ltd Multiple photometric type camera
JPS6262229A (en) * 1985-09-13 1987-03-18 Minolta Camera Co Ltd Camera with multi-split photometer
JPS62198722A (en) * 1986-02-26 1987-09-02 Canon Inc Photometric device
JPS6482265A (en) * 1987-09-25 1989-03-28 Fuji Electric Co Ltd Supporting device for determining illumination system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254940A (en) * 1985-05-07 1986-11-12 Ricoh Co Ltd Multiple photometric type camera
JPS6262229A (en) * 1985-09-13 1987-03-18 Minolta Camera Co Ltd Camera with multi-split photometer
JPS62198722A (en) * 1986-02-26 1987-09-02 Canon Inc Photometric device
JPS6482265A (en) * 1987-09-25 1989-03-28 Fuji Electric Co Ltd Supporting device for determining illumination system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575506B2 (en) 2009-02-02 2013-11-05 Tokyo Parts Industrial Co., Ltd. Push switch
US9058060B2 (en) 2011-10-19 2015-06-16 Acer Incorporated Keyboard module and method for fabricating the same

Also Published As

Publication number Publication date
JP2517407B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
KR0125871B1 (en) Automatic exposure adjusting apparatus for automatically adjusting exposure by fuzzy inference
US5455685A (en) Video camera exposure control apparatus for controlling iris diaphragm and automatic gain control operating speed
US6618091B1 (en) Image pickup apparatus having image signal state adjusting means a response characteristic of which is controlled in accordance with image magnification rate
US20030223010A1 (en) Method and apparatus for automatic gain and exposure control for maintaining target image brightness in video imager systems
KR100341253B1 (en) Automatic focusing device
JP2899031B2 (en) Automatic exposure control device
JP2538341B2 (en) Automatic exposure adjustment device
JPH0399586A (en) Automatic exposure adjustor
JP2527592B2 (en) Imaging device
US4833536A (en) Image sensing apparatus with sensitivity and exposure control
JPH09186930A (en) Image pickup device
KR20040085933A (en) Automatic exposure control method of Camera for watch all style zoom
JP2000184270A (en) Digital still video camera
JPH087361B2 (en) Automatic exposure adjustment device
JP3100815B2 (en) Camera white balance control method
US20020180881A1 (en) Image pickup apparatus
JPH088659B2 (en) Automatic exposure adjustment device
JPH0399584A (en) Automatic exposure adjustor
JP2517408B2 (en) Video camera
JPH0779440B2 (en) Automatic exposure adjustment device
JPH0399587A (en) Automatic exposure adjusting device
KR0145306B1 (en) Image sensing apparatus having automatic iris function of automatically adjusting exposure in response to video signal
JP2001028760A (en) White balance control method and exposure control method for camera
JPH09186922A (en) Image pickup device
JPH09186916A (en) Image pickup device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees