JPH0399537A - System for eliminating interference between cross-polarized waves - Google Patents

System for eliminating interference between cross-polarized waves

Info

Publication number
JPH0399537A
JPH0399537A JP23745089A JP23745089A JPH0399537A JP H0399537 A JPH0399537 A JP H0399537A JP 23745089 A JP23745089 A JP 23745089A JP 23745089 A JP23745089 A JP 23745089A JP H0399537 A JPH0399537 A JP H0399537A
Authority
JP
Japan
Prior art keywords
signal
polarization
circuit
cross
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23745089A
Other languages
Japanese (ja)
Other versions
JPH0611127B2 (en
Inventor
Toru Matsuura
徹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23745089A priority Critical patent/JPH0611127B2/en
Priority to CA002022050A priority patent/CA2022050C/en
Priority to DE69028955T priority patent/DE69028955T2/en
Priority to US07/558,754 priority patent/US5023620A/en
Priority to AU59951/90A priority patent/AU625249B2/en
Priority to EP90114460A priority patent/EP0410474B1/en
Publication of JPH0399537A publication Critical patent/JPH0399537A/en
Publication of JPH0611127B2 publication Critical patent/JPH0611127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the operation and to miniaturize a system by providing a transversal filter with delay circuits where 1/2 periods of clock signals of different polarization signals are units of the delay time and controlling the weighting in accordance with a clock signal having the double frequency. CONSTITUTION:In circuits 100a and 100b which eliminate the interference between cross-polarized waves, delay circuits 12 and 13 of a transversal filter 1 are constituted with 1/2 periods (T/2) of clock signals (period T) of different polarization signals as units of the delay time, and a control signal generating circuit 14 generates control signals (R0, R+ or -1, I0, and I+ or -1) in accordance with 1 clock signal CLK (2f) having the double frequency. Demodulating circuits 200a and 200b are provided with a 2-multiplying circuit 15 which multiplies the clock signal reproduced on the polarization side by 2, and FF circuits 16 and 17 discriminate outputs P and Q of a synchronous detecting circuit 701 on the local polarization side by the signal CLK (2f). Thus, the phase difference between input signals of weighting circuits 63, 68, 64, 67, 65, and 66 is 180 deg.C. Thus, the degradation in characteristic is removed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は互いに直交する2つの偏波を用いたディジタル
無線通信方式における交差偏波間干渉除去システムに係
り、特に中間周波数(IF)タイプの交差偏波間干渉除
去回路を備える交差偏波間干渉除去システムに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a cross-polarization interference cancellation system in a digital wireless communication system using two mutually orthogonal polarizations, and in particular to an intermediate frequency (IF) type cross-polarization interference cancellation system. The present invention relates to a cross-polarization interference cancellation system including a cross-polarization interference cancellation circuit.

(従来の技術) 近年マイクロ波無線通信では、互いに直交した2fi波
(垂直偏波と水平偏波、または左旋円偏波と右旋円偏波
)に別々の情報を伝送し、周波数を有効に利用する直交
偏波ディジタル無線通信方式が注目されている。このよ
うな直交偏波を用いる場合、降雨などにより生ずる媒質
の異方性により、例えば垂直偏波から水平偏波に干渉を
与える交差偏波間干渉を生ずる。この交差偏波間干渉を
除去するために種々の交差偏波間干渉除去方式が提案さ
れているが、IFタイプの交差旧波間干渉除去回路を備
える交差偏波間干渉除去システムとしては、従来、例え
ば第7図に示すものが知られている。
(Prior art) In recent years, microwave wireless communication has been developed to transmit separate information to 2-fi waves (vertical polarization and horizontal polarization, or left-handed circular polarization and right-handed circular polarization) that are orthogonal to each other, and to make the frequency effective. The orthogonal polarization digital wireless communication system used is attracting attention. When such orthogonally polarized waves are used, anisotropy of the medium caused by rain or the like causes, for example, cross-polarized interference in which vertically polarized waves interfere with horizontally polarized waves. Various cross-polarization interference cancellation methods have been proposed to eliminate this cross-polarization interference. The one shown in the figure is known.

第7図において、この交差偏波間干渉除去システムは、
直交2偏波(例えば垂直偏波と水平偏波)それぞれの受
信信号(IF変調波)がそれぞれ入力する同一構成の交
差偏波間干渉除去回路600aおよび同600hと、交
差偏波間干渉除去回路(600a60Qb)の対応する
ものの出力を受ける同一構成の復調回路700aおよび
同700!+とを基本的に備え、直交2偏波それぞれに
ついて交差偏波間干渉を除去すべく構成される。
In FIG. 7, this cross-polarization interference cancellation system is
Cross-polarized interference elimination circuits 600a and 600h, each having the same configuration, receive received signals (IF modulated waves) of two orthogonal polarized waves (for example, vertical polarization and horizontal polarization), and cross-polarized interference elimination circuits (600a60Qb). ) Demodulation circuits 700a and 700! having the same configuration receive the outputs of the corresponding ones. +, and is configured to remove cross-polarized interference for each of two orthogonal polarized waves.

交差偏波間干渉除去回路(600a、600b)では、
−方の入力信号であるIF変調波信号(即ち、交差偏波
間干渉を受けた信号:自信波信号)が遅延回路601に
て所定時間の遅延操作を受けて加算器602の一方の入
力となる。遅延回路601はトランスバーサルフィルタ
603における遅延を補償するなめに設けられる。
In the cross-polarization interference removal circuit (600a, 600b),
The IF modulated wave signal (i.e., the signal subjected to cross-polarization interference: confidence wave signal), which is the input signal on the - side, undergoes a delay operation for a predetermined time in the delay circuit 601 and becomes one input of the adder 602. . Delay circuit 601 is provided to compensate for delays in transversal filter 603.

また、他方の入力信号であるIP変調波信号(即ち、交
差偏波間干渉源の信号:異偏波信号〉はトランスバーサ
ルフィルタ603に入力し、その出力が加算器602の
他方の入力となる。
Further, the other input signal, the IP modulated wave signal (that is, the signal of the cross-polarization interference source: the different polarization signal), is input to the transversal filter 603 , and its output becomes the other input of the adder 602 .

トランスバーサルフィルタ603は、例えば3タツプの
ものが図示されている。入力回路たる遅延回路61、同
62はその遅延時間Tが異偏波信号のクロック信号の1
周期と等しい時間になっている。この遅延回路(61,
62)の各タップ出力は重み付け回路(63〜68)の
対応するものの一方の入力となる0重み付け回路(63
〜68)は他方の入力に制御信号(R−1,Ro、R+
、。
The transversal filter 603 is illustrated as having, for example, three taps. The delay circuits 61 and 62, which are input circuits, have a delay time T equal to 1 of the clock signal of the different polarization signal.
The time is equal to the period. This delay circuit (61,
Each tap output of 62) is input to one of the corresponding weighting circuits (63 to 68).
~68) has the control signal (R-1, Ro, R+
,.

I−1,I。、I+t)の対応するものが制御信号発生
回路604から与えられ、その制御信号に比例して重み
付けされた信号を合成器(605,606)の対応する
ものに出力する。そして、合成器605と同606の各
合成出力は直交合成器607にて90°の位相差をもっ
て合成される。即ち、自信波信号に漏れ込んだ異偏波信
号と等振幅、逆位相の信号が直交合成器607から加算
器602の他方の入力に出力される。
I-1, I. , I+t) is given from the control signal generation circuit 604, and a signal weighted in proportion to the control signal is output to the corresponding one of the combiners (605, 606). The combined outputs of the combiners 605 and 606 are combined by an orthogonal combiner 607 with a phase difference of 90°. That is, a signal having the same amplitude and opposite phase as the different polarization signal leaked into the self-wave signal is output from the orthogonal combiner 607 to the other input of the adder 602.

その結果、加算器602からは、交差偏波間干渉の除去
された自信波信号(IF変調波信号)が対応する復調回
路(700a、700b)に出力される。
As a result, the adder 602 outputs a confident wave signal (IF modulated wave signal) from which cross-polarization interference has been removed to the corresponding demodulation circuit (700a, 700b).

復調回路(700a、700b)では、入力されたIF
変調波信号は、まず、同期検波回路701にて同期検波
される。同期検波回路701は、搬送波再生回路71と
、再生搬送波信号の位相をπ/2移相するπ/2移相器
72と、入力IP変調波信号と搬送波再生回路71の出
力とを乗算する乗算器73と、入力IF変調波信号とπ
/2移相器72の出力とを乗算する乗算器74とで構成
される0乗算器73の出力たる復調ベースバンド信号P
は識別再生回路たるA/D変換器702と象限判定回路
たるF−F (フリップフロップ)回路703とに与え
られ、また乗算器74の出力たる復調ベースバンド信号
Qは識別再生回路たるA/D変換器704と象限判定回
路たるF−F回路705とに与えられる。
In the demodulation circuit (700a, 700b), the input IF
The modulated wave signal is first synchronously detected by a synchronous detection circuit 701. The synchronous detection circuit 701 includes a carrier recovery circuit 71, a π/2 phase shifter 72 that shifts the phase of the recovered carrier signal by π/2, and a multiplier that multiplies the input IP modulated wave signal by the output of the carrier recovery circuit 71. 73, input IF modulated wave signal and π
A demodulated baseband signal P which is the output of a 0 multiplier 73 consisting of a multiplier 74 that multiplies the output of a /2 phase shifter 72;
is applied to an A/D converter 702 which is an identification/reproduction circuit and an FF (flip-flop) circuit 703 which is a quadrant determination circuit, and the demodulated baseband signal Q which is the output of the multiplier 74 is applied to an A/D converter which is an identification/regeneration circuit. The signal is applied to a converter 704 and an FF circuit 705 which is a quadrant determination circuit.

そして、A/D変換器702と同704は、自偏波側の
クロック信号再生回路707の出力に従って対応する復
調ベースバンド信号(P、Q>を識別しデータ信号と誤
差信号(EP、EQ)を再生出力する。
Then, the A/D converters 702 and 704 identify the corresponding demodulated baseband signals (P, Q>) according to the output of the clock signal regeneration circuit 707 on the self-polarization side, and convert them into data signals and error signals (EP, EQ). Play and output.

誤差信号(Ep、’Eo)は再生データ信号の次位ビッ
トであって交差偏波間干渉成分を含む2値化号である。
The error signal (Ep, 'Eo) is the next bit of the reproduced data signal and is a binary signal containing a cross-polarization interference component.

この自信波信号に基づき生成された誤差信号(EP、E
Q)は自偏波側の交差偏波間干渉除去回路の制御信号発
生回路604に自信波側の再生クロック信号CLKとと
もに供給される。
Error signals (EP, E
Q) is supplied to the control signal generation circuit 604 of the cross-polarization interference removal circuit on the self-polarized side together with the reproduced clock signal CLK on the self-polarized side.

一方、F−F回路703と同705は、具備波側のクロ
ック信号発生回路707の出力に従って対応する復調ベ
ースバンド信号(P、Q)を識別し最上位ビットである
象限判定信号(DP、DQ)を出力する。第7図から明
らかなように、自偏波側の交差偏波間干渉除去器の制御
信号発生回路604には、異偏波側の復調回路のF−F
回路(703,705)で識別再生された象限判定信号
(DP、DQ)が入力される。
On the other hand, the FF circuits 703 and 705 identify the corresponding demodulated baseband signals (P, Q) according to the output of the clock signal generation circuit 707 on the equipped wave side, and the quadrant determination signals (DP, DQ), which are the most significant bits, identify the corresponding demodulated baseband signals (P, Q). ) is output. As is clear from FIG. 7, the control signal generation circuit 604 of the cross-polarization interference remover on the self-polarization side has the F-F of the demodulation circuit on the different polarization side.
The quadrant determination signals (DP, DQ) identified and reproduced by the circuits (703, 705) are input.

なお、制御信号発生回路604は、例えば第2図に示す
ように構成される。第2図において、入力された象限判
定信号(Dp、Do)および誤差信号(E p、 E 
o)は、再生されたクロック信号CLKに従って対応す
るF−F回路25に取り込まれる。
Note that the control signal generation circuit 604 is configured as shown in FIG. 2, for example. In FIG. 2, input quadrant determination signals (Dp, Do) and error signals (E p, E
o) is taken into the corresponding FF circuit 25 according to the reproduced clock signal CLK.

そして、各F−F回路25の出力(DPO,DQO。Then, the output of each FF circuit 25 (DPO, DQO.

E po、 E pus 、 E QO・EQ+1)お
よび入力(Ep−t・EQ−1>は対応する排他的論理
和回路(EX−OR)21にて相関がとられ、加算器2
3および減算器24にて和または差がとられ、それが積
分器22にて積分されることによって前記制御信号(R
it、  I tl+ RO+ I o)が得られる。
Epo, Epus, EQO・EQ+1) and the input (Ept・EQ−1>) are correlated in the corresponding exclusive OR circuit (EX-OR) 21, and the adder 2
3 and a subtracter 24, and the sum or difference is taken by an integrator 22 to obtain the control signal (R
it, I tl+ RO+ I o) is obtained.

これにより、加算器602の出力は、交差偏波間干渉に
よる誤差が最小となるように補償されることは前述した
通りである。
As described above, the output of the adder 602 is thereby compensated so that the error due to cross-polarization interference is minimized.

(発明が解決しようとする課題) 前述した従来の交差偏波間干渉除去システムでは、トラ
ンスバーサルフィルタの遅延回路が異偏波信号のクロッ
ク信号の周期と等しい周期Tで構成され、象限判定信号
および誤差信号を周期Tで検出しているため、改善度特
性は例えば第3図の実線で示すようになり、交差偏波間
干渉成分と補償するための信号との遅延時間差がT/2
の時、交差偏波間干渉除去能力が著しく劣化するという
問題がある。
(Problems to be Solved by the Invention) In the conventional cross-polarization interference removal system described above, the delay circuit of the transversal filter is configured with a period T equal to the period of the clock signal of the different polarization signal, and the quadrant determination signal and error Since the signal is detected with a period of T, the improvement characteristic is as shown by the solid line in Figure 3, for example, and the delay time difference between the cross-polarization interference component and the signal for compensation is T/2.
When this happens, there is a problem that the cross-polarization interference removal ability deteriorates significantly.

そこで、この問題を解決するために、遅延回路をT/2
で構成したトランスバーサルフィルタを用いた交差償波
間干渉除去システムが、例えば文献”CRO3S−PO
LARIZATIONINTERFERENCE   
CANCELLATION   IN   THE  
 PRESENCE   0FDELAY  EFFE
CTS”  (Il、Lanklj、A、No−5se
k  and  G、5ebald  198g  夏
EEE  pp、1355−1361)  にて提案さ
れている0本システムの具体的構成例は、同文献のFi
g、4に示されている。ここでの再掲はしないが、本シ
ステムはベースバンドタイプであって、同相側および直
交側に交差偏波間干渉除去のためのトランスバーサルフ
ィルタをそれぞれ設けである。そして、同Fig、 4
中、C0RRvo(C○RRFIV)は制御信号発生回
路604に相当するものであるが、識別再生回路(即ち
、A/D変換器)を2系統設け、一方を周波数fv(f
H)のクロック信号で動作させ得られた再生データ信号
の最上位ビットを象限判定信号とし、他方を周波数2f
v(2f o)のクロック信号で動作させ得られた再生
データ信号の次位ビットを誤差信号として用いるように
している。
Therefore, in order to solve this problem, a delay circuit of T/2
A cross-compensated inter-wave interference removal system using a transversal filter configured with
LARIZATION INTERFERENCE
CANCELLATION IN THE
PRESENCE 0FDELAY EFFE
CTS” (Il, Ranklj, A, No-5se
A specific example of the configuration of the 0-wire system proposed in
g, 4. Although not repeated here, this system is of a baseband type, and transversal filters are provided on the in-phase side and the orthogonal side to remove cross-polarization interference, respectively. And the same Fig, 4
Among them, C0RRvo (C○RRFIV) corresponds to the control signal generation circuit 604, but it is equipped with two identification and reproducing circuits (i.e., A/D converters), and one is connected to the frequency fv (f
The most significant bit of the reproduced data signal obtained by operating with the clock signal of
The next bit of the reproduced data signal obtained by operating with the clock signal v(2f o) is used as an error signal.

しかし、上記文献に示されているシステムには、次のよ
うな問題がある。
However, the system shown in the above document has the following problems.

まず、同期検波出力を2倍の周波数(2fv。First, the synchronous detection output is set to twice the frequency (2fv).

2fn)のクロック信号で識別再生して誤差信号を得る
ようにしているので、同期検波出力の偏移点の情報を誤
差信号とすることとなり、量子化誤差を含めた誤った情
報を得る確率が高く、動作が不安定となる。
2fn) clock signal to obtain the error signal, the information on the shift point of the synchronous detection output is used as the error signal, and the probability of obtaining incorrect information including quantization error is reduced. high, and operation becomes unstable.

また、各受信信号について2系統の識別再生回路を設け
るので、回路規模が複雑化・大型化し、小型化が困難で
ある。
Furthermore, since two systems of identification and reproducing circuits are provided for each received signal, the circuit scale becomes complicated and large, making it difficult to miniaturize.

さらに、誤差信号を得るための識別再生回路は高い周波
数で利用するので、タロツク信号の周波数として選択の
余地が狭くなる。また、この識別再生回路は誤差信号を
得るためのものであるが、不要なビットも識別再生する
ので、無駄な電力消費がある。
Furthermore, since the identification and reproducing circuit for obtaining the error signal is used at a high frequency, there is limited room for selection of the frequency of the tarok signal. Further, although this identification/reproduction circuit is for obtaining an error signal, unnecessary bits are also identified and reproduced, resulting in wasteful power consumption.

加えて、本システムはベースバンドタイプであるから、
同相側と直交側それぞれにトランスバーサルフィルタを
設ける必要があり、回路規模が増大し、この点からも小
型化が困難である。
In addition, since this system is a baseband type,
It is necessary to provide a transversal filter on each of the in-phase side and the orthogonal side, which increases the circuit scale and also makes it difficult to downsize.

本発明は、このような問題に鑑みなされたもので、その
目的は、自信波信号と異偏波信号の位相差がクロック信
号の1/2周期となったときの特性劣化を改善でき、か
つ、動作が安定で、小型化低消費電力化を図ることので
きる交差偏波間干渉除去システムを提供することにある
The present invention was made in view of such problems, and its purpose is to improve the characteristic deterioration when the phase difference between the confident wave signal and the different polarization signal becomes 1/2 period of the clock signal, and to An object of the present invention is to provide a cross-polarization interference cancellation system that operates stably, is compact, and has low power consumption.

(課題を解決するための手段) 前記目的を達成するために、本発明の交差偏波間干渉除
去システムは次の如き構成を有する。
(Means for Solving the Problems) In order to achieve the above object, the cross-polarization interference removal system of the present invention has the following configuration.

即ち、本発明の交差偏波間干渉除去システムは、直交2
偏波それぞれの受信信号において一方を自信波信号他方
を異偏波信号としたとき、自信波信号または異偏波信号
のいずれか一方の再生クロック信号を2倍の周波数のク
ロック信号へ変換する2逓倍回路と: 前記自信波信号
と前記異偏波信号とをそれぞれ受けて自信波信号に漏れ
込んだ異偏波信号の除去操作を、トランスバーサルフィ
ルタの各タップの重み付けを誤差信号と象限判定信号と
に基づき制御することによって行うように構成される交
差偏波間干渉除去回路であって、前記トランスバーサル
フィルタはその遅延回路が入力信号である前記異偏波信
号のクロック信号の1/2周期を遅延時間の単位として
構成され、かつ、前記重み付け制御が前記2逓倍回路の
出力信号に従って行われるようにした交差偏波間干渉除
去回路と; 前記交差傳波間干渉除去回路の出力を再生
搬送波信号にて同期検波する自偏波側同期検波回路、お
よび、前記異偏波信号を再生搬送波信号にて同期検波す
る異偏波側同期検波回路と; 前記自偏波側同期検波回
路の出力を自偏波再生クロック信号に従って識別してデ
ータ信号と前記誤差信号とを再生出力する識別再生回路
と; 前記異偏波側同期検波回路の出力を前記2逓倍回
路の出力信号に従って識別し前記象限判定信号を再生出
力する象限判定回路と: を備えたことを特徴とするも
のである。
That is, the cross-polarization interference cancellation system of the present invention has orthogonal two
When one of the received signals of each polarization is a confident wave signal and the other is a different polarization signal, the recovered clock signal of either the confident wave signal or the different polarization signal is converted into a clock signal with twice the frequency.2 Multiplier circuit: Receives the confident wave signal and the different polarization signal, and performs an operation of removing the different polarization signal leaked into the confident wave signal, and weights each tap of the transversal filter using an error signal and a quadrant determination signal. The cross-polarization interference removal circuit is configured to perform control based on the transversal filter, and the transversal filter has a delay circuit that removes 1/2 period of the clock signal of the different polarization signal, which is the input signal. a cross-polarization interference elimination circuit configured as a unit of delay time, and wherein the weighting control is performed according to the output signal of the doubling circuit; a self-polarization side synchronous detection circuit that performs synchronous detection; and a different polarization side synchronous detection circuit that synchronously detects the different polarization signal using a regenerated carrier signal; an identification and reproducing circuit that identifies the data signal and the error signal according to the reproduced clock signal; identifies the output of the different polarization side synchronous detection circuit according to the output signal of the doubling circuit and reproduces the quadrant determination signal; The present invention is characterized by comprising: a quadrant determination circuit that outputs an output;

(作 用) 次に、前記の如く構成される本発明の交差旧波間干渉除
去システムの作用を説明する。
(Function) Next, the function of the crossing old wave interference removal system of the present invention configured as described above will be explained.

本発明では、交差偏波間干渉の除去操作をIF帯におい
て行う、従って、トランスバーサルフィルタは各受信信
号について1つ宛設ければ良く、回路規模の小型化に資
することができる。そして、トランスバーサルフィルタ
は異偏波信号のクロック信号の1/2周期を遅延時間の
単位とする遅延回路を備えたものとし、重み付け制御を
2倍周波数のクロック信号に従って行うようにし、自信
波信号と異偏波信号の位相差が1/2周期となったとき
の特性劣化を改善する。
In the present invention, cross-polarization interference is removed in the IF band. Therefore, one transversal filter needs to be provided for each received signal, which contributes to miniaturization of the circuit scale. The transversal filter is equipped with a delay circuit whose delay time is 1/2 period of the clock signal of the different polarization signal, and the weighting control is performed according to the clock signal of twice the frequency. This improves characteristic deterioration when the phase difference between the polarized signal and the different polarization signal becomes 1/2 period.

このとき、誤差信号と象限判定信号の少なくとも一方は
2倍周波数のクロック信号で識別再生することになるが
、本発明では象限判定信号のみを2倍周波数で識別する
。象限判定信号は最上位の1ビツトであり、誤差信号を
得るときのように全データを再生する必要がない、つま
り、同期検波回路出力の偏移点の情報でも量子化誤差に
よる誤る確率は零であるから安定な動作が得られ、また
無駄な電力消費がない。そして、象限判定回路は周知の
フリップフロップ回路で構成できるので、使用動作周波
数の選択の余地を広くでき、また小型化を図ることが容
易となる。
At this time, at least one of the error signal and the quadrant determination signal is identified and reproduced using a double frequency clock signal, but in the present invention, only the quadrant determination signal is identified using the double frequency. The quadrant judgment signal is the most significant bit, and there is no need to reproduce all the data as in the case of obtaining the error signal.In other words, the probability of error due to quantization error is zero even with information on the shift point of the output of the synchronous detection circuit. This ensures stable operation and no unnecessary power consumption. Since the quadrant determination circuit can be constructed from a well-known flip-flop circuit, there is a wide range of options for operating frequencies to be used, and miniaturization is facilitated.

く実  施  例) 以下、本発明の実施例を添付図面を参照して説明する 第1図は本発明の第1実施例に係る交差旧波間干渉除去
システムを示す。なお、第7図に示す従来例システムと
同一構成部分には同一符号名称を付してその説明を省略
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a crossing old wave interference cancellation system according to a first embodiment of the present invention. Components that are the same as those of the conventional system shown in FIG. 7 are given the same reference numerals and their explanations will be omitted.

第1図において、交差旧波間干渉除去回路< 100a
、100b)では、トランスバーサルフィルタ1は、遅
延回路12と同13が異偏波信号のクロック信号(周期
T)の1/2周期(T/2 )を遅延時間の単位として
構成され、また制御信号発生回路14が2倍周波数のク
ロック信号CLK(2f)に従って制御信号(Ro 、
 R4x、  Io 、  Iths)を生成するよう
になっている。この制御信号発生回路14は1、従来例
回路604と同様に第2図の如く構成される。クロック
信号CLKが2倍周波数(2f)であること、象限判定
信号(DP、DQ)がこの2倍周波数のクロック信号C
LK(2f)で識別されたものであることの2点が従来
例回路604と異なるのみである。
In Figure 1, the crossing old wave interference removal circuit < 100a
, 100b), the transversal filter 1 is configured such that the delay circuits 12 and 13 are configured with a delay time unit of 1/2 period (T/2) of the clock signal (period T) of the different polarization signal, and the control The signal generation circuit 14 generates control signals (Ro,
R4x, Io, Iths). The control signal generating circuit 14 is constructed as shown in FIG. 2, similar to the conventional circuit 604. The clock signal CLK has a double frequency (2f), and the quadrant determination signals (DP, DQ) have a clock signal C with a double frequency.
The only difference from the conventional circuit 604 is that it is identified by LK (2f).

また、復調回路(200a、200b)では、異偏波側
で再生されたクロック信号を2逓倍する2逓倍回路15
をそれぞれ設け、F−F回路(16,17>がその2倍
周波数のタロツク信号CLK(2f>で自偏波側の同期
検波回路701の出力(P、Q)を識別するようにしで
ある。
In addition, in the demodulation circuits (200a, 200b), a doubling circuit 15 that doubles the clock signal reproduced on the side of different polarization.
are provided respectively, and the F-F circuits (16, 17> identify the outputs (P, Q) of the self-polarized side synchronous detection circuit 701 using the tally clock signal CLK (2f>) having a double frequency.

以上のように構成したので、重み付け回路<63.68
)、同(64,67)、同(6566)の各入力信号間
の位相差がそれぞれ180゜となる、その結果、交差偏
波間干渉成分(干渉波)に対する補償信号の遅延時間差
がT/2秒(の整数倍)となったときの改善度特性は、
例えば第3図中破線で示す如くになり、±T/2、±3
T/2での改善度劣化が著しく改善され、位相差に関係
なく一定の改善度が得られる。
With the above configuration, the weighting circuit <63.68
), (64, 67), and (6566) are each 180°, and as a result, the delay time difference of the compensation signal for the cross-polarization interference component (interference wave) is T/2. The improvement characteristic when it becomes (an integer multiple of) seconds is
For example, as shown by the broken line in Figure 3, ±T/2, ±3
The degree of improvement deterioration at T/2 is significantly improved, and a constant degree of improvement can be obtained regardless of the phase difference.

以上の構成から明らかなように、象限判定回路は最上位
ビットを識別すれば良いからF−F回路(16,17)
で構成でき、回路が簡単で、小規模となり、不要ビット
を識別しないので消費電力も小さい、そして、F−F回
路は識別再生回路たるA/D変換器に比して充分高い周
波数で使用可能であり、前掲文献における如き制約がな
く、動作周波数を格段に広くすることができる。
As is clear from the above configuration, the quadrant determination circuit only needs to identify the most significant bit, so the F-F circuit (16, 17)
The circuit is simple, small-scale, and has low power consumption because it does not identify unnecessary bits.The F-F circuit can be used at a sufficiently high frequency compared to the A/D converter, which is an identification and regeneration circuit. Therefore, there is no restriction as in the above-mentioned document, and the operating frequency can be significantly widened.

また、象限判定信号は、最上位の1ビツトであるから、
同期検波回路701の出力の偏移点の情報でも量子化誤
差による誤る確率は零であり、安定な動作を期待できる
Also, since the quadrant determination signal is the most significant 1 bit,
Even in the information on the shift point of the output of the synchronous detection circuit 701, the probability of error due to quantization error is zero, and stable operation can be expected.

さらに、交差偏波間干渉の除去操作は、IF帯で行うの
で、トランスバーサルフィルタは、各受信信号について
1つ設ければ良く、この点からも小型化に好適な構成で
あることが解る。
Furthermore, since the cross-polarization interference is removed in the IF band, it is sufficient to provide one transversal filter for each received signal, and from this point as well, it can be seen that the configuration is suitable for miniaturization.

なお、象限判定信号(D p、 D Q)の生成方式に
は、上述した第1実施例システムの他に、第4図乃至第
6図に示す各種の態様が考えられる。
In addition to the system of the first embodiment described above, various modes shown in FIGS. 4 to 6 are conceivable for the generation method of the quadrant determination signals (D p, D Q).

第4図に示す第2実施例システムでは、復調回路(30
0a、300b)において、2通倍回路15は自偏波側
で再生されたクロック信号CLKを2逓倍するように配
置し、F−F回路(16,17)は異偏波側の復調ベー
スバンド信号(P、Q)を識別するようにしである。従
って、復調回路300aDOOb)において生成された
象限判定信号(DP、DQ)が自偏波側の交差偏波間干
渉除去器100a<100b)の制御信号発生回路14
へ与えられることになる。
In the second embodiment system shown in FIG.
0a, 300b), the doubler circuit 15 is arranged to double the clock signal CLK regenerated on the self-polarized side, and the FF circuit (16, 17) is arranged to double the clock signal CLK reproduced on the self-polarized side, and the F-F circuit (16, 17) is arranged to double the clock signal CLK reproduced on the self-polarized side. This is to identify the signals (P, Q). Therefore, the quadrant determination signals (DP, DQ) generated in the demodulation circuit 300aDOOb) are applied to the control signal generation circuit 14 of the cross-polarization interference remover 100a<100b) on the self-polarization side.
It will be given to

また、第5図に示す第3実施例システムでは、復調回路
(400a、400b)において、再生搬送波信号を共
用する同期検波回路401を新設し、この同期検波回路
401の入力IF変調波信号を遅延回路(2,3)の中
央タップから得、同期検波回路701の入力IP変調波
信号と同相となるようにしである。そして、この同期検
波回路401の出力(P。
In addition, in the third embodiment system shown in FIG. 5, a synchronous detection circuit 401 that shares the recovered carrier signal is newly installed in the demodulation circuit (400a, 400b), and the input IF modulated wave signal of this synchronous detection circuit 401 is delayed. It is obtained from the center taps of the circuits (2, 3) and is in phase with the input IP modulated wave signal of the synchronous detection circuit 701. Then, the output (P) of this synchronous detection circuit 401.

Q)をF−F回路(16,17)が識別するのである。Q) is identified by the FF circuit (16, 17).

2通倍回路15の配置は第1実施例システムと同様であ
るが、これを第2実施例システムと同様にしたのが第6
図に示す第4実施例システムである。
The arrangement of the doubler circuit 15 is the same as that of the first embodiment system, but the sixth embodiment is similar to the second embodiment system.
This is a fourth embodiment system shown in the figure.

なお、念のため付記すれば、2通倍回路15の逓倍対象
を自偏波側と異偏波側の2通りとしたのは、両者のクロ
ック信号の周波数が一般に異なることによる。
It should be noted that the reason why the doubler circuit 15 multiplies two types, the self-polarized wave side and the different polarized wave side, is that the frequencies of the clock signals of the two types are generally different.

(発明の効果) 以上説明したように、本発明の交差偏波間干渉除去シス
テムによれば、IF帯にて交差偏波間干渉の除去操作を
行うシステムにおいて、トランスバーサルフィルタは異
偏波信号のクロック信号の1/2周期を遅延時間の単位
とする遅延回路を備えたものとし、重み付け制御を2倍
周波数のクロック信号に従って行うようにしたので、自
信波信号と異偏波信号の位相差が1/2周期となったと
きの特性劣化を改善できる。
(Effects of the Invention) As explained above, according to the cross-polarization interference removal system of the present invention, in the system that performs the cross-polarization interference removal operation in the IF band, the transversal filter is configured to clock a different polarization signal. It is equipped with a delay circuit whose delay time is 1/2 period of the signal, and the weighting control is performed according to a clock signal of double the frequency, so that the phase difference between the confident wave signal and the different polarization signal is 1. /2 cycles can be improved.

このとき、誤差信号は通常のクロック信号によって得、
象限判定信号を2倍周波数のクロック信号で得るように
したので、動作が安定で、小型化低消費電力化が図れ、
しかも使用動作周波数を広くすることのできる交差偏波
間干渉除去システムを提供できる効果がある。
At this time, the error signal is obtained by a normal clock signal,
Since the quadrant determination signal is obtained using a clock signal with double the frequency, operation is stable, miniaturization and low power consumption can be achieved.
In addition, it is possible to provide a cross-polarization interference removal system that can be used over a wide range of operating frequencies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る交差偏波間干渉除去
システムの構成ブロック図、第2図は制御信号発生回路
の構成ブロック図、第3図は改善度の比較図、第4図は
本発明の第2実施例システムの構成ブロック図、第5図
は本発明の第3実施例システムの構成ブロック図、第6
図は本発明の第4実施例システムの構成ブロック図、第
7図は従来例システムの構成ブロック図である。 1・・・・・・トランスバーサルフィルタ、  12,
13・・・・・・遅延回路、 14・・・・・・制御信
号発生回路、15・・・・・・2逓倍回路、  16.
17・・・・・・フリップフロップ(F−F)回路(象
限判定回路)、18.19.73.74・・・・・・乗
算器、 20,72・・・・・・π/2移相器、 63
〜68・・・・・・重み付け回路、 71・・・・・・
搬送波再生回路、 l00a、l00t+・・・・・・
交差偏波間干渉除去回路、 200a、200b、30
0a。 300b、400a、400b、600a、600b−
−−−−−復調回路、 601・・・・・・遅延回路、
 602・・・・・・加算器、 605,606・・・
・・・合成器、 607・・・・・・直交合成器、 7
01,401・・・・・・同期検波回路、 702,7
04・・・・・・A 、/ D変換器(識別再生回路)
、 707・・・・・・クロック再生回路。
FIG. 1 is a block diagram of the cross-polarization interference cancellation system according to the first embodiment of the present invention, FIG. 2 is a block diagram of the control signal generation circuit, FIG. 3 is a comparison diagram of the degree of improvement, and FIG. 4 is a configuration block diagram of a system according to a second embodiment of the present invention, FIG. 5 is a configuration block diagram of a system according to a third embodiment of the present invention, and FIG.
The figure is a block diagram of the configuration of a system according to a fourth embodiment of the present invention, and FIG. 7 is a block diagram of the configuration of a conventional system. 1...transversal filter, 12,
13... Delay circuit, 14... Control signal generation circuit, 15... Double multiplier circuit, 16.
17... Flip-flop (FF) circuit (quadrant judgment circuit), 18.19.73.74... Multiplier, 20,72... π/2 shift Aiki, 63
~68...Weighting circuit, 71...
Carrier wave regeneration circuit, l00a, l00t+...
Cross polarization interference removal circuit, 200a, 200b, 30
0a. 300b, 400a, 400b, 600a, 600b-
----- Demodulation circuit, 601...Delay circuit,
602...Adder, 605,606...
... combiner, 607 ... orthogonal combiner, 7
01,401... Synchronous detection circuit, 702,7
04...A,/D converter (identification regeneration circuit)
, 707...Clock regeneration circuit.

Claims (1)

【特許請求の範囲】[Claims] 直交2偏波それぞれの受信信号において一方を自偏波信
号他方を異偏波信号としたとき、自偏波信号または異偏
波信号のいずれか一方の再生クロック信号を2倍の周波
数のクロック信号へ変換する2逓倍回路と;前記自偏波
信号と前記異偏波信号とをそれぞれ受けて自偏波信号に
漏れ込んだ異偏波信号の除去操作を、トランスバーサル
フィルタの各タップの重み付けを誤差信号と象限判定信
号とに基づき制御することによつて行うように構成され
る交差偏波間干渉除去回路であって、前記トランスバー
サルフィルタはその遅延回路が入力信号である前記異偏
波信号のクロック信号の1/2周期を遅延時間の単位と
して構成され、かつ、前記重み付け制御が前記2逓倍回
路の出力信号に従って行われるようにした交差偏波間干
渉除去回路と;前記交差偏波間干渉除去回路の出力を再
生搬送波信号にて同期検波する自偏波側同期検波回路、
および、前記異偏波信号を再生搬送波信号にて同期検波
する異偏波側同期検波回路と;前記自偏波側同期検波回
路の出力を自偏波再生クロック信号に従って識別してデ
ータ信号と前記誤差信号とを再生出力する識別再生回路
と;前記異偏波側同期検波回路の出力を前記2逓倍回路
の出力信号に従つて識別し前記象限判定信号を再生出力
する象限判定回路と;を備えたことを特徴とする交差偏
波間干渉除去システム。
When receiving signals of two orthogonal polarizations, one is an auto-polarization signal and the other is a different-polarization signal, the recovered clock signal of either the auto-polarization signal or the different-polarization signal is a clock signal with twice the frequency. a doubling circuit that receives the self-polarized signal and the different polarized signal and performs an operation for removing the different polarized signal leaking into the self-polarized signal, and weights each tap of the transversal filter. A cross-polarization interference removal circuit configured to perform control based on an error signal and a quadrant determination signal, wherein the transversal filter has a delay circuit that removes the cross-polarization signal as an input signal. a cross-polarization interference elimination circuit configured to have a 1/2 cycle of a clock signal as a unit of delay time, and wherein the weighting control is performed in accordance with an output signal of the doubling circuit; the cross-polarization interference elimination circuit; self-polarization side synchronous detection circuit that synchronously detects the output of the
and a different polarization side synchronous detection circuit that synchronously detects the different polarization signal using a regenerated carrier signal; and a different polarization side synchronous detection circuit that identifies the output of the self polarization side synchronous detection circuit according to the self polarization regenerated clock signal and detects the data signal and the other polarization side synchronous detection circuit. an identification and reproduction circuit that reproduces and outputs the error signal; and a quadrant determination circuit that identifies the output of the different polarization side synchronous detection circuit according to the output signal of the doubling circuit and reproduces and outputs the quadrant determination signal. A cross-polarization interference cancellation system characterized by:
JP23745089A 1989-07-27 1989-09-13 Cross polarization interference cancellation system Expired - Lifetime JPH0611127B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23745089A JPH0611127B2 (en) 1989-09-13 1989-09-13 Cross polarization interference cancellation system
CA002022050A CA2022050C (en) 1989-07-27 1990-07-26 Cross-polarization interference cancellation system capable of stably carrying out operation
DE69028955T DE69028955T2 (en) 1989-07-27 1990-07-27 Cross polarization interference compensator system with stable operation
US07/558,754 US5023620A (en) 1989-07-27 1990-07-27 Cross-polarization interference cancellation system capable of stably carrying out operation
AU59951/90A AU625249B2 (en) 1989-07-27 1990-07-27 Cross-polarization interference cancellation system capable of stably carrying out operation
EP90114460A EP0410474B1 (en) 1989-07-27 1990-07-27 Cross-polarization interference cancellation system capable of stably carrying out operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23745089A JPH0611127B2 (en) 1989-09-13 1989-09-13 Cross polarization interference cancellation system

Publications (2)

Publication Number Publication Date
JPH0399537A true JPH0399537A (en) 1991-04-24
JPH0611127B2 JPH0611127B2 (en) 1994-02-09

Family

ID=17015525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23745089A Expired - Lifetime JPH0611127B2 (en) 1989-07-27 1989-09-13 Cross polarization interference cancellation system

Country Status (1)

Country Link
JP (1) JPH0611127B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514311A (en) * 1991-07-08 1993-01-22 Fujitsu Ltd Interference compensation system between fractional type cross polarized waves
US7925236B2 (en) 2005-10-20 2011-04-12 Nec Corporation Cross polarization interference canceling method and cross polarization interference canceling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514311A (en) * 1991-07-08 1993-01-22 Fujitsu Ltd Interference compensation system between fractional type cross polarized waves
JP2711032B2 (en) * 1991-07-08 1998-02-10 富士通株式会社 Fractional cross-polarization interference compensation method
US7925236B2 (en) 2005-10-20 2011-04-12 Nec Corporation Cross polarization interference canceling method and cross polarization interference canceling apparatus

Also Published As

Publication number Publication date
JPH0611127B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JP3225560B2 (en) Cross polarization interference compensator
JP3839212B2 (en) Timing reproduction apparatus and demodulator
JP2934385B2 (en) Digital signal recording / reproducing apparatus, modulation circuit and demodulation circuit thereof, and method of modulating digital signal
JPH03258147A (en) Asynchronous orthogonal demodulator
JPH0399537A (en) System for eliminating interference between cross-polarized waves
JPS6412136B2 (en)
JPS58221548A (en) Phase locking circuit
JPH0542863B2 (en)
JPH0461450A (en) Delay detection circuit
JPH0621762A (en) Digital transversal automatic equalizer
JPH07177054A (en) Digital radio communication terminal
JP3088893B2 (en) Data receiving device
JP2696948B2 (en) Carrier recovery circuit
JP2000174828A (en) Information processor, its method and providing medium
JP2522045B2 (en) Automatic interference remover
JP2560339B2 (en) Digital demodulator
JPH05211493A (en) Cross polarized wave interference compensation equipment
JPS5916478B2 (en) Multi-channel record demodulation method
JP2865881B2 (en) Transmission signal reproduction device
JPH03135252A (en) Synchronous detection circuit
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JPH04345328A (en) Line changeover control circuit
JPH0548567A (en) Digital multiplex radio system
JPH05199205A (en) Demodulator for synchronous spread spectrum modulated wave
JPH0372732A (en) Cross polarized wave interference compensation circuit