JPH039933B2 - - Google Patents

Info

Publication number
JPH039933B2
JPH039933B2 JP59053499A JP5349984A JPH039933B2 JP H039933 B2 JPH039933 B2 JP H039933B2 JP 59053499 A JP59053499 A JP 59053499A JP 5349984 A JP5349984 A JP 5349984A JP H039933 B2 JPH039933 B2 JP H039933B2
Authority
JP
Japan
Prior art keywords
fluorine
film
monomer
layer
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59053499A
Other languages
Japanese (ja)
Other versions
JPS60197737A (en
Inventor
Akihiko Nakahara
Kuniaki Takada
Juji Izeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP59053499A priority Critical patent/JPS60197737A/en
Priority to EP19850301682 priority patent/EP0155173B1/en
Priority to DE8585301682T priority patent/DE3573792D1/en
Publication of JPS60197737A publication Critical patent/JPS60197737A/en
Priority to US06/891,060 priority patent/US4680355A/en
Publication of JPH039933B2 publication Critical patent/JPH039933B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多層構造を有する重合体フイルム、望
ましくは含弗素系とりわけパーフルオロ系の重合
体フイルムの製造方法に関する。従来、多層構造
を有する炭化水素系の重合体フイルムの製造方法
としてホツトメルト法、押出ラミネート法及び共
押出しラミネート法等の熱融着又は接着剤による
接着が代表的なものであり、工業的規模で多層構
造を有するフイルムが製造されている。 しかしながら、含弗素系とりわけパーフルオロ
系の重合体フイルムはその特性の一つとして非粘
着性を有しているため、さらには溶融粘度が高い
ために、これらのフイルムを多層重ねてホツトプ
レスする方法、あるいは接着剤による方法では充
分な接着強度を有した多層構造フイルムを得るこ
とができない。また共押出し法も高い溶融粘度の
ために用いることができない。 非常に例外的なものとしてスルホン酸基又はカ
ルボン酸基を有するパーフルオロ系の重合体フイ
ルムを積層したもので、現在広く研究されている
電解用のイオン交換膜がある。これは通常、重合
鎖内にエーテル結合を有し溶融粘度が低下してい
ること及び極性基であるスルホン酸基又はカルボ
ン酸基を有していること等から、ある程度の接着
が可能になつたものと考えられるが、この多層構
造物にあつても層間に化学的な結合を有していな
いために、長期間の使用とか若干使用条件を厳し
くした場合には層間に剥離がおこる欠点を有して
いる。 本発明者等は上記に鑑み改良された多層構造を
有する含弗素系とくにパーフルオロ系の重合体フ
イルムの製造方法を検討したところ、今までとは
異なり全く新しい方法でかつ簡単に多層構造を有
する重合体フイルムの製造方法を提供するに至つ
たものである。なお、本発明の方法は含弗素系と
りわけパーフルオロ系重合体の多層フイルムの製
造に極めて好適であるが、これに限らず他の炭化
水素系重合体など、あるいはそれらを組合せた多
層フイルムの製造にも適用できる。 したがつて、本発明によれば、最初に重合可能
な単量体を薄層を形成し、次いで重合して粘稠化
または固化した一層のフイルム状物を得た後、さ
らに該重合フイルム状物上に二層目の一般に上記
と組成の異なる重合可能な単量体を薄層に形成
し、次いで重合することを特徴とする多層構造を
有する重合体フイルムの製造方法が提供される。
かかる本発明における方法を繰り返すことによつ
て、任意の多層構造を有する重合体フイルムを得
ることが出来る。なお、本発明でいう多層構造フ
イルムとはシート状又は膜状物含めて意味するも
のであつて、その断面に両表面と凡そ平行に組成
の異なる少なくとも二層以上の構造を有するもの
をいう。 本発明は従来の製造方法と全く異なり、製造お
よび得られる多層構造を有する重合体フイルムに
おいて、次のような長所が存する。 重合装置内において多層化が可能であるた
め、設備および操作が簡略化される。 一層目の高分子ラジカルに二層目の単量体が
グラフトするために層間で化学結合を有し、接
着強度が良好な多層構造の重合体フイルムが得
られる。 一層が充分に固化しないうちに二層目の単量
体を加えた場合、層の境界で該単量体の組成が
連続的に変化した多層構造物を得ることが出来
る。 従来の方法では実質的に架橋の入つた重合体
はフイルム化と同様に多層構造物の製造ができ
なかつたのに対して、本発明では実質的に架橋
が入つた多層構造の重合体フイルムを得ること
が出来る。 含弗素オレフインなど重合可能なオレフイン
を気相で供給しつつ重合した場合、該オレフイ
ンと接触する面は数〜数10μの凹凸を有する多
孔質構造となるため、上記に加えて二層目と
の接着が良好になること などが挙げられる。 上記の考え方は例えば重合体フイルムにγ線
等の電離放射線を照射しながら又は照射後単量体
と接触することでグラフト結合を有したフイルム
を得ることができることは既に公知のことである
が、この場合は放射線により主鎖の一部を切断す
ることで高分子グラフトを生成しているために分
子量が低下したりさらに照射条件によつてはフイ
ルムの特性に悪影響を与える場合が多い。これに
対して、本発明の方法では重合を完結させた後
に、さらに残存する高分子ラジカルに重合可能な
単量体をグラフト結合を行う方法であるために前
記した懸念はない。 さらには実質的に架橋構造を有した重合体、特
に含弗素系とりわけパーフルオロ系のフイルムは
寸法安定性が良好である反面、他フイルムとの熱
接着はできないのが現状であるが、本発明の方法
を用いて該架橋性フイルムの接着しようと思う部
分に架橋構造を有さない含弗素ビニル単量体を存
在させ薄膜を形成させることで、架橋構造を有し
且つ他フイルムとの熱接着をも可能にした含弗素
系フイルムを得ることができる。 以下、本発明の製造方法を具体的に説明するた
めに、主に含弗素系重合体の多層フイルムに関し
て記載するが、勿論これに制限されるものでな
い。 本発明は液状の含弗素ビニル単量体を所望の厚
みの薄層とし、含弗素オレフインの存在下または
不存在下にラジカル開始剤あるいは紫外線、X
線、α−β、γ−線等のエネルギーを用いて重合
を開始させ、含弗素系重合体フイルムを製造し、
さらに該フイルム上に再度含弗素ビニル単量体の
薄層を形成させ重合する方法を基本に、これを繰
返すことで所望の多層構造を有した含弗素系重合
体フイルムを製造する。 本発明で用いる含弗素ビニル単量体としては一
般に一つ以上の重合可能な二重結合を有し含弗素
系とりわけパーフルオロ系の有機化合物で重合条
件下で液状であれば特に制限されない。例えば次
の一般式で示されるものである。 CF2=CF.(O)l〔−(CF2n−(CFX)n −(O)pr(CFX′)q−Y ここでl,pは0又は1 m,n,r,qは0〜4の整数 X,X′はF,H,Cl,CF3 Yは−SO2・A{A=OM(MはH、金属イオ
ン)F,Cl,Br}、 −COA(Aは前述)、−CN、−CF3又は−CF=
CF2である。 具体的に上記の好適に用いられる代表的な例を
示すと、Yが−CF3の場合はCF2=CF O
CF2CF2CF3、CF2=CF O CF2CF3 CF O
CF2CF2CF3等、Yが−SO2A、−COA又は−CN
であり陽イオン交換基又は容易に陽イオン交換基
に変換できる官能基の場合はCF2=CF O CF2
CF3 CF O CF2CF2SO2F、CF2=CFOCF2CF3 CF O
CF2CF2SO3H、CF2=CF O
CF2CF2CF2SO2F、CF2=CF O CF2CF2CF3 CF2
COOR、CF2=CFOCF2CF3 CF COOR、CF2
CFOCF2CFOCF2CF2CF2COOR、CF2
CFOCF2CFOCF2CF2COOR、CF2
CFOCF2CF2CF2CN、CF2=CFOCF2CF3 CF CN、
CF2=CFOCF2CF3 CF OCF2CF2CF2CN、CF2
CFOCF2CF3 CF OCF2CF2CN、CF2
CFOCF2CF2CF2COF、CF2=CFOCF2CF3 CF COF、
CF2=CFOCF2CFOCF2CF2CF2COF、CF2
CFOCF2CF3 CF OCF2CF2COF、CF2=CF3 CF
OCF2CFOCF2CFCF2CF2SO2F、CF2=CF3 CF OCF2
CF3 CF O CF2CF3 CF COOR(式中Rはメチル、エチ
ル基等のアルキル基)等である。さらにYが−
CF=CF2の場合は含弗素ジビニル単量体を示し、
その代表例はCF2=CFCF=CF2 CF2=CFCFCF
=CF2、CF2=CFCFCFCF=CF2、CF2
CFOCF2CF2OCF=CF2、CF2
CFOCF2CF2CF2OCF=CF2、CF2
CFOCF2CF2OCF2CF2OCF=CF2等である。その
ほか一般的に
The present invention relates to a method for producing a polymer film having a multilayer structure, preferably a fluorine-containing polymer film, particularly a perfluoro polymer film. Conventionally, typical methods for producing hydrocarbon polymer films with a multilayer structure include hot melting, extrusion lamination, coextrusion lamination, and other heat fusion or adhesive bonding methods, and these methods have not been used on an industrial scale. Films with multilayer structures have been produced. However, since fluorine-containing polymer films, particularly perfluoro-based polymer films, have non-adhesive properties as one of their properties, and furthermore have a high melt viscosity, there are no methods for stacking these films in multiple layers and hot pressing them. Alternatively, a multilayer structure film with sufficient adhesive strength cannot be obtained by a method using an adhesive. Coextrusion methods also cannot be used due to the high melt viscosity. A very exceptional example is an ion exchange membrane for electrolysis, which is made by laminating perfluoro polymer films having sulfonic acid groups or carboxylic acid groups, and is currently being widely studied. This usually has an ether bond in the polymer chain, which lowers the melt viscosity, and a polar group, such as a sulfonic acid group or a carboxylic acid group, which makes it possible to adhere to a certain degree. However, even with this multi-layered structure, there is no chemical bond between the layers, so if used for a long time or under slightly harsh usage conditions, it has the disadvantage of peeling between the layers. are doing. In view of the above, the present inventors investigated a method for producing a fluorine-containing polymer film, particularly a perfluoro polymer film, having an improved multilayer structure, and found that it is possible to easily obtain a multilayer structure using a completely new method unlike the conventional method. The present invention provides a method for producing a polymer film. The method of the present invention is extremely suitable for producing multilayer films made of fluorine-containing polymers, particularly perfluorinated polymers, but is not limited to this, and can also be used to produce multilayer films made of other hydrocarbon polymers or a combination thereof. It can also be applied to Therefore, according to the present invention, a polymerizable monomer is first formed into a thin layer, then polymerized to obtain a viscous or solidified film, and then the polymerized film is There is provided a method for producing a polymer film having a multilayer structure, which comprises forming a second layer of a polymerizable monomer having a composition generally different from the above-described thin layer on a material, and then polymerizing the second layer.
By repeating the method of the present invention, a polymer film having any desired multilayer structure can be obtained. The term "multilayer film" as used in the present invention includes sheet-like or film-like materials, and refers to a film having a structure of at least two or more layers of different compositions approximately parallel to both surfaces in its cross section. The present invention is completely different from conventional manufacturing methods, and has the following advantages in manufacturing and the resulting polymer film having a multilayer structure. Since multilayering is possible within the polymerization apparatus, equipment and operation are simplified. Because the monomers in the second layer are grafted onto the polymer radicals in the first layer, chemical bonds are formed between the layers, resulting in a multilayered polymer film with good adhesive strength. If a second layer of monomer is added before the first layer is sufficiently solidified, a multilayer structure can be obtained in which the composition of the monomer changes continuously at the layer boundaries. In the conventional method, it was not possible to produce a multilayer structure using a substantially crosslinked polymer, as in the case of forming a film, whereas in the present invention, a substantially crosslinked polymer film having a multilayer structure could not be produced. You can get it. When polymerizing while supplying a polymerizable olefin such as a fluorine-containing olefin in the gas phase, the surface in contact with the olefin becomes a porous structure with unevenness of several to several tens of micrometers. Examples include better adhesion. The above idea is already known that it is possible to obtain a film having graft bonds by irradiating a polymer film with ionizing radiation such as gamma rays or by contacting it with a monomer after irradiation. In this case, a part of the main chain is cleaved by radiation to generate a polymer graft, which often results in a decrease in molecular weight and, depending on the irradiation conditions, adversely affects the properties of the film. On the other hand, in the method of the present invention, after the polymerization is completed, a polymerizable monomer is further grafted to the remaining polymer radicals, so that the above-mentioned concerns are not present. Furthermore, while polymers having a substantially crosslinked structure, particularly fluorine-containing films, especially perfluorinated films, have good dimensional stability, they currently cannot be thermally bonded to other films. By using the method described above, a fluorine-containing vinyl monomer that does not have a crosslinked structure is present in the part of the crosslinkable film to be bonded to form a thin film, thereby making it possible to thermally bond it to other films that have a crosslinked structure. It is possible to obtain a fluorine-containing film that also makes it possible to Hereinafter, in order to specifically explain the manufacturing method of the present invention, the description will mainly be made regarding a multilayer film of a fluorine-containing polymer, but of course the method is not limited thereto. In the present invention, a liquid fluorine-containing vinyl monomer is formed into a thin layer of a desired thickness, and a radical initiator, ultraviolet rays,
Initiate polymerization using energy such as rays, α-β, γ-rays, etc. to produce a fluorine-containing polymer film,
Furthermore, a fluorine-containing polymer film having a desired multilayer structure is produced by repeatedly forming a thin layer of the fluorine-containing vinyl monomer on the film and polymerizing the same. The fluorine-containing vinyl monomer used in the present invention is not particularly limited as long as it is a fluorine-containing, particularly perfluorinated, organic compound having one or more polymerizable double bonds and is liquid under polymerization conditions. For example, it is expressed by the following general formula. CF 2 = CF. (O) l[-(CF 2 ) n - (CFX) n - (O) p ] r (CFX') q -Y where l, p are 0 or 1 m, n, r, q is an integer from 0 to 4 (described above), −CN, −CF 3 or −CF=
CF 2 . Specifically, to show a typical example that is preferably used above, when Y is -CF3 , CF2 =CFO
CF 2 CF 2 CF 3 , CF 2 = CF O CF 2 CF 3 CF O
CF 2 CF 2 CF 3 etc., Y is -SO 2 A, -COA or -CN
and in the case of a cation exchange group or a functional group that can be easily converted into a cation exchange group, CF 2 = CF O CF 2
CF 3 CF O CF 2 CF 2 SO 2 F, CF 2 = CFOCF 2 CF 3 CF O
CF 2 CF 2 SO 3 H, CF 2 =CF O
CF 2 CF 2 CF 2 SO 2 F, CF 2 = CF O CF 2 CF 2 CF 3 CF 2
COOR, CF 2 = CFOCF 2 CF 3 CF COOR, CF 2 =
CFOCF 2 CFOCF 2 CF 2 CF 2 COOR, CF 2 =
CFOCF 2 CFOCF 2 CF 2 COOR, CF 2 =
CFOCF 2 CF 2 CF 2 CN, CF 2 = CFOCF 2 CF 3 CF CN,
CF 2 = CFOCF 2 CF 3 CF OCF 2 CF 2 CF 2 CN, CF 2 =
CFOCF 2 CF 3 CF OCF 2 CF 2 CN, CF 2 =
CFOCF 2 CF 2 CF 2 COF, CF 2 = CFOCF 2 CF 3 CF COF,
CF 2 = CFOCF 2 CFOCF 2 CF 2 CF 2 COF, CF 2 =
CFOCF 2 CF 3 CF OCF 2 CF 2 COF, CF 2 = CF 3 CF
OCF 2 CFOCF 2 CFCF 2 CF 2 SO 2 F, CF 2 = CF 3 CF OCF 2
CF 3 CF O CF 2 CF 3 CF COOR (wherein R is an alkyl group such as methyl or ethyl group), and the like. Furthermore, Y is -
In the case of CF=CF 2 , it indicates a fluorine-containing divinyl monomer,
A typical example is CF 2 = CFCF = CF 2 CF 2 = CFCFCF
= CF 2 , CF 2 = CFCFCFCF = CF 2 , CF 2 =
CFOCF 2 CF 2 OCF=CF 2 , CF 2 =
CFOCF 2 CF 2 CF 2 OCF=CF 2 , CF 2 =
CFOCF 2 CF 2 OCF 2 CF 2 OCF=CF 2 , etc. Other general

【式】及び で示される含弗素ビニル単量体も好適に本発明に
用いることができる。ここでRfはCnF2o+1で示さ
れるパーフルオロアルキル基であり好ましいnは
4〜10である。一方R′fは前述したRfで示される
もの以外にCF3CF2CF2(OCF−CF2n−で示され
るパーフルオロアルキレンエーテル基でありmは
1〜3である。 本発明においては上記に示した如き含弗素ビニ
ル単量体を一種又は得られる目的とする含弗素系
重合体フイルムの用途に合つた特性を有した共重
合体とするために一種以上の含弗素ビニル単量体
を混合して用いることもできる。 特に含弗素ビニル単量体の一つとして陽イオン
交換基又は容易に陽イオン交換基に変換可能な官
能基を有するものを用いた場合には、得られるフ
イルムの寸法安定性は非常に重要視される。した
がつて、このような場合は少なく共一層以上の含
弗素ビニル単量体中に含弗素ジビニル単量体を適
量加えることによつて、架橋構造を有する寸法安
定性の改良されたフイルムを得ることができる。 さらに液状の含弗素ビニル単量体は必要により
ラジカル開始剤が混同される。ラジカル開始剤と
しては含弗素ビニル単量体に重合に必要な量(通
常含弗素ビニル単量体に対して0.1〜10モル%程
度)だけ溶解するものであればよく重合温度下で
分解しラジカルを発生し重合を開始するものであ
ればよい。例えば炭化水素系のものとしてジター
シヤリーブチルパーオキサイド、ターシヤリーブ
チルクミルパーオキサイド、2,5−ジメチル−
2,5−ジ(ターシヤリーブチルパーオキシ)ヘ
キサン等のジアルキルパーオキサイド類、ジアセ
チルパーオキサイド、ジイソブチリルパーオキサ
イド、ジオクタノイルパーオキサイド、ジラウロ
イルパーオキサイド、ジベンゾイルパーオキサイ
ド等のジアシルパーオキサイド類、ジイソプロピ
ルパーオキシカーボネート、ジ−n−プロピルパ
ーオキシカーボネート、ジ−2−エトキシエチル
及びパーオキシジカーボネート等のパーオキシジ
カーボネート類、その他パーオキシエステル類、
パーオキシケタール類、ケトンパーオキサイド類
等の有機過酸化物、アゾビスブチロニトリルに代
表されるアゾ系のパーオキサイド類等、さらには
含弗素系のアルキル基を有するパーフルオロジプ
ロパノイルパーオキサイド、パーフルオロジブタ
ノイルパーオキサイド、パーフルオロジペンテノ
イルパーオキサイド、パーフルオロジヘキサイイ
ルパーオキサイド、パーフルオロジヘプタノイル
パーオキサイド、パーフルオロジオクタノイルパ
ーオキサイド、パーフルオロジノナノイルパーオ
キサイド、パーフルオロジデカノイルパーオキサ
イド等のパーフルオロジアシルパーオキサイド類
及びω−位がH又はClであるポリフルオロジアシ
ルパーオキサイド類、パーフルオロアルキル基中
にエーテル基を含むジアシルパーオキサイド類例
えばパーフルオロジプロポキシプロピオニルパー
オキサイド、パーフルオロジイソプロポキシプロ
ピオニルパーオキサイド等が好適に用いられる。
その他ジトリフルオロメチルパーオキサイド等の
パーフルオロジアルキルパーオキサイド類、その
他N2F2、N2F4、一弗化窒素類、CF3・C(NF2
=C(NF2)・CF3等のジフルオロアミノ基を有す
る含弗素化合物類も本発明に用いることができ
る。 これ等のラジカル開始剤のうち、ジアシルパー
オキサイド類、パーオキシジカーボネート類が重
合が速く好ましいが特にポリフルオロ系のジアシ
ルパーオキサイドが得られるフイルムの着色もな
く好ましい。 一方、これ等のラジカル重合開始剤の存在下、
不存在下に紫外線、X線、α−β、γ−線等のエ
ネルギーを用いて重合を開始させることも可能で
ある。 次に液状の含弗素ビニル単量体は薄層を形成す
るために次のような方法を好適に用いることがで
きる。例えば(A)ガラス、金属等の平板を水平にし
その上に含弗素ビニル単量体を流延する方法、(B)
実質的に含弗素ビニル単量体を溶解しない液体例
えば水銀等の表面に流延する方法(C)内側の円筒型
の反応器中に該単量体を流し込み円筒の中心(回
転軸)を水平にして回転させることで薄層を形成
させる方法及び(D)上記(C)の方法で円筒の中心(回
転軸)を垂直にして回転もその遠心力で薄層を形
成する方法等が採用されうる。勿論、薄層を安定
に形成させるために含弗素系、好ましくはパーフ
ルオロ系の重合体よりなる微粉末、フイブリル、
糸状物、網状物を薄層内に存在させることは得ら
れるフイルムの機械的強度の増加に役立つ有効な
方法である。以上述べた四つの方法のうち特に(C)
および(D)の反応器内で回転により薄層を形成しつ
つ重合する方法は装置および操作とも簡単で有利
である。薄層の厚さは重合後のフイルムの凡その
厚みになるため重要であり、板等の表面又は円筒
形の内表面に液状の含弗素ビニル単量体の薄層を
形成させるため、拡げる面積と仕込んだ含弗素ビ
ニル単量体の容量から薄層の凡その厚みを求める
ことができる。本発明の方法では通常10μ〜1mn
程度の厚みの含弗素系重合体フイルムを簡単に製
造することができる。 このようにして成形された薄層は次に重合を開
始、完結するために重合条件下に置かれる。勿
論、室温付近で重合に必要な量のラジカルが発生
するようなラジカル開始剤又は紫外線、X線、α
−、β−、γ−線等のエネルギーを用いて重合を
開始させ、且つ室温付近で蒸気圧が充分低い含弗
素ビニル単量体を用いる場合は薄層を室内に放置
しているだけでも室温下で重合が開始され本発明
を完成することができるが、多くの場合は反応器
中に導入して重合が行われる。反応器は(A)、(B)の
方法で、成形した薄層を重合する場合は、重合を
開始、完結するのに必要な温度を維持調節できる
工夫及び重合時における含弗素ビニル単量体の蒸
散を防止するために加える重合に関与しない窒素
等のガス又は必要により加える共重合成分である
テトラフルオロエチレン、クロルトリフルオロエ
チレン、フツ化ビニリデンヘキサフルオロプロピ
レン等の含弗素オレフイン等のガス成分の圧力に
耐える構造であればよい。ここでいう含弗素オレ
フインとは例示したごとく重合温度圧力下で気体
で含弗素ビニル単量体と共重合可能な含弗素化合
物をいう。一方、(C)、(D)の方法では反応器中に薄
層に成形しつつ重合するために温度の維持調節が
可能なこと及び前述した耐圧構造であることに加
えて含弗素ビニル単量体が流延し、薄層が生成す
るために反応器の構造は重要である。具体的には
(C)の方法では反応器内側の円筒部分を水平に回転
させながら円筒の表面に含弗素ビニル単量体の薄
層を形成させつつ重合が行われる。又(D)の方法で
は反応器内側の円筒部分の中心を回転軸として垂
直に回転させながら円筒の表面に遠心力で含弗素
ビニル単量体の薄層を形成させつつ重合が行われ
る。このため(C)、(D)の方法を用いて含弗素系ビニ
ル単量体の薄層を形成させる場合は、反応器は円
筒状であり該円筒を水平又は垂直として回転させ
つつ重合を進め固化させることが必須である。こ
の要件が満足されていれば生産効率をあげるため
に、数本の円筒を用いそれ等の中心を回転軸と一
致させて反応器内に直線状にセツトし各円筒内で
含弗素ビニル単量体を導入し、重合を行う方法、
及び半径の異なる数本の円筒をそれ等の中心を回
転軸と一致させて半径の大きい順に順次円筒の内
部に配置し各円筒内に含弗素ビニル単量体を導入
し重合を行う方法も一回の重合で数枚のフイルム
を一度に得ることができ本発明の実施態様として
は好ましい例である。 一方回転数はCの方法では円筒を水平に回転し
円筒の底弊に含弗素ビニル単量体が溜まらない程
度でよく通常10〜500rpm程度である。Dの方法
では遠心力で薄層を形成させるためにCの方法よ
りも高い回転数が必要になる。通常、500〜
5000rpm程度が望ましい。勿論、重合を行つてい
る間中上記した回転数を維持する必要はなく、あ
る程度重合が進み粘度が増加した時点で回転数を
減らすこともできる。 重合時の温度は用いるラジカル開始剤の10時間
での半減温度によつて決まる。例えばパーフルオ
ロジプロポキシプロピオニルパーオキサイドは半
減温度が120℃程度、ジイソプロピルパーオキシ
ジカーボネートのそれは40℃程度、ジベイゾイル
パーオキサイドのそれは80℃程度さらにはジター
シヤリーブチルパーオキサイドの場合は120℃程
度等用いるラジカル開始剤によつて重合温度を変
えることができる。しかしながら、含弗素系ビニ
ル単量体は沸点が低いものが多いこと又、炭化水
素系のラジカル開始剤を用いた場合、高温で重合
を行うと得られるフイルムが着色することもあ
り、これ等のことを考えると0℃〜100℃の温度
範囲で重合することが好ましい。 重合時の圧力は次二つの実施態様によつて異な
る。一つは重合時の温度、用いる含弗素ビニル単
量体によつても異なるが、重合時に含弗素ビニル
単量体の蒸発又は重合後のフイルム中の気泡の生
成を防止するために重合に関与しない窒素等の不
活性ガスを加圧下に封入した状態で重合する場合
である。この場合10Kg/cm2程度の圧力をかければ
その目的が達成されうる。もう一つは含弗素ビニ
ル単量体の薄層に気相より含弗素ビニル単量体と
共重合可能な気体の含弗素オレフイン例えばテト
ラフルオロエチレン、クロルトリフルオロエチレ
ン、フツ化ビニリデン、ヘキサフルオロプロピレ
ン等を供給しつつ共重合を行う場合である。この
場合は目的とする組成のフイルムを得るため含弗
素オレフインの圧力をかけて重合が行われ、通
常、含弗素オレフインの圧力は0〜200Kg/cm2
共重合反応が実施される。 さらに本発明ではフイルムの厚み方向にモノマ
ー組成の異なるものをも得ることができる。この
場合、共重合可能な含弗素オレフインの圧力を重
合の途中で変動させることで厚み方向の含弗素オ
レフインの含量を変えることができる。 重合時間は、用いる含弗素ビニル単量体の種
類、重合温度、用いるラジカル開始剤及び含弗素
オレフインの有無によつて一概に決定できないが
通常1〜50時間位の重合時間で本発明のフイルム
を製造することができる。 本発明においては所定の重合時間が経過後、さ
らに二層目の含弗素ビニル単量体が導入される。
この場合、反応器を冷却し該単量体を含弗素オレ
フイン等の圧力を利用して、該反応器内に圧入す
る方法もある。また場合によつては反応器の回転
を止め、反応器内の圧力を抜いた後、あるいは必
要により反応器内を窒素等の不活性ガスに置換
後、反応器が開き二層目の組成に対応した含弗素
ビニル単量体の必要量を添加する。この際、用い
るラジカル開始剤の分解温度が低い場合は、添加
すると直ぐ重合が始まる可能性があるため、一層
目のフイルム及び反応器は重合が押えられるよう
な温度まで冷して添加した方が好ましい。さらに
一層目の高分子フイルム内には高分子ラジカルが
残存しているが、次の含弗素ビニル単量体の添加
時に該ラジカルを変質又は消滅させるような操
作、例えば酸素との接触は該ラジカルがパーオキ
サイドラジカルへの変化をもたらす。このような
変質は層間の接着性に微妙な差をもたらす場合が
あり、このような該ラジカルの変質による影響を
よく調べて、このような変質に対拠しなければな
らない。 添加された含弗素ビニル単量体は前述した方法
で、一層目のフイルムの表面に薄層が形成され
る。その後、一層目と同様の方法で重合が行われ
る。即ち、含弗素ビニル単量体の薄層が形成され
たフイルムは、反応器内で必要により含弗素オレ
フインの存在下で重合が行われる。重合の条件は
一層目のフイルムを製造した時と同様の範囲で行
うことができるが、重合時間は一層目の高分子ラ
ジカルが存在しているためか、一層目の重合時間
に較べ通常短くてすむ。上記の如き方法を繰返す
ことで、さらに多層構造を有するフイルムを製造
することができる。 本発明の方法によれば、含弗素ビニル単量体中
に任意の割合で含弗素ジビニル単量体を混合して
重合することができるために、架橋していない層
及び含弗素ジビニル単量体の混合量を変えて架橋
度のいろいろ異なる層を任意に配列した多層構造
フイルムを得ることができる。さらに、重合時に
含弗素オレフインの圧力を変えることで、各層内
で厚み方向にある勾配をもつた含弗素オレフイン
の含量を変えることができる。したがつて、含弗
素ビニル単量体としてイオン交換基又は容易にイ
オン交換基に変換できる官能基を有するものを用
いた場合は、イオン交換基がある勾配をもつた層
をも製造することができる。これらのものは、従
来の多層化の方法では得ることができなかつたも
のである。このようにして製造された多層構造を
有するフイルムは、反応容器内を必要により窒素
等の不活性ガスに置換後、反応器を開けると、円
筒の内表面に通常密着して生成していることが観
察される。生成した含弗素系重合体フイルムは、
通常ほかの物質との接着性が小さいため、反応器
内壁から簡単にはがれ、取り出すことができる
が、さらに離型性をよくするために弗化カーボ
ン、弗素系のグリース及び弗素のオイル等の離型
剤を反応器内表面に重合に先立ち塗布しておくこ
とが好ましい場合が多い。特に内表面の一部が錆
びたり、凹凸がある場合は離型性の使用は有効で
ある。 このようにして得られたフイルムは必要により
フレオン113等の弗素系溶媒、又は四炭化炭素等
の塩素系溶媒に室温下又は加温下に浸漬して未反
応の含弗素ビニル単量体及び低分子量のオリゴマ
ーを抽出除去し、本発明の多層構造を有する含弗
素系重合体フイルムを得ることができる。一方、
含弗素ビニル単量体として陽イオン交換基又は容
易に陽イオン交換基に変換可能な官能基を有する
ものを用いた場合は、さらに次のような後処理が
必要となる。例えば−SO3H、−COOH、等では
金属イオン型例えばナトリウム型に変えるため
に、食塩又は苛性ソーダの水溶液又はフイルムを
膨潤させイオン交換反応を容易にするために、必
要により該水溶液の代りにメタノール、エタノー
ル、イソプロパノール、ジメチルスルホキシド、
及びジメチルフオルムアミド等のフイルムを膨潤
させることのできる有機溶媒を含んだ溶液中に室
温下又は加温下に数〜十数時間浸漬することで塩
型に変えることができる。他方、−SO2F、−
SO2Cl、−SO2Br、−COOR、−COF、−COCl、−
COBr及び−CNを有する含弗素ビニル単量体を
用いてフイルムを製造した場合は、陽イオン交換
基に変えるために加水分解反応が必要になる。こ
の場合はフイルムをアルカリ金属の水酸化物例え
ば苛性ソーダの10重量%程度を含む水と前述した
有機溶媒の混合溶媒中に50〜100℃程度に加温し
て数〜数十時間浸漬することで加水分解反応は完
結する。 本発明で得られるフイルムは従来多層構造の含
弗素系フイルムが用いられている分野も含め、従
来のものと同様にさらには本発明のフイルムが有
する数々の特徴を生かして好適に用いることがで
きる。特に各層に含まれる含弗素ビニル単量体が
陽イオン交換基又は容易に陽イオン交換基に変換
可能な官能基を有するパーフルオロ系のものであ
り、又パーフルオロ系のジビニル化合物を含んで
いる場合は加水分解して陽イオン交換基とした
時、寸法安定性が著しく向上し現在盛んに研究さ
れているハロゲン化アルカリ水溶液電解用の陽イ
オン交換膜として好適に用いることができる。さ
らに、本発明において含弗素オレフインを供給し
つつ重合した場合フイルムの該含弗素オレフイン
と接触したフイルム面には数〜数十μの凹凸を有
した多孔質の構造となつているため、従来の平滑
なフイルム面とは異なつた表面物性を有してい
る。したがつて、例えば本発明のフイルムを陽イ
オン交換膜として用いた時、この面を陰極側に向
けることで気泡(水素)の付着が平滑なフイルム
に較べ著しく低減される。これは電解用のイオン
交換膜に適した表面物性であるということがいえ
る。さらにフイルムの両表面にそれぞれ陽極反
応、陰極反応の触媒物質を付着させることで謂ゆ
るSPEとして用いることもできる。その外電解用
のイオン交換膜を改良するため多くの提案も本発
明のフイルムに適用することができる。 なお、含弗素ビニル単量体がスルホン酸基又は
容易にスルホン酸基に変換可能な官能基を有する
ものを用いた場合、得られる多層構造のフイルム
を食塩電解用のイオン交換膜として用いた時に電
流効率が悪い場合がある。この場合、上記のフイ
ルムの表層部に特開昭52−24177、特公昭57−
58374、特開昭58−34805及び特願昭58−26349等
の公報に記載の方法で、該フイルムの表層部又は
全体のスルホン酸基をカルボン酸基に変えること
でさらに一層増えたフイルムとし電流効率を向上
することができる。 今まで主に含弗素系ビニル単量体について本発
明を説明して来たが、その外メタアクリル酸、メ
タアクリル酸エステル類、アクリル酸、アクリル
酸エステル類、スチレン、ビニルトルエン、ビニ
ルピリジンジビニルベンゼン、ブタジエン等の重
合可能な二重結合を有する炭化水素系の謂ゆる単
量体等も本発明に好適に用いることができる。 以下、実施例を用いて本発明を説明するが、本
発明はこれに限定されるものではない。 実施例 1 水平にした時、中の液体がこぼれないように入
口を絞つた内径1.6cm、長さ10cmのガラス製円筒
の中に の5%のフレオン113溶液を含弗素ビニル単量体
であるCF2=CFOCF2CFOCF2CF2SO2F1.2gに対
して1モル%相当量加えた。反応器を−5℃に冷
却しつつ減圧し、溶媒であるフレオン113を蒸発
除去した。冷却下に常圧に戻し約1.4gのCF2
CFOCF2CFOCF2CF2SO2Fを加えた。この後、ガ
ラス円筒を圧力計を有した円筒型のステンレス製
の反応器中に回転軸を一致させて、挿入した。反
応器を液体空気で冷却して反応器内を減圧とし
た。次に、テトラフルオロエチレンを標準状態で
6Kg/cm2となるように反応容器内に仕込んだ。 さらに反応器を温度が30℃に調節された加熱器
の中に入れ、反応器を水平にしてモーターに接続
し、約50rpmで回転させながら重合を続けた。30
℃で約3時間経過した時テトラフルオロエチレン
の圧力は2.0Kg/cm2に低下していた。この時点で、
反応器を取出し、アルゴンを封入したグローヴボ
ツクス中でテトラフルオロエチレンの圧力を抜い
て、反応器を開けた。ガラス円筒を取出したとこ
ろ、円筒内壁に半透明のフイルムが生成してい
た。 次に二層目を重合するために、前記ガラス円筒
を0℃に冷却してCF2=CFOCF2CF・
COOCH30.5gとCF2=CFOCF2CF2OCF=CF20.1g
及び前述したジアシルパーオキサイド2モル%含
む混合液を該ガラス円筒に加えた。反応器内に挿
入して反応器を組立てた。さらに、反応器を液体
空気で冷却して反応器内を減圧とし、次にテトラ
フルオロエチレンを10Kg/cm2となるように反応器
内に封入した。反応器を35℃に調節された加熱器
中に入れ、前回と同様に80rpmで回転しつつ重合
した。2時間経過した時、テトラフルオロエチレ
ンの圧力は4Kg/cm2に低下した。回転を停止し残
存するテトラフルオロエチレンの圧力を抜いて反
応器を開けたところ、ガラス円筒内に半透明のフ
イルムが生成していた。円筒状のフイルムをハサ
ミで切開いて厚みを測定したところ約180μであ
つた。さらにスルホニルオライド基及びカルボン
酸エステル基を加水分解するために苛性ソーダ、
ジメチルスルホキシド水の3:7:11(重量比)
の中に90℃で15hrs浸漬した。水洗後、一部を切
取り100mgのクリスタルバイオレツトを含む0.5N
−HCl、−メタノール(容量比3:7)からなる
染色液中に室温下15hrs浸漬した。水洗後、断面
の切片を光学顕微鏡で観察したところ、第一層目
(スルホン酸基が存在する層)が120μ程度の厚み
で濃緑色に染つていたが、第二層目(カルボン酸
基が存在する層)は60μ程度全く染色されていな
かつた。またスルホン酸基が存在する層の表面は
平滑であつたが、層の境界及びカルボン酸基が存
在する層の表面は数μ〜十数μ程度の凹凸が認め
られた。特に境界はスルホン酸基を含んだ凹凸が
カルボン酸基が存在する層に浸入していた。さら
に他の一部分の赤外吸収スペクトルをATR法で
測定したところ、スルホン酸基が存在する面は
1060cm-1に吸収帯が認められ、他方その反対面は
1680cm-1にパーフルオロカルボン酸基のNa+塩に
相当する吸収帯が認められ二層構造を有している
ことが判つた。 次に電解用のイオン交換膜としての性能を調べ
るために電解テストを行つた、電解テストはチタ
ン製の陽極室とニツケル製の陰極室よりなる2室
式で0.1dm2の有効通電面積をもつセルを用いて行
つた。陽極としてチタンのラス材に酸化チタンと
酸化ルテニウムを被覆したもの、陰極として軟鉄
のラス材を用いた。陽極室と陰極室の間に膜を陽
極とは密着し、陰極と2mmの間隙で組込み(カル
ボン酸基が存在する面を陰極に向けて)、陽極室
にCa濃度が0.5ppm以下の飽和食塩水を供給し、
3.5Nの食塩濃度で排出した。一方、陰極室に
NaOHの濃度が11Nとなるように純水を供給し
た。電流密度30A/dm2、極室温度90℃に調節し
た。 その結果、セル電圧は3.30V、苛性ソーダの電
流効率は96%、苛性ソーダ中の食塩濃度は30ppm
(50%苛性ソーダ換算値)であつた。さらに膜と
陰極の極間を2mmから密着した以外は同条件で電
解を行つたところ、セル電圧が陰極液の溶液抵抗
分に相当する約50mVが低下したが、電流効率、
苛性ソーダ中の食塩濃度には変化がなかつた。 比較例 1 実施例1で得られた膜と同じ組成及び構造を有
したスルホニルフルオライド基及びカルボン酸エ
ステル基よりなる二層のフイルムが熱融着で得ら
れるかどうか試みた。 スルホニルフルオライド基及びカルボン酸エス
テル基をそれぞれ有するフイルムを得るために実
施例1の方法、装置及び条件を用いた。最初、実
施例1と同じ仕込み量で CF2=CF・OCF2・CF3 CF ・OCF2CF2SO2F とテトラフルオロエチレンを30℃で約3時間重合
した後、フルホニルフルオライド基を有する約
120μのフイルムを得た。他方、実施例1と同じ
仕 込み量でCF2=CFOCF2CF3 CF COOCH3 とCF2=CFOCF2CF2OCF=CF2及びテトラフル
オロエチレンを重合し、カルボン酸エステル基を
有するフイルムを得た。2枚のフイルムを重ね
200℃の温度下で150Kg/cm2に加圧しても全く融着
できなかつた。 さらにCF2=CFOCF2CF2OCF=CF2の影響を 調べるためにCF2=CF3 CF ・OCF2CFCOOCH3と テトラフルオロエチレンよりなるフイルムを同じ
重合条件下で製造し、スルホニルフルオライド基
を有するフイルムと温度200℃、圧力150Kg/cm2
熱融着を行つたところ、一枚のフイルムに融着す
ることができた。さらに、この融着したフイルム
と実施例1のフイルムをNa+型とした後、1時間
沸とうした水中に浸漬したところ、熱融着したフ
イルムは内部に水泡が生成していたが、実施例1
のフイルムは若干澎潤した以外は変化なかつた。 実施例 2 実施例1の反応器及び方法を用いてスルホニル
フルオライド基を有する二層構造を有したフイル
ムを製造した。フイルム厚さが約100μに相当す
る量のCF2=CFOCF2CF2CF2SO2Fに実施例1で
用いたラジカル開始剤5モル%を加えた。さらに
ガラス円筒内加え、一層目の重合を行つた。重合
条件は40℃回転数を100rpmとしテトラフルオロ
エチレンの圧力を10Kg/cm2とした。5時間重合し
たところテトラフルオロエチレンの圧力が4Kg/
cm2に低下した。テトラフルオロエチレンの圧を抜
き、反応器をドライアイスで冷して実施例1で用
いたグローブボツクスの中で反応器を間けた。 次にCF2=CFOCF2CF3 CF OCF2CF2SO2Fと CF2=CFOCF2CF2OCF=CF2との重量比で
10:1の混合物をフイルムの厚さ約50μに相当す
る量を加えた。さらにテトラフルオロエチレンを
8Kg/cm2加え二層目の重合を行つた。重合条件は
35℃50rpmで6時間行つた。テトラフルオロエチ
レンの圧力が3Kg/cm2に低下した。テトラフルオ
ロエチレンの圧を抜き反応器を開けてフイルムを
取出した。実施例1で用いた加水分解液を用いて
スルホニルフルオライド基を加水分解した。 水洗して一部を乾燥後フイルムの両面のATR
法での赤外スペクトルを測定したところ、 CF2=CFOCF2CF3 CF OCF2CF2SO2F を重合した側は1064cm-1に他面は1045cm-1にスル
ホン酸基に相当する吸収帯が認められ、さらに
30μずつ表面より削つても同じスペクトルが得ら
れたことから二層構造を有していることが判つ
た。また、その強度から交換容量を求めたとこ
ろ、 CF2=CFOCF2CF3 CF OCF2CF2SO2Fを重合 した側が0.87ミリ当量/グラム乾燥物、他面が
0.90ミリ当量/グラム乾燥物であつた。残りの部
分はN−HCl中に浸漬してH+型とした。 さらにスルホン酸基をカルボン酸基に変えるた
めに特開昭58−34805公報記載の方法に準じた。
即ち上部下部に2つのノズルを有し内径8cmのス
テンレス製円筒よりなり中心に殺菌ランプGL−
15(東芝製)を装置した反応器の内周にランプか
らの紫外線が均一に照射できるように、H+型の フイルムのCF2=CFOCF2CF3 CF ・OCF2CF2SO2F を重合した面を中心に向け反応器の内壁に沿つて
フイルムを取付けた。反応器をオイルバス中に浸
漬し下部部ノズルより窒素を50c.c./minの流速で
導入した上部ノズルより排出しながら160℃まで
昇温した。昇温後、窒素の導入を止めノズルに真
空ポンプをつないで、さらに一時間減圧乾燥を行
つた。乾燥後、反応器内を−76cmHgまで減圧と
した。ノズルより酸化窒素(NO)及び二酸化窒
素(NO2)をそれぞれ5cmHgずつ、さらに窒素
を大気圧になるように導入した。 殺菌ランプを点灯し、照射を開始した。1時間
の照射後ランプを消し、反応器内に窒素を導入し
て洗浄した。 フイルムを抜き出し、その一扮を切り取り赤外
スペクトル測定(ATR法)に供した。残りの部
分は20%のNaOHを含むメタノール−水(容量
比1/1)中で30分間加温し、イオン交換基をNa+
型とした後、染色テスト及び電解テスト等に供し
た。その結果、照射面の赤外スペクトルでは、
1780cm-1にカルボン酸基に起因する吸収帯が中位
の強度で認められた。Na+型に変えるとこの吸収
帯は1680cm-1にシフトすることが認められた。こ
の強度から交換容量を求めたところ0.85ミリ当
量/グラム乾燥物であつた。 一方、未照射面に認められる1045cm-1のスルホ
ン酸基の吸収帯は殆んど認められなかつた。Na+
型としたフイルムの一部を実施例1で用いた染色
液中に15hrs浸漬した。水洗後、ミクロトームで
断面を薄片状に切取り顕微鏡で観察したところ、
一方の表面より15μが層状に全く染色されず、他
の部分が濃緑色に染つていたことより、表面より
15μの厚みでカルボン酸基が存在していることが
判つた。 この結果、一方の表面に架橋を有していないス
ルホン酸基を有する層、架橋を有したスルホン酸
基を有する層及び架橋を有したカルボン酸基を有
する三層構造を有する膜であることが判つた。 得られた膜のカルボン酸基が存在する面を陰極
に向け実施例1の装置、電解条件で電解テストを
行つた。その結果、セル電圧が3.39V、苛性ソー
ダの電流効率が95%及び苛性ソーダ中の食塩濃度
が40ppmであつた。 一方、カルボン酸基を導入しなかつた膜も比較
のために電解テストを行つたところ、セル電圧が
3.29V、苛性ソーダの電解効率が54%、及び苛性
ソーダの食塩濃度が200ppmであつた。 実施例 3
[Formula] and The fluorine-containing vinyl monomers represented by can also be suitably used in the present invention. Here, R f is a perfluoroalkyl group represented by CnF 2o+1, and n is preferably 4 to 10. On the other hand, R' f is a perfluoroalkylene ether group represented by CF 3 CF 2 CF 2 (OCF-CF 2 ) n - in addition to the above-mentioned R f , and m is 1-3. In the present invention, one or more fluorine-containing vinyl monomers as shown above are used, or one or more fluorine-containing vinyl monomers are used to obtain a copolymer having characteristics suitable for the intended use of the fluorine-containing polymer film to be obtained. It is also possible to use a mixture of vinyl monomers. In particular, when one of the fluorine-containing vinyl monomers is one that has a cation exchange group or a functional group that can be easily converted into a cation exchange group, the dimensional stability of the resulting film is of great importance. be done. Therefore, in such cases, by adding an appropriate amount of a fluorine-containing divinyl monomer to a fluorine-containing vinyl monomer having one or more layers, a film having a crosslinked structure and improved dimensional stability can be obtained. be able to. Furthermore, the liquid fluorine-containing vinyl monomer is mixed with a radical initiator if necessary. The radical initiator may be one that dissolves in the fluorine-containing vinyl monomer in the amount necessary for polymerization (usually about 0.1 to 10 mol% relative to the fluorine-containing vinyl monomer) and decomposes at the polymerization temperature to form radicals. Any material that generates and initiates polymerization may be used. For example, hydrocarbons include tert-butyl peroxide, t-butyl cumyl peroxide, 2,5-dimethyl-
Dialkyl peroxides such as 2,5-di(tert-butylperoxy)hexane, diacyl peroxides such as diacetyl peroxide, diisobutyryl peroxide, dioctanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, etc. , peroxydicarbonates such as diisopropylperoxycarbonate, di-n-propylperoxycarbonate, di-2-ethoxyethyl and peroxydicarbonate, other peroxyesters,
Organic peroxides such as peroxyketals and ketone peroxides, azo peroxides such as azobisbutyronitrile, and perfluorodipropanoyl peroxide having a fluorine-containing alkyl group. , perfluorodibutanoyl peroxide, perfluorodipentenoyl peroxide, perfluorodihexyl peroxide, perfluorodiheptanoyl peroxide, perfluorodioctanoyl peroxide, perfluorodinonanoyl peroxide, perfluorodibutanoyl peroxide Perfluorodiacyl peroxides such as fluorodidecanoyl peroxide, polyfluorodiacyl peroxides in which the ω-position is H or Cl, diacyl peroxides containing an ether group in the perfluoroalkyl group, such as perfluorodipropoxy Propionyl peroxide, perfluorodiisopropoxypropionyl peroxide, etc. are preferably used.
Other perfluorodialkyl peroxides such as ditrifluoromethyl peroxide, other N 2 F 2 , N 2 F 4 , nitrogen monofluoride, CF 3・C (NF 2 )
Fluorine-containing compounds having a difluoroamino group such as =C( NF2 ) .CF3 can also be used in the present invention. Among these radical initiators, diacyl peroxides and peroxydicarbonates are preferred because they polymerize quickly and are particularly preferred because they do not cause coloring of the film obtained from polyfluoro-based diacyl peroxides. On the other hand, in the presence of these radical polymerization initiators,
It is also possible to initiate polymerization using energy such as ultraviolet rays, X-rays, α-β, and γ-rays in the absence of the polymer. Next, the following method can be suitably used to form a thin layer of the liquid fluorine-containing vinyl monomer. For example, (A) a method in which a flat plate of glass, metal, etc. is held horizontal and a fluorine-containing vinyl monomer is cast onto it; (B)
A method in which the fluorine-containing vinyl monomer is cast onto the surface of a liquid such as mercury that does not substantially dissolve it (C) The monomer is poured into the inner cylindrical reactor and the center (rotation axis) of the cylinder is set horizontally. (D) Method (C) above in which the center of the cylinder (rotation axis) is vertical and centrifugal force is used to form a thin layer. sell. Of course, in order to stably form a thin layer, fine powder, fibrils,
The presence of filaments or nets within the thin layer is an effective method for increasing the mechanical strength of the resulting film. Of the four methods mentioned above, especially (C)
The method (D) of polymerizing while forming a thin layer by rotation in a reactor is advantageous because it is simple in terms of equipment and operation. The thickness of the thin layer is important because it becomes the approximate thickness of the film after polymerization.In order to form a thin layer of liquid fluorine-containing vinyl monomer on the surface of a plate or the inner surface of a cylinder, the area to be expanded is important. The approximate thickness of the thin layer can be determined from the volume of the fluorine-containing vinyl monomer charged. In the method of the present invention, usually 10 μ to 1 mn
A fluorine-containing polymer film having a certain thickness can be easily produced. The thin layer thus formed is then placed under polymerization conditions to initiate and complete polymerization. Of course, a radical initiator that generates the amount of radicals necessary for polymerization near room temperature, ultraviolet rays, X-rays, α
-, β-, γ-rays, etc. are used to initiate polymerization, and when using a fluorine-containing vinyl monomer whose vapor pressure is sufficiently low near room temperature, even if a thin layer is left indoors, the polymerization will start at room temperature. Although the present invention can be completed by starting the polymerization below, in many cases, the polymerization is carried out after being introduced into the reactor. When polymerizing the formed thin layer using methods (A) and (B), the reactor should be equipped with a device that can maintain and adjust the temperature necessary to start and complete the polymerization, and a fluorine-containing vinyl monomer during polymerization. Gases such as nitrogen that are not involved in polymerization are added to prevent the transpiration of gases, or gas components such as fluorine-containing olefins such as tetrafluoroethylene, chlorotrifluoroethylene, and vinylidene fluoride hexafluoropropylene, which are copolymerization components that are added as necessary. Any structure that can withstand pressure is sufficient. The fluorine-containing olefin herein refers to a fluorine-containing compound that can be copolymerized with a fluorine-containing vinyl monomer in a gaseous state at polymerization temperature and pressure, as illustrated. On the other hand, in the methods (C) and (D), in addition to being able to maintain and control the temperature because the polymerization is carried out while forming a thin layer in the reactor and having the above-mentioned pressure-resistant structure, the fluorine-containing vinyl monomer The structure of the reactor is important because the material is cast and the thin layer is produced. in particular
In method (C), polymerization is carried out while a thin layer of fluorine-containing vinyl monomer is formed on the surface of the cylinder while rotating the cylinder inside the reactor horizontally. In method (D), polymerization is carried out while a thin layer of fluorine-containing vinyl monomer is formed on the surface of the cylinder by centrifugal force while rotating vertically around the center of the cylinder inside the reactor as the rotation axis. Therefore, when forming a thin layer of fluorine-containing vinyl monomer using methods (C) and (D), the reactor is cylindrical and the polymerization is carried out while rotating the cylinder horizontally or vertically. Solidification is essential. If this requirement is satisfied, in order to increase production efficiency, several cylinders are set in a straight line in the reactor with their centers aligned with the rotation axis, and the fluorine-containing vinyl monomer is contained in each cylinder. A method of introducing the body and carrying out polymerization,
Another method is to arrange several cylinders with different radii in order of increasing radius so that their centers coincide with the axis of rotation, and then introduce a fluorine-containing vinyl monomer into each cylinder to carry out polymerization. This is a preferred embodiment of the present invention since it is possible to obtain several films at once through multiple polymerizations. On the other hand, in method C, the rotational speed is normally about 10 to 500 rpm, which is enough to rotate the cylinder horizontally and prevent the fluorine-containing vinyl monomer from accumulating at the bottom of the cylinder. Method D requires a higher rotational speed than method C in order to form a thin layer by centrifugal force. Usually 500~
Approximately 5000rpm is desirable. Of course, it is not necessary to maintain the above-described rotational speed throughout the polymerization, and the rotational speed can be reduced once the polymerization has progressed to a certain extent and the viscosity has increased. The temperature during polymerization is determined by the half-life temperature in 10 hours of the radical initiator used. For example, the half-life temperature of perfluorodipropoxypropionyl peroxide is about 120°C, that of diisopropyl peroxydicarbonate is about 40°C, that of dibezoyl peroxide is about 80°C, and furthermore, in the case of di-tertiary butyl peroxide, it is 120°C. The polymerization temperature can be changed depending on the radical initiator used, such as the degree of polymerization. However, many fluorine-containing vinyl monomers have low boiling points, and when a hydrocarbon-based radical initiator is used, the resulting film may be colored when polymerized at high temperatures. Considering this, it is preferable to carry out the polymerization in a temperature range of 0°C to 100°C. The pressure during polymerization differs depending on the following two embodiments. One is that it is involved in polymerization to prevent the evaporation of the fluorine-containing vinyl monomer during polymerization or the formation of bubbles in the film after polymerization, although it also depends on the temperature during polymerization and the fluorine-containing vinyl monomer used. This is a case where polymerization is carried out in a state where an inert gas such as nitrogen is sealed under pressure. In this case, the purpose can be achieved by applying a pressure of about 10 kg/cm 2 . The other is a gaseous fluorine-containing olefin that can be copolymerized with the fluorine-containing vinyl monomer in a thin layer of the fluorine-containing vinyl monomer, such as tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, hexafluoropropylene. This is a case where copolymerization is carried out while supplying the following substances. In this case, in order to obtain a film having the desired composition, polymerization is carried out by applying pressure to the fluorine-containing olefin, and the copolymerization reaction is usually carried out at a pressure of 0 to 200 kg/cm 2 to the fluorine-containing olefin. Furthermore, according to the present invention, films having different monomer compositions in the thickness direction can be obtained. In this case, the content of the fluorine-containing olefin in the thickness direction can be changed by varying the pressure of the copolymerizable fluorine-containing olefin during the polymerization. Although the polymerization time cannot be determined unconditionally depending on the type of fluorine-containing vinyl monomer used, the polymerization temperature, the radical initiator used, and the presence or absence of a fluorine-containing olefin, the film of the present invention is usually produced in a polymerization time of about 1 to 50 hours. can be manufactured. In the present invention, after a predetermined polymerization time has elapsed, a second layer of fluorine-containing vinyl monomer is further introduced.
In this case, there is also a method of cooling the reactor and pressurizing the monomer into the reactor using the pressure of a fluorine-containing olefin or the like. In some cases, after stopping the rotation of the reactor and releasing the pressure inside the reactor, or after replacing the inside of the reactor with an inert gas such as nitrogen if necessary, the reactor opens and the composition of the second layer is reached. Add the required amount of the corresponding fluorinated vinyl monomer. At this time, if the decomposition temperature of the radical initiator used is low, polymerization may begin immediately after addition, so it is better to cool the first layer film and reactor to a temperature that suppresses polymerization before adding. preferable. Furthermore, polymer radicals remain in the first layer of the polymer film, but operations that alter or eliminate the radicals, such as contact with oxygen, are necessary during the next addition of the fluorine-containing vinyl monomer. causes a change to peroxide radicals. Such deterioration may bring about subtle differences in adhesion between layers, and the influence of such deterioration of radicals must be carefully investigated to counteract such deterioration. The added fluorine-containing vinyl monomer is formed into a thin layer on the surface of the first layer film by the method described above. Thereafter, polymerization is carried out in the same manner as for the first layer. That is, a film on which a thin layer of a fluorine-containing vinyl monomer is formed is polymerized in a reactor in the presence of a fluorine-containing olefin, if necessary. The polymerization conditions can be carried out in the same range as when producing the first layer film, but the polymerization time is usually shorter than that of the first layer, probably due to the presence of polymer radicals in the first layer. I'm done. By repeating the above method, it is possible to further produce a film having a multilayer structure. According to the method of the present invention, since it is possible to mix and polymerize the fluorine-containing divinyl monomer in the fluorine-containing vinyl monomer in any proportion, the non-crosslinked layer and the fluorine-containing divinyl monomer By changing the mixing amount of , it is possible to obtain a multilayer structure film in which layers having various degrees of crosslinking are arbitrarily arranged. Furthermore, by changing the pressure of the fluorine-containing olefin during polymerization, it is possible to change the content of the fluorine-containing olefin having a certain gradient in the thickness direction within each layer. Therefore, if a fluorine-containing vinyl monomer having an ion exchange group or a functional group that can be easily converted into an ion exchange group is used, it is possible to produce a layer with a certain gradient of ion exchange groups. can. These things could not be obtained by conventional multilayering methods. When the reactor is opened after purging the inside of the reactor with an inert gas such as nitrogen if necessary, the film having a multilayer structure produced in this way is usually formed in close contact with the inner surface of the cylinder. is observed. The produced fluorine-containing polymer film is
Normally, the adhesion to other substances is low, so it can be easily peeled off from the inner wall of the reactor and taken out. However, in order to improve the mold releasability, release agents such as carbon fluoride, fluorine-based grease, and fluorine oil are used. It is often preferable to apply a molding agent to the inner surface of the reactor prior to polymerization. Particularly when a part of the inner surface is rusted or uneven, the use of mold releasability is effective. The film thus obtained is, if necessary, immersed in a fluorine-containing solvent such as Freon 113 or a chlorine-containing solvent such as carbon tetracarbonate at room temperature or under heating to remove unreacted fluorine-containing vinyl monomers and By extracting and removing molecular weight oligomers, the fluorine-containing polymer film having the multilayer structure of the present invention can be obtained. on the other hand,
When a fluorine-containing vinyl monomer having a cation exchange group or a functional group that can be easily converted into a cation exchange group is used, the following post-treatment is additionally required. For example, in the case of -SO 3 H, -COOH, etc., in order to change the metal ion type to the sodium type, an aqueous solution of common salt or caustic soda or methanol may be used instead of the aqueous solution to swell the film and facilitate the ion exchange reaction. , ethanol, isopropanol, dimethyl sulfoxide,
It can be converted into a salt form by immersing the film in a solution containing an organic solvent capable of swelling the film, such as dimethyl formamide, at room temperature or under heating for several to ten-odd hours. On the other hand, −SO 2 F, −
SO 2 Cl, −SO 2 Br, −COOR, −COF, −COCl, −
When a film is produced using a fluorine-containing vinyl monomer having COBr and -CN, a hydrolysis reaction is required to convert it into a cation exchange group. In this case, the film can be immersed in a mixed solvent of water containing about 10% by weight of an alkali metal hydroxide, such as caustic soda, and the above-mentioned organic solvent for several to several tens of hours at a temperature of about 50 to 100°C. The hydrolysis reaction is completed. The film obtained by the present invention can be suitably used in the same manner as conventional films, including fields where multilayered fluorine-containing films have conventionally been used, and by taking advantage of the numerous features of the film of the present invention. . In particular, the fluorine-containing vinyl monomer contained in each layer is a perfluoro type having a cation exchange group or a functional group that can be easily converted into a cation exchange group, and also contains a perfluoro divinyl compound. When the membrane is hydrolyzed to form a cation exchange group, its dimensional stability is significantly improved and it can be suitably used as a cation exchange membrane for aqueous halide electrolysis, which is currently being actively researched. Furthermore, in the present invention, when polymerization is carried out while supplying a fluorine-containing olefin, the surface of the film in contact with the fluorine-containing olefin has a porous structure with irregularities of several to several tens of microns. It has surface properties different from that of a smooth film surface. Therefore, for example, when the film of the present invention is used as a cation exchange membrane, by directing this surface toward the cathode, the adhesion of air bubbles (hydrogen) is significantly reduced compared to a smooth film. This can be said to be a surface property suitable for an ion exchange membrane for electrolysis. Furthermore, by attaching catalytic materials for anodic reactions and cathodic reactions to both surfaces of the film, it can also be used as so-called SPE. Many suggestions for improving ion exchange membranes for external electrolysis can also be applied to the film of the present invention. In addition, when a fluorine-containing vinyl monomer having a sulfonic acid group or a functional group that can be easily converted into a sulfonic acid group is used, when the resulting multilayered film is used as an ion exchange membrane for salt electrolysis, Current efficiency may be poor. In this case, JP-A-52-24177, JP-A-57-
58374, Japanese Unexamined Patent Publication No. 58-34805, and Japanese Patent Application No. 58-26349, by changing the sulfonic acid groups in the surface layer or the entire film to carboxylic acid groups, the film can be made to have even more current. Efficiency can be improved. Until now, the present invention has been mainly explained with respect to fluorine-containing vinyl monomers, but in addition, methacrylic acid, methacrylic esters, acrylic acid, acrylic esters, styrene, vinyltoluene, vinylpyridine divinyl So-called hydrocarbon monomers having a polymerizable double bond, such as benzene and butadiene, can also be suitably used in the present invention. The present invention will be explained below using examples, but the present invention is not limited thereto. Example 1 A glass cylinder with an inner diameter of 1.6 cm and a length of 10 cm has a narrowed inlet to prevent the liquid from spilling out when placed horizontally. A 5% Freon 113 solution was added in an amount equivalent to 1 mol % to 1.2 g of fluorine-containing vinyl monomer CF 2 =CFOCF 2 CFOCF 2 CF 2 SO 2 F. While cooling the reactor to -5°C, the pressure was reduced to remove the Freon 113 solvent by evaporation. Return to normal pressure while cooling and approximately 1.4g of CF 2 =
CFOCF 2 CFOCF 2 CF 2 SO 2 F was added. Thereafter, the glass cylinder was inserted into a cylindrical stainless steel reactor equipped with a pressure gauge, with the rotation axes aligned. The reactor was cooled with liquid air to reduce the pressure inside the reactor. Next, tetrafluoroethylene was charged into the reaction vessel at a standard concentration of 6 kg/cm 2 . Furthermore, the reactor was placed in a heater whose temperature was adjusted to 30°C, and the reactor was held horizontally and connected to a motor, and polymerization was continued while rotating at approximately 50 rpm. 30
After about 3 hours at ℃, the pressure of tetrafluoroethylene had decreased to 2.0 Kg/cm 2 . at this point
The reactor was removed, the pressure of the tetrafluoroethylene was released in a glove box filled with argon, and the reactor was opened. When the glass cylinder was removed, a translucent film had formed on the inner wall of the cylinder. Next, in order to polymerize the second layer, the glass cylinder is cooled to 0°C and CF 2 =CFOCF 2 CF・
COOCH 3 0.5g and CF 2 = CFOCF 2 CF 2 OCF = CF 2 0.1g
A mixed solution containing 2 mol % of the diacyl peroxide described above was added to the glass cylinder. The reactor was assembled by inserting it into the reactor. Furthermore, the reactor was cooled with liquid air to reduce the pressure inside the reactor, and then tetrafluoroethylene was sealed in the reactor at a concentration of 10 kg/cm 2 . The reactor was placed in a heater adjusted to 35°C, and polymerization was carried out while rotating at 80 rpm as in the previous case. After 2 hours, the pressure of tetrafluoroethylene decreased to 4Kg/cm 2 . When the rotation was stopped, the pressure of the remaining tetrafluoroethylene was released, and the reactor was opened, a translucent film had formed inside the glass cylinder. When the cylindrical film was cut open with scissors and the thickness was measured, it was approximately 180μ. Furthermore, caustic soda was added to hydrolyze the sulfonyluolide group and the carboxylic acid ester group.
Dimethyl sulfoxide water 3:7:11 (weight ratio)
It was immersed in water at 90℃ for 15 hours. After washing with water, cut out a portion and 0.5N containing 100mg of crystal violet.
It was immersed in a staining solution consisting of -HCl and -methanol (volume ratio 3:7) at room temperature for 15 hours. After washing with water, the cross-sectional section was observed under an optical microscope, and it was found that the first layer (layer containing sulfonic acid groups) was about 120μ thick and stained dark green, but the second layer (layer containing carboxylic acid groups) was stained dark green. About 60 μm of the layer (in which there is a layer of chromatography) was not stained at all. Further, the surface of the layer containing the sulfonic acid group was smooth, but irregularities of several microns to more than ten microns were observed at the boundaries of the layers and on the surface of the layer containing the carboxylic acid group. In particular, at the boundary, irregularities containing sulfonic acid groups penetrated into the layer where carboxylic acid groups were present. Furthermore, when we measured the infrared absorption spectrum of another part using the ATR method, we found that the surface where the sulfonic acid group is present is
An absorption band is observed at 1060cm -1 , while the opposite side is
An absorption band corresponding to Na + salt of perfluorocarboxylic acid group was observed at 1680 cm -1 , indicating that it had a two-layer structure. Next, an electrolytic test was conducted to examine its performance as an ion exchange membrane for electrolysis.The electrolytic test was a two-chamber system consisting of a titanium anode chamber and a nickel cathode chamber, with an effective current-carrying area of 0.1 dm2 . This was done using a cell. A titanium lath material coated with titanium oxide and ruthenium oxide was used as the anode, and a soft iron lath material was used as the cathode. A membrane is installed between the anode chamber and the cathode chamber, with the anode in close contact with the cathode with a gap of 2 mm (the side with carboxylic acid groups facing the cathode), and saturated salt with a Ca concentration of 0.5 ppm or less is placed in the anode chamber. supply water,
It was discharged at a salt concentration of 3.5N. Meanwhile, in the cathode chamber
Pure water was supplied so that the NaOH concentration was 11N. The current density was adjusted to 30 A/dm 2 and the electrode chamber temperature was adjusted to 90°C. As a result, the cell voltage is 3.30V, the current efficiency of caustic soda is 96%, and the salt concentration in caustic soda is 30ppm.
(50% caustic soda equivalent). Furthermore, when electrolysis was carried out under the same conditions except that the membrane and cathode were in close contact from 2 mm, the cell voltage decreased by approximately 50 mV, which corresponds to the solution resistance of the catholyte, but the current efficiency and
There was no change in the salt concentration in the caustic soda. Comparative Example 1 An attempt was made to see if a two-layer film consisting of a sulfonyl fluoride group and a carboxylic acid ester group having the same composition and structure as the film obtained in Example 1 could be obtained by thermal bonding. The method, apparatus, and conditions of Example 1 were used to obtain a film having sulfonyl fluoride groups and carboxylic acid ester groups, respectively. First, CF 2 = CF・OCF 2・CF 3 CF ・OCF 2 CF 2 SO 2 F and tetrafluoroethylene were polymerized at 30°C for about 3 hours using the same charge amount as in Example 1, and then the fluoroyl fluoride group was polymerized. having about
A 120μ film was obtained. On the other hand, CF 2 = CFOCF 2 CF 3 CF COOCH 3 , CF 2 = CFOCF 2 CF 2 OCF = CF 2 and tetrafluoroethylene were polymerized using the same charge amount as in Example 1 to obtain a film having carboxylic acid ester groups. . stack two films
Even when pressurized to 150 kg/cm 2 at a temperature of 200°C, no fusion could be achieved. Furthermore, in order to investigate the influence of CF 2 = CFOCF 2 CF 2 OCF = CF 2 , a film consisting of CF 2 = CF 3 CF ・OCF 2 CFCOOCH 3 and tetrafluoroethylene was produced under the same polymerization conditions, and the sulfonyl fluoride group was When thermal fusion was performed with a film having the above properties at a temperature of 200°C and a pressure of 150 kg/cm 2 , it was possible to fuse the film into a single film. Furthermore, when this fused film and the film of Example 1 were converted into Na + type and immersed in boiling water for 1 hour, water bubbles were formed inside the heat-fused film, but in Example 1, water bubbles were formed inside the fused film. 1
There was no change in the film except that it became slightly moist. Example 2 Using the reactor and method of Example 1, a film having a two-layer structure having sulfonyl fluoride groups was manufactured. 5 mol % of the radical initiator used in Example 1 was added to CF 2 =CFOCF 2 CF 2 CF 2 SO 2 F in an amount corresponding to a film thickness of about 100 μm. Furthermore, it was added into a glass cylinder and the first layer was polymerized. The polymerization conditions were 40°C, rotation speed 100 rpm, and tetrafluoroethylene pressure 10 Kg/cm 2 . After 5 hours of polymerization, the pressure of tetrafluoroethylene was 4 kg/
decreased to cm 2 . The pressure of the tetrafluoroethylene was released, the reactor was cooled with dry ice, and the reactor was placed in the glove box used in Example 1. Next, the weight ratio of CF 2 = CFOCF 2 CF 3 CF OCF 2 CF 2 SO 2 F and CF 2 = CFOCF 2 CF 2 OCF = CF 2
A 10:1 mixture was added in an amount corresponding to approximately 50 microns of film thickness. Further, 8 kg/cm 2 of tetrafluoroethylene was added to polymerize the second layer. The polymerization conditions are
The test was carried out at 35°C and 50 rpm for 6 hours. The pressure of tetrafluoroethylene decreased to 3Kg/cm 2 . The pressure of the tetrafluoroethylene was released, the reactor was opened, and the film was taken out. The sulfonyl fluoride group was hydrolyzed using the hydrolysis solution used in Example 1. ATR on both sides of the film after washing with water and partially drying
When we measured the infrared spectrum using the method, we found that the side where CF 2 = CFOCF 2 CF 3 CF OCF 2 CF 2 SO 2 F was polymerized had an absorption band at 1064 cm -1 and the other side had an absorption band at 1045 cm -1 corresponding to the sulfonic acid group. was recognized, and further
The same spectrum was obtained even when the surface was removed by 30μ, indicating that it had a two-layer structure. In addition, when the exchange capacity was calculated from the strength, the side where CF 2 = CFOCF 2 CF 3 CF OCF 2 CF 2 SO 2 F was polymerized was 0.87 meq/g dry matter, and the other side was 0.87 meq/g dry matter.
It was 0.90 meq/g dry matter. The remaining portion was immersed in N-HCl to form H + form. Furthermore, in order to convert the sulfonic acid group into a carboxylic acid group, the method described in JP-A-58-34805 was followed.
It is made of a stainless steel cylinder with an inner diameter of 8 cm and has two nozzles at the top and bottom, and a germicidal lamp GL- in the center.
In order to uniformly irradiate the inner circumference of the reactor equipped with 15 (manufactured by Toshiba) with the ultraviolet rays from the lamp, we polymerized H + type film CF 2 = CFOCF 2 CF 3 CF ・OCF 2 CF 2 SO 2 F. The film was attached along the inner wall of the reactor with the side facing the center. The reactor was immersed in an oil bath, nitrogen was introduced through the lower nozzle at a flow rate of 50 c.c./min, and the temperature was raised to 160° C. while being discharged through the upper nozzle. After the temperature was raised, the introduction of nitrogen was stopped, a vacuum pump was connected to the nozzle, and drying was carried out under reduced pressure for another hour. After drying, the pressure inside the reactor was reduced to -76 cmHg. Nitrogen oxide (NO) and nitrogen dioxide (NO 2 ) were introduced through nozzles at 5 cmHg each, and nitrogen was introduced to bring the pressure to atmospheric pressure. The germicidal lamp was turned on and irradiation started. After 1 hour of irradiation, the lamp was turned off and nitrogen was introduced into the reactor for cleaning. The film was extracted, and one piece was cut and subjected to infrared spectrum measurement (ATR method). The remaining portion was heated in methanol-water (volume ratio 1/1) containing 20% NaOH for 30 minutes to convert the ion exchange groups to Na +
After making a mold, it was subjected to a dyeing test, an electrolytic test, etc. As a result, in the infrared spectrum of the irradiated surface,
An absorption band at 1780 cm -1 due to carboxylic acid groups was observed with medium intensity. It was observed that this absorption band shifted to 1680 cm -1 when changing to the Na + form. The exchange capacity was calculated from this strength and was found to be 0.85 meq/g dry matter. On the other hand, the absorption band of sulfonic acid groups at 1045 cm -1 observed on the unirradiated surface was hardly observed. Na +
A part of the molded film was immersed in the dyeing solution used in Example 1 for 15 hours. After washing with water, the cross section was cut into thin pieces using a microtome and observed under a microscope.
15μ from one surface was not dyed at all in a layered manner, and the other parts were dyed dark green.
It was found that carboxylic acid groups were present at a thickness of 15μ. As a result, it was found that the film had a three-layer structure, with one surface having a layer with a non-crosslinked sulfonic acid group, a layer with a crosslinked sulfonic acid group, and a crosslinked carboxylic acid group. I understand. An electrolytic test was conducted using the apparatus and electrolytic conditions of Example 1, with the surface of the obtained membrane on which carboxylic acid groups are present facing the cathode. As a result, the cell voltage was 3.39V, the current efficiency of the caustic soda was 95%, and the salt concentration in the caustic soda was 40 ppm. On the other hand, when we conducted an electrolytic test for comparison with a membrane without introducing carboxylic acid groups, we found that the cell voltage was
3.29V, the electrolytic efficiency of caustic soda was 54%, and the salt concentration of caustic soda was 200 ppm. Example 3

【式】5モル%を含 むCF2=CF3 CF OCF2重合OCF2CF2CF2SO2Fを、周
囲に液が流れるのを防止するための縁を有するス
テンレス製の板上に流延した。重量増加分から計
算すると約150μに相当する液量であつた。板を
水平にして反応器内に入れ、さらに反応器をテト
ラフルオロエチレンを6Kg/cm2加えた。反応器の
温度を25℃とし、8時間重合した。圧力が2Kg/
cm2に低下したところでテトラフルオロエチレンの
圧を抜き、反応器の温度を0℃まで下げ反応器を
開けた。ステンレスの板上に半透明のフイルムが
生成していることが認められた。 次いで、素早くその上に前述のラジカル開始剤
1モル%を含むCF2=CFOCF2CF2CF2
COOCH3と CF2=CFO・CF2・CF3 CF OCF2CF2CF2 及びCF2=CFOCF2CF2OCF=CF2からなり重量
比で5:1:1からなる混合物を流延した面積か
ら計算して50μに相当する量を流延した後反応器
を閉じ、テトラフルオロエチレンを10Kg/cm2加え
て50℃で5時間重合した圧力が6Kg/cm2に低下し
たところで圧を抜き、さらに CF2=CFO(CF2CF3 CF O)−2OCF2CF2SO2と CF2=CFOCF2CF2OCF=CF2との重量比で
10:1の混合物に を3モル%溶解したものを三層目としてステンレ
ス板上に50μに相当する量を流延した。テトラフ
ルオロエチレンを8Kg/cm2封入し40℃で5時間重
合した。その後テトラフルオロエチレンの圧を抜
き反応器を開けて、ステンレス板を取り出した。 極く少量のシワが生成していたが半透明のフイ
ルムが得られた。実施例1で用いた加水分解液中
に浸漬し加水分解後さらに染色を行い、フイルム
の断面を光学顕微鏡で観察したところ両表面より
約150μ、50μが濃緑色に染色され間の約50μが全
く染色されていなかつた。 実施例 4 を2モル%含むC3F7・O・CF=CF2、CF2
CFOCF2CF2OCF2CF2・CCF=CF2とのモル比で
20:1の混合物を実施例3で用いたステンレス板
上に流延した。その後、反応器内に入れテトラフ
ルオロエチレンを6Kg/cm2加え、反応温度を15℃
で6時間重合したところ圧力が3Kg/cm2に低下し
ていた。反応器の温度を−5℃に下げ、ステンレ
ス板を実施例1で用いたグローヴボツクス中で取
出した。さらに
[Formula] CF 2 = CF 3 CF OCF dipolymerized OCF 2 CF 2 CF 2 SO 2 F containing 5 mol% is cast onto a stainless steel plate with a rim to prevent liquid from flowing around it. did. Calculating from the weight increase, the liquid volume was equivalent to about 150μ. The plate was placed horizontally into the reactor, and 6 kg/cm 2 of tetrafluoroethylene was added to the reactor. The temperature of the reactor was set to 25°C, and polymerization was carried out for 8 hours. Pressure is 2Kg/
When the pressure of the tetrafluoroethylene decreased to 2 cm 2 , the pressure of the tetrafluoroethylene was released, the temperature of the reactor was lowered to 0° C., and the reactor was opened. It was observed that a translucent film was formed on the stainless steel plate. Then, quickly add CF 2 = CFOCF 2 CF 2 CF 2 containing 1 mol % of the aforementioned radical initiator thereon.
COOCH 3 and CF 2 = CFO・CF 2・CF 3 CF OCF 2 CF 2 CF 2 and CF 2 = CFOCF 2 CF 2 OCF=CF 2 The area where a mixture consisting of CF 2 in a weight ratio of 5:1:1 was cast. After casting an amount equivalent to 50μ calculated from , the reactor was closed, and 10Kg/cm 2 of tetrafluoroethylene was added and polymerized at 50°C for 5 hours. When the pressure decreased to 6Kg/cm 2 , the pressure was released. Furthermore, the weight ratio of CF 2 = CFO (CF 2 CF 3 CF O) − 2 OCF 2 CF 2 SO 2 and CF 2 = CFOCF 2 CF 2 OCF = CF 2
to a 10:1 mixture The third layer was prepared by dissolving 3 mol% of the solution and casting the solution in an amount equivalent to 50μ on a stainless steel plate. Tetrafluoroethylene was sealed at 8 kg/cm 2 and polymerized at 40°C for 5 hours. Thereafter, the pressure of the tetrafluoroethylene was released, the reactor was opened, and the stainless steel plate was taken out. A translucent film was obtained, although a very small amount of wrinkles was generated. After being immersed in the hydrolysis solution used in Example 1 and further dyed after hydrolysis, the cross section of the film was observed under an optical microscope. Approximately 150μ and 50μ from both surfaces were stained dark green, and the intervening approximately 50μ was completely stained. It was not stained. Example 4 C 3 F 7・O・CF=CF 2 , CF 2 = containing 2 mol%
CFOCF 2 CF 2 OCF 2 CF 2・CCF=molar ratio with CF 2
A 20:1 mixture was cast onto the stainless steel plate used in Example 3. Then, put it in the reactor, add 6 kg/cm 2 of tetrafluoroethylene, and set the reaction temperature to 15℃.
When polymerization was carried out for 6 hours, the pressure had decreased to 3 kg/cm 2 . The temperature of the reactor was lowered to -5°C, and the stainless steel plate was taken out into the glove box used in Example 1. moreover

【式】を1モ ル%含む CF2=CFO・CF2・CF3 CF OCF2CF2・SO2Fをそ
の上に流延した。再度反応器内に入れ、テトラフ
ルオロエチレンを8Kg/cm2加え重合した。重合温
度は20℃で5時間行つた。テトラフルオロエチレ
ンの圧力は5Kg/cm2に低下していた。この時点で
テトラフルオロエチレンの圧を抜き反応器を開い
た。ステンレス板を取出したところ、半透明のフ
イルムが生成していた。一部を切取り加水分解し
て染色したところ、約100μの染つていない層と、
その片側の表面に約10μ程度の濃緑色に染つた層
が観察された。 一方、加水分解前のフイルムの断片を用いて
250℃で50Kg/cm2の加圧下で熱融着を行つたとこ
ろスルホニルフルオライド基が有する面を合せて
融着した場合は融着できたが、他の場合は融着で
きなかつた。 実施例 5 実施例1の反応器及び方法を用いて炭化水素系
のラミネートフイルムを製造した。 最初、重合開始剤として5モル%のベンゾイル
パーオキサイド及び10重量%のジブチルフタレー
トを含むスチレンを約200μ相当分加え、100rpm
の回転下に窒素圧10Kg/cm2、70℃で10時間重合
し、一層目のフイルムを重合した。内圧を抜いた
後、反応器を開け、さらに一層目のフイルムのう
えにラウロイルパーオキサイド5モル%を含むス
テアリルメタクリレートを約200μ相当加えた。
反応器を閉じ、200rpmの回転下に窒素圧5Kg/
cm2、60℃で15時間重合した。 内圧を除去後、反応器を開けたところ、殆ど透
明のフイルムが生成していた。得られたフイルム
を両表面より目の細いサンドペーパーで削りつつ
ATR法で赤外吸収スペクトルを測定し、スチレ
ン及びステアリルメタクリレートの厚み方向の分
布を調べたところ、約180μの厚みで第一層が、
また約170μの厚みで第二層が生成していること
が判つた。
CF 2 =CFO•CF 2 •CF 3 CF OCF 2 CF 2 •SO 2 F containing 1 mol% of [Formula] was cast thereon. The mixture was placed in the reactor again, and 8 kg/cm 2 of tetrafluoroethylene was added for polymerization. The polymerization temperature was 20°C for 5 hours. The pressure of tetrafluoroethylene had decreased to 5Kg/cm 2 . At this point, the tetrafluoroethylene pressure was removed and the reactor was opened. When the stainless steel plate was removed, a translucent film had formed. When a part was cut out, hydrolyzed and dyed, an undyed layer of approximately 100 μm was found.
A dark green dyed layer about 10 microns thick was observed on the surface of one side. On the other hand, using film fragments before hydrolysis,
When thermal fusion was carried out at 250° C. under a pressure of 50 kg/cm 2 , fusion was possible when the surfaces of the sulfonyl fluoride groups were brought together and fused, but in other cases fusion could not be achieved. Example 5 A hydrocarbon-based laminate film was manufactured using the reactor and method of Example 1. First, approximately 200μ worth of styrene containing 5 mol% benzoyl peroxide and 10% by weight dibutyl phthalate as a polymerization initiator was added, and the
Polymerization was carried out at 70° C. for 10 hours under a nitrogen pressure of 10 Kg/cm 2 under rotation to form a first layer film. After the internal pressure was released, the reactor was opened, and about 200 μm of stearyl methacrylate containing 5 mol % of lauroyl peroxide was added onto the first layer of film.
Close the reactor and apply nitrogen pressure of 5 kg/ under rotation at 200 rpm.
cm 2 and polymerized at 60° C. for 15 hours. After removing the internal pressure, the reactor was opened and an almost transparent film was found to have formed. While sanding the obtained film with fine sandpaper from both sides.
When we measured the infrared absorption spectrum using the ATR method and investigated the distribution of styrene and stearyl methacrylate in the thickness direction, we found that the first layer was approximately 180μ thick.
It was also found that a second layer was formed with a thickness of approximately 170μ.

Claims (1)

【特許請求の範囲】 1 重合可能な単量体を薄層に形成し、次いで重
合してフイルム状物とした後、さらに該重合体フ
イルム状物上に重合可能な単量体の薄層を形成し
て重合することを特徴とする多層構造を有する重
合体フイルムの製造方法。 2 重合可能な単量体が含弗素ビニル単量体であ
る特許請求の範囲第1項に記載の方法。 3 重合可能な単量体の薄層を形成させるに際
し、内部が円筒状の反応器内に液状の該単量体を
存在させ、該反応器を水平または垂直にして回転
させる特許請求の範囲第1項または第2項に記載
の方法。 4 液状の重合可能な単量体の薄層を形成させる
に際し、平板または液体の表面に該単量体を流延
する特許請求の範囲第1項または第2項に記載の
方法。 5 少なくとも一層に架橋構造を形成させるに際
し、該層を形成させる単量体に架橋剤を含有させ
る特許請求の範囲第1項に記載の方法。 6 含弗素ビニル単量体が含弗素ポリビニル単量
体を含有する特許請求の範囲第2項または第5項
に記載の方法。 7 含弗素ビニル単量体の薄層を重合するに際
し、気相より気体の含弗素オレフインを供給しつ
つ重合する特許請求の範囲第2項に記載の方法。 8 単量体が陽イオン交換基または容易に陽イオ
ン交換基に変換可能な官能基を有することを特徴
とする特許請求の範囲第1項または第2項に記載
の方法。 9 含弗素ビニル単量体がハーフルオロ系のビニ
ル単量体である特許請求の範囲第1項、第2項ま
たは第7項に記載の方法。 10 スルホン酸基または容易にスルホン酸基に
変換可能な官能基を有する層と、カルボン酸基ま
たはカルボン酸基に変換可能な官能基を有する層
との少なくとも二層からなる重合体フイルムであ
る特許請求の範囲第1項に記載の方法。
[Claims] 1. Forming a polymerizable monomer into a thin layer, then polymerizing it to form a film, and then further forming a thin layer of the polymerizable monomer on the polymer film. A method for producing a polymer film having a multilayer structure, which comprises forming and polymerizing a polymer film. 2. The method according to claim 1, wherein the polymerizable monomer is a fluorine-containing vinyl monomer. 3. When forming a thin layer of a polymerizable monomer, the liquid monomer is present in a cylindrical reactor, and the reactor is rotated horizontally or vertically. The method according to item 1 or 2. 4. The method according to claim 1 or 2, wherein the thin layer of the liquid polymerizable monomer is formed by casting the monomer onto a flat plate or onto the surface of the liquid. 5. The method according to claim 1, wherein when forming a crosslinked structure in at least one layer, a crosslinking agent is contained in the monomer forming the layer. 6. The method according to claim 2 or 5, wherein the fluorine-containing vinyl monomer contains a fluorine-containing polyvinyl monomer. 7. The method according to claim 2, wherein the thin layer of the fluorine-containing vinyl monomer is polymerized while supplying a gaseous fluorine-containing olefin from a gas phase. 8. The method according to claim 1 or 2, wherein the monomer has a cation exchange group or a functional group that can be easily converted into a cation exchange group. 9. The method according to claim 1, 2, or 7, wherein the fluorine-containing vinyl monomer is a half-fluoro vinyl monomer. 10 A patent for a polymer film consisting of at least two layers: a layer having a sulfonic acid group or a functional group easily convertible to a sulfonic acid group, and a layer having a carboxylic acid group or a functional group convertible to a carboxylic acid group. A method according to claim 1.
JP59053499A 1984-03-12 1984-03-22 Preparation of polymer film having multi-layer structure Granted JPS60197737A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59053499A JPS60197737A (en) 1984-03-22 1984-03-22 Preparation of polymer film having multi-layer structure
EP19850301682 EP0155173B1 (en) 1984-03-12 1985-03-12 Process for preparation of fluorine-containing polymer films
DE8585301682T DE3573792D1 (en) 1984-03-12 1985-03-12 Process for preparation of fluorine-containing polymer films
US06/891,060 US4680355A (en) 1984-03-12 1986-07-31 Process for preparation of fluorine containing polymer films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053499A JPS60197737A (en) 1984-03-22 1984-03-22 Preparation of polymer film having multi-layer structure

Publications (2)

Publication Number Publication Date
JPS60197737A JPS60197737A (en) 1985-10-07
JPH039933B2 true JPH039933B2 (en) 1991-02-12

Family

ID=12944520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053499A Granted JPS60197737A (en) 1984-03-12 1984-03-22 Preparation of polymer film having multi-layer structure

Country Status (1)

Country Link
JP (1) JPS60197737A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229932A (en) * 1984-04-28 1985-11-15 Toyota Central Res & Dev Lab Inc Composite member and production thereof

Also Published As

Publication number Publication date
JPS60197737A (en) 1985-10-07

Similar Documents

Publication Publication Date Title
JP5212114B2 (en) Ion exchange membrane for alkali chloride electrolysis
JP2002538235A (en) Free radical polymerization of fluorinated copolymers
JPH06322034A (en) Polymerization of fluorinated copolymer
JP2002334707A (en) Porous hydrophilic membrane
WO2006046620A1 (en) Electrolyte material, electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JPH07508779A (en) Halo-perfluoro and perfluoroether polymers
WO2010098135A1 (en) Method for producing stretched polytetrafluoroethylene film, and stretched polytetrafluoroethylene film
US4341685A (en) Process for preparing organic dispersion of acid type fluorinated polymer
JP4412171B2 (en) Sulfonic acid functional group-containing fluorinated monomer, fluorine-containing copolymer containing the same, and ion exchange membrane
US4680355A (en) Process for preparation of fluorine containing polymer films
JP2004051685A (en) Electrolytic membrane comprising fluorine-containing polymer ion exchange membrane and used for fuel battery
JP5486693B2 (en) High exchange capacity perfluorinated ion exchange resin, method for its preparation and use
JPS60250009A (en) Production of perfluorocarbon polymer having sulfonic acid functional group
JPH039933B2 (en)
JP4449278B2 (en) Fluorine-containing molded article, method for producing fluorine-containing molded article, fluorine-containing polymer, and method for producing fluorine-containing polymer
JPH0824602A (en) Surface-improve gas separation membrane and its preparation
Kirsh et al. Perfluorinated carbon-chain copolymers with functional groups and cation exchange membranes based on them: synthesis, structure and properties
JPS5887286A (en) Cationic exchange electrolytic cell membrane, manufacture and repairment
JP2003246906A (en) Fluorine-containing copolymer composition
JPH043418B2 (en)
JP5842919B2 (en) Method for producing organic compound having sulfo group, method for producing liquid composition, and method for hydrolyzing organic compound having fluorosulfonyl group
JPH06271687A (en) Production of ion-exchange membrane
JP2006083342A (en) Method for producing perfluorocarbon polymer bearing sulfonic acid type functional group and method for producing ion exchanging membrane
JPH0410905B2 (en)
JPH0824603A (en) Gas separation membrane and its preparation