JP4412171B2 - Sulfonic acid functional group-containing fluorinated monomer, fluorine-containing copolymer containing the same, and ion exchange membrane - Google Patents

Sulfonic acid functional group-containing fluorinated monomer, fluorine-containing copolymer containing the same, and ion exchange membrane Download PDF

Info

Publication number
JP4412171B2
JP4412171B2 JP2004513344A JP2004513344A JP4412171B2 JP 4412171 B2 JP4412171 B2 JP 4412171B2 JP 2004513344 A JP2004513344 A JP 2004513344A JP 2004513344 A JP2004513344 A JP 2004513344A JP 4412171 B2 JP4412171 B2 JP 4412171B2
Authority
JP
Japan
Prior art keywords
sulfonic acid
functional group
acid functional
monomer
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004513344A
Other languages
Japanese (ja)
Other versions
JPWO2003106515A1 (en
Inventor
忠 伊野
琢也 荒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPWO2003106515A1 publication Critical patent/JPWO2003106515A1/en
Application granted granted Critical
Publication of JP4412171B2 publication Critical patent/JP4412171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/07Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
    • C07C309/09Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing etherified hydroxy groups bound to the carbon skeleton
    • C07C309/10Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing etherified hydroxy groups bound to the carbon skeleton with the oxygen atom of at least one of the etherified hydroxy groups further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/82Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a carbon skeleton substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/186Monomers containing fluorine with non-fluorinated comonomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)

Description

技術分野
本発明は、新規なスルホン酸官能基含有フッ素化単量体に関するものであり、さらにそれらを用いた含フッ素共重合体およびイオン交換膜に関するものである。
背景技術
ナフィオン(デュポン社の商標)、フレミオン(旭硝子(株)の商標)などに代表されるパーフルオロポリマー鎖にスルホン酸基を結合した共重合体は、食塩電解に利用されるイオン交換膜としての開発が進み、化学センサー、分離膜、高分子超強酸触媒をはじめ、燃料電池のプロトン輸送高分子電解質などへの利用が検討されている。これらの電解質膜は、一般的にスルホン酸基を含有する単量体とテトラフルオロエチレンに代表されるエチレン性不飽和単量体の共重合体を膜状に加工して用いられている。電解質膜に要求される物性は、▲1▼イオン交換容量が大きいこと、▲2▼膜の機械的強度が大きいことが主なものである。
しかしながら、イオン交換容量を大きくするためには、スルホン酸基を含有する単量体成分の共重合体中での組成を大きくする必要があり、必然的に機械強度が低下するものであった。
この問題を改善するため、成膜後に共重合体を架橋する方法、多孔質ポリマー基体にアイオノマーを含浸する方法などが多数提案されている。しかしながら、これらの方法では、本来の目的であるイオン交換能に悪影響を及ぼす、または製造工程が複雑になるという問題があった。
さらにイオン交換膜としての要求物性を満足させる手段として、単量体1分子中に複数のプロトン解離性基をもたせる方法が考えられる。たとえば、α,α,β−トリフルオロスチレンにホスホン酸を導入する方法により、単量体1分子当たり2個のプロトンを供与することが可能になり、3ミリ当量・g−1以上の非常に大きなイオン交換容量が得られている。しかしながら、この方法では、ホスホン酸の2段目のプロトン解離性が非常に小さいため、イオン交換膜としての能力は不十分であった(Journal of New Materials for Electrochemical Systems,3,43−50)。
発明の要約
本発明は、前記課題を解決するものであり、単量体1分子当たり複数のプロトン解離性基を有する構造をもつ新規な単量体を提供する。同時にこれらの単量体とエチレン性不飽和基を含有する単量体とを、必要であればラジカル発生剤の共存下、共重合して得られる共重合体、およびこれらの共重合体をシート状に加工し、必要な処理を施して得られるイオン交換膜を提供する。
単量体1分子当たり複数のプロトン解離性基を有する構造について鋭意探索した結果、(XSOCY(CFO(CFZCFO)CF=CFで表わされる新規化合物を得るに至った。
すなわち本発明は、一般式:
(XSOCY(CFO(CFZCFO)CF=CF
(1)
(ここで、k=2または3、k+l=3、m=0〜5、n=0〜5、
X=F、Cl、OH、O(M)1/L(Mは1〜3価金属、Lは該金属の価数)、OR(Rは、炭素数1〜5のアルキル基であり、前記アルキル基は、炭素でなく水素でもない元素を含むものであってもよい)、または、A−(SORf)B(Aはチッ素または炭素であり、aは、Aがチッ素のときa=1、Aが炭素のときa=2であり、Bは水素または一価の金属であり、Rfは過フッ化アルキル基である。)、
Y=F、ClまたはCF
Z=F、Cl、CF、BrまたはIである)
で表わされるスルホン酸官能基含有フッ素化単量体に関する。
前記Xは、FまたはOM(M=Li、NaまたはK)であることが好ましい。
前記kは、2であることが好ましい。
本発明は、また、前記スルホン酸官能基含有フッ素化単量体からなる含フッ素重合体に関する。
本発明は、さらに、前記スルホン酸官能基含有フッ素化単量体0.1〜50モル%、および、それと共重合可能なエチレン性不飽和結合を有する単量体50〜99.9モル%からなる含フッ素共重合体に関する。
前記エチレン性不飽和結合を有する単量体は、テトラフルオロエチレンを含むことが好ましい。
前記含フッ素共重合体は、前記スルホン酸官能基含有フッ素化単量体3〜40モル%、および、テトラフルオロエチレンを含むエチレン性不飽和結合を有する単量体60〜97モル%からなることがさらに好ましい。
本発明は、また、前記含フッ素共重合体からなる厚さ5〜500μmのイオン交換膜に関する。
本発明は、さらに、前記イオン交換膜からなる燃料電池の電解質膜に関する。
発明の詳細な開示
本発明のスルホン酸官能基含有フッ素化単量体は、(XSOCY(CFO(CFZCFO)CF=CFで表わされる、新規なスルホン酸官能基含有フッ素化単量体(以下、スルホン酸塩含有フッ素化単量体ということがある。ここで、k=2または3、k+l=3、m=0〜5、n=0〜5、X=F、Cl、OH、O(M)1/L(Mは1〜3価金属、Lは該金属の価数)、OR(Rは、炭素数1〜5のアルキル基であり、前記アルキル基は、炭素でなく水素でもない元素を含むものであってもよい)、または、A−(SORf)B(Aはチッ素または炭素であり、aは、Aがチッ素のときa=1、Aが炭素のときa=2であり、Bは水素または一価の金属であり、Rfは過フッ化アルキル基である)、Y=F、ClまたはCF、Z=F、Cl、CF、BrまたはIである)である。
この化合物は、たとえば以下のようなプロセスで合成することが可能である。
k=2のプロセスシート
k=2の化合物のプロセス

Figure 0004412171
Figure 0004412171
工程2のIIの環状サルトンは、D.D.DesMarteau氏ら(Journal of Fluorine Chemistry,66(1994)101−104)によって報告されており、公知である。
k=3のプロセスシート
k=3の化合物のプロセス
Figure 0004412171
Figure 0004412171
1)、2)、4)、5)で使用される出発物質については、フッ素の一部を他のハロゲンで置き換えても目的物質を合成することは可能である。
前記A〜Fの工程を応用して、m、n、X、Y、Zを任意に変えたスルホン酸官能基含有フッ素化単量体を得ることが可能である。
前記スルホン酸官能基含有フッ素化単量体の(XSO基におけるkは2または3であり、このうちk=2のものは、工業的に比較的容易に製造できるため、好適に用いられる。
前記スルホン酸官能基含有フッ素化単量体におけるkとlは、k+l=3の関係にあり、k=2のときl=1、k=3のときl=0となる。
前記スルホン酸官能基含有フッ素化単量体の(XSO基におけるXとしては、F、Cl、OH、O(M)1/L、OR、または、A−(SORf)Bが用いられる。
前記O(M)1/L基のMは、1〜3価の金属であり、アルカリ金属(Na、Li、K、Csなど)などの1価金属、アルカリ土類金属(Mg、Caなど)などの2価金属またはAlなどの3価金属があげられる。なかでも、工業的に取り扱いやすいという点で、NaまたはKが好ましく用いられる。
前記OR基におけるRは、炭素数1〜5のアルキル基であり、前記アルキル基は、炭素でなく水素でもない元素を含むものであってもよい。前記Rとしては、例えば、−CH、−C、−CHCFなどが挙げられる。なかでも、工業的に取り扱いやすいという点で、−CHが好ましく用いられる。本明細書において、前記「炭素でなく水素でもない元素」は、ハロゲン、酸素、チッ素などのヘテロ原子である。
前記A−(SORf)B基におけるAは、チッ素または炭素であり、aは、Aがチッ素のときa=1であり、Aが炭素のときa=2である。
また、前記A−(SORf)B基におけるBは、水素または一価の金属であり、H、Li、Naなどが挙げられる。なかでも、電解質膜として使用する場合は、Hが好ましく用いられる。
また、前記A−(SORf)B基におけるRfは、過フッ化アルキル基を示し、−CF、−Cなどが挙げられる。
特に前記スルホン酸官能基含有フッ素化単量体の(XSO基におけるXとして、後述するエチレン性不飽和結合を有する単量体との共重合体を製造しやすいという点で、F、OLi、ONaおよびOKが好ましく、FおよびONaがより好ましく用いられる。
前記スルホン酸官能基含有フッ素化単量体のCY基におけるYとしては、F、ClまたはCFが用いられる。
前記スルホン酸官能基含有フッ素化単量体の(CFZCFO)基におけるZとしては、F、Cl、Br、IまたはCFが用いられる。なかでも、容易に製造できるという点で、CFが好ましく用いられる。
前記スルホン酸官能基含有フッ素化単量体の(CF基におけるmとしては、0〜5であり、好ましくは1〜3、より好ましくは1である。mが5をこえると当量重量(EW)が大きくなるため、電解質膜としての性能を充分に発揮できない。
前記スルホン酸官能基含有フッ素化単量体の(CFZCFO)基におけるnとしては、0〜5であり、好ましくは0〜3、より好ましくは0または1である。nが5をこえると、当量重量(EW)が大きくなるため、電解質膜としての性能を充分に発揮できない。
本発明のスルホン酸官能基含有フッ素化単量体からなる含フッ素重合体も、また、本発明の一つである。
本発明のスルホン酸官能基含有フッ素化単量体は、通常、共重合可能なエチレン性不飽和結合を有する単量体との共重合体として使用することができる。
前記共重合可能なエチレン性不飽和結合を有する単量体としては、エチレン、プロピレンなどの炭化水素系オレフィン類、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロペン、パーフルオロ−1−ブテンなどのフルオロオレフィン類をあげることができ、それぞれ単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
前記スルホン酸官能基含有フッ素化単量体及び前記共重合可能なエチレン性不飽和結合を有する単量体に加えて、得られる含フッ素共重合体に種々の機能を付加するために、以下のような単量体の中から、選択して用いてもよい。
たとえば、CF=CFI、CF=CFI、CF=CF−O−(CFCFCFCFCFIなどのヨウ素含有モノマーや、ジビニルベンゼンなど不飽和結合を2つ以上有するモノマー、シアノ基を含有するモノマー、(フッ素化)ビニルエーテル類、(フッ素化)ビニルエステル類、(フッ素化)アクリル酸エステル類、(フッ素化)メタアクリル酸エステル類などを用いることが可能である。
含フッ素共重合体の組成は、本発明のスルホン酸官能基含有フッ素化単量体に基づく重合単位が、0.1〜50モル%であることが好ましく、より好ましくは下限が3モル%、上限が40モル%である。また前記エチレン性不飽和結合を有する単量体に基づく重合単位が、50〜99.9モル%であることが好ましく、より好ましくは下限が60モル%、上限が97モル%である。含フッ素共重合体の組成は、通常、重合時のスルホン酸官能基含有フッ素化単量体の濃度、または重合圧力、重合温度の選択など公知の方法により制御される。本発明のスルホン酸官能基含有フッ素化単量体に基づく重合単位が0.1モル%より少ないと、本発明のスルホン酸官能基含有フッ素化単量体を含む効果が得られない傾向があり、50モル%をこえると、高分子量のポリマーが得られにくい傾向がある。
また、イオン交換膜としたときのイオン交換能力を考慮すると、含フッ素共重合体の組成は、本発明のスルホン酸官能基含有フッ素化単量体に基づく重合単位が1〜50モル%であることが好ましく、より好ましくは下限が3モル%、上限が40モル%である。また、前記エチレン性不飽和結合を有する単量体に基づく重合単位が50〜99モル%であることが好ましく、より好ましくは下限が60モル%、上限が97モル%である。本発明のスルホン酸官能基含有フッ素化単量体に基づく重合単位が1モル%より少ないと、充分なイオン交換能力が得られにくい傾向があり、50モル%をこえると、充分な強度の膜が得られにくい傾向がある。
さらに、化学的な耐久性を考慮した場合、前記エチレン性不飽和結合を有する単量体はテトラフルオロエチレンを含むことが好ましい。この場合、得られる含フッ素共重合体の組成は、本発明のスルホン酸官能基含有フッ素化単量体に基づく重合単位が3〜40モル%であることが好ましく、より好ましくは下限が5モル%、上限が30モル%である。また前記テトラフルオロエチレンを含むエチレン性不飽和結合を有する単量体に基づく重合単位が60〜97モル%であることが好ましく、より好ましくは下限が70モル%、上限が95モル%である。前記テトラフルオロエチレンを含むエチレン性不飽和結合を有する単量体に基づく重合単位が60モル%より少ないと、形成した電解質膜の強度が不充分となる傾向にあり、97モル%をこえると、イオン交換能力が不充分となる傾向にある。また、前記テトラフルオロエチレンを含むエチレン性不飽和結合を有する単量体がテトラフルオロエチレンのみからなっていると、化学的、電気化学的な安定性に優れる点でさらに好ましい。
本発明で得られる含フッ素共重合体はイオン交換膜として利用され、その用途としては、化学センサー、分離膜、高分子超強酸触媒をはじめ、燃料電池のプロトン輸送高分子電解質などがあげられる。
本発明のイオン交換膜を燃料電池のプロトン輸送高分子電解質膜として使用する場合、当量重量(EW)は600〜2000、好ましくは600以下のものが用いられる。EWが600より小さいと、水に著しく膨潤したり、充分な膜強度が得られない傾向にあり、2000をこえると充分なイオン交換能力が得られない傾向にある。
含フッ素共重合体の分子最は特に限定する必要はないが、膜状で使用される場合においては、適当な分子量を有することが有利であり、数平均分子量5000〜300万のものが好適である。前記分子量を制御する方法としては、重合開始剤の濃度、重合温度、重合圧力、連鎖移動剤の添加などによって制御されうる。
重合方法も特に限定されないが、公知の乳化重合、溶液重合、懸濁重合などが可能である。
ここで乳化重合とは、本質的に水を媒体として、本発明のスルホン酸官能基含有フッ素化単量体、およびそれと共重合可能なエチレン性不飽和結合を有する単量体を共存させ、必要に応じて選択した乳化剤を添加して構成した共重合系において、必要ならばラジカル発生剤の共存下、共重合して目的の共重合体を得る方法を示す。乳化剤は特に限定されるものではないが、過フッ化アルキル基末端にカルボキシル基などの解離性極性基を有する構造のものが好ましく用いられ、単量体全質量に対して、0.01〜30質量%の範囲が好ましく使用される。
また、溶液重合とは、本発明のスルホン酸官能基含有フッ素化単量体を溶解しうる溶媒中において、ラジカル発生剤の共存下、上記スルホン酸官能基含有フッ素化単量体と共重合可能なエチレン性不飽和結合を有する単量体とを共重合せしめることで共重合体を得る方法を示す。
さらに、懸濁重合とは、本発明のスルホン酸官能基含有フッ素化単量体をほとんど溶解しない溶媒中において、この単量体の液滴またはその溶液を懸濁せしめた状態で、必要ならばラジカル発生剤の共存下、この単量体と共重合可能なエチレン性不飽和結合を有する単量体とを共重合せしめることで共重合体を得る方法を示す。
前記各重合方法において、ラジカル発生剤は特に限定されるものではないが、過酸化物系ラジカル発生剤、レドックス系ラジカル発生剤、ヨウ素化合物、アゾ化合物、紫外線およびイオン化放射線などが使用できる。またはこれらの組み合わせであってもよい。
前記各重合方法において、重合圧力は特に限定されるものではないが、ポリマーの分子量を制御する目的や、重合速度を制御する目的に応じて0.01〜20MPaの範囲が好ましく使用される。また重合温度も特に限定されるものではないが、使用されるラジカル発生剤の分解温度や用いられる溶媒の融点などに応じて、−20℃〜200℃の範囲が好ましく使用される。
前記各重合方法において、溶媒の選択に関しては、非テロゲン性の溶媒を用いる方が高分子量の含フッ素共重合体が得られやすいため、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、フルオロカーボンなどのハロゲン置換炭化水素系溶媒や、酢酸、トリフルオロ酢酸などの酸、およびそのハロゲン置換物、およびそのエステル化物、ケトン類、3級アルコールなどが好ましく使用される。
また、前記各重合方法において、必要に応じ、界面活性剤や受酸剤などを添加することもできる。
本発明の含フッ素共重合体からなるイオン交換膜は、膜厚が5〜500μmであるものが好ましい。本発明の含フッ素共重合体からなるイオン交換膜を、燃料電池のプロトン輸送高分子電解質膜などの用途で使用する場合、膜厚は5〜500μmが好ましく、より好ましくは下限10μm、上限100μmである。膜厚が5μmより小さいと、機械的強度が小さくなり、取り扱い性に劣ったり、ガス透過性が著しく悪化する傾向にあり、500μmをこえると、膜抵抗が大きくなり、十分に性能を発揮することができなくなる傾向にある。
このようなイオン交換膜を得る方法については、公知の技術が利用できる。
たとえば、本発明の含フッ素共重合体が、スルホン酸官能基としてフルオロスルホニル基を含む場合、通常の溶融押し出し成形が可能であり、前記含フッ素共重合体の融点以上の温度で、T−ダイなどから押し出した溶融状態の前記含フッ素共重合体を薄膜状に加工し、冷却して膜状物が得られる。この膜状物を必要に応じて、強アルカリ性溶液などで処理してフルオロスルホニル基を加水分解して、スルホン酸官能基を有するプロトン伝導性高分子電解質膜を得ることができる。
一方、本発明の含フッ素共重合体が、スルホン酸官能基としてスルホン酸、またはその塩型の官能基を有する場合、特公平1−53695号公報に示される方法を用いて、溶融、加圧成形してプロトン伝導性高分子電解質膜を得ることができる。
また、特開平1−217042号公報に示される方法を用いて、スルホン酸官能基としてスルホン酸またはその塩型の官能基を含有する本発明の含フッ素共重合体を極性溶媒に加圧、加熱溶解して溶解させ、その溶液を基体上にキャストし、乾燥してプロトン伝導性高分子電解質膜を得ることができる。
発明を実施するための最良の形態
本発明の説明のため、以下に具体的な実施例をあげるが、本発明はこれらに限定されるものではない。
評価法
(イオン交換能)
イオン交換膜を、加水分解または酸に浸漬するなどの前処理を施して、−SOH型に変換する。この膜を25℃にて純水中で交流四端子測定を行い、イオン伝導度を測定した。このイオン伝導度が大きいほどイオン交換能力に優れた電解質膜である。
(機械的強度)
イオン交換膜をオートグラフを用いて引張試験を行った。そのstress−strainカーブの傾きから25℃での弾性率を求めた。この弾性率が大きいほど機械的強度に優れた膜である。
実施例1
CF=CF−O−CFCF(SONa)(k=2、l=1、X=ONa、Y=F、m=1、n=0)の合成
前記k=2のプロセスの、工程1−1)に従って、(I)の化合物を得た。さらに、k=2のプロセスの、工程2に従って、(II)の環状サルトンを得た。(この方法は、D.D.DesMarteau氏ら(Journal of Fluorine Chemistry,66(1994)101−104)によって報告されており、公知である。)つぎに、氷水で冷却した、容量1リットルの3つ口フラスコに300℃で乾燥したKF2.9g(0.05モル)とジグライム200gを仕込み、攪拌下、乾燥チッ素を流通しながら244g(1モル)の環状サルトン(II)を徐々に滴下した。さらに170g(1.02モル)のヘキサフルオロプロピレンオキシド(HFPO)を滴下して反応させた。この溶液を分液し、下層の反応物を精留して下記の化合物を340g得た。
CFCF(COF)−O−CFCF(SOF)
205g(0.5モル)の前記化合物を0.5Lの3つ口フラスコに仕込み、攪拌しながら、10質量%の水酸化ナトリウム水溶液600gを徐々に滴下して反応させた。前記反応液を乾燥させて、235gの下記の化合物を得た。
CFCF(COONa)−O−CFCF(SONa)
還流管を備えた容量1Lの3つ口フラスコに前記化合物235gとCaHで乾燥したジグライム200gを仕込み、乾燥チッ素を流通しながら150℃まで昇温し、30分間反応させた。反応物を遠心分離した上澄みを濃縮・再結晶して、目的の化合物である、CF=CF−O−CFCF(SONa)を136g得た。
実施例2
CF=CF−O−CFCF(SOF)(k=2、l=1、X=F、Y=F、m=1、n=0)の合成
実施例1の工程において用いたHFPOの代わりに、3−クロロペンタフルオロプロピレンオキシドを用いて、以下の化合物を得た。
CFClCF(COF)−O−CFCF(SOF)
つぎに、還流管を備えた容量0.5Lの3つ口フラスコに300℃で乾燥した炭酸ナトリウム53gと乾燥したジグライム100gを仕込み、乾燥チッ素流通下、氷冷して攪拌しながら、前記化合物200gを滴下した。その後、乾燥チッ素を流通しながら150℃まで昇温し、30分間反応させた後、精留して目的の化合物である、CF=CF−O−CFCF(SOF)を92g得た。
実施例3
CF=CF−O−CFCF(CF)−O−CFCF(SOF)(k=2、l=1、X=F、Y=F、Z=CF、m=1、n=1)の合成
氷水で冷却した、容量1リットルの3つ口フラスコに300℃で乾燥したCsF 7.6g(0.05モル)とジグライム200gを仕込み、攪拌下、乾燥チッ素を流通しながら263g(1モル)の環状サルトン(II)を徐々に滴下した。さらに340g(2.05モル)のHFPOを滴下して反応させた。反応溶液を減圧下で精留して、CFCF(COF)−O−CFCF(CF)−O−CFCF(SOF)を144g得た。つぎに、還流管を備えた容量0.3Lの3つ口フラスコに300℃で乾燥した炭酸ナトリウム18gと乾燥したジグライム50gを仕込み、乾燥チッ素流通下、氷冷して攪拌しながら、前記化合物100gを滴下した。その後、乾燥チッ素を流通しながら150℃まで昇温し、30分間反応させた後、精留して目的の化合物である、CF=CF−O−CFCF(CF)−O−CFCF(SOF)を71g得た。
実施例4
CF=CF−O−CFC(SONa)(k=3、X=ONa、m=1、n=0)の合成
前述した、k=3のプロセスの、工程1−4)に従って、(III)の化合物を得た。すなわち、DMF/水の混合溶媒中、60℃でCClFCClICFとNaを反応させ、CClFCCl(CF)SONaを得た。溶媒を水に変更し、室温で塩素ガスを吹き込んで反応させ、油層を抽出してCClFCCl(CF)SOClを得た。つぎにDMSOを溶媒として、CClFCCl(CF)SOClとNaFを反応させ、CClFCCl(CF)SOFを得た。つぎにDMF溶媒中で金属亜鉛末と反応させてCF=C(CF)SOFを得た。さらに、k=3のプロセスの、工程2に従って、(IV)の環状サルトンを得た。つぎに、氷水で冷却した、容量1リットルの3つ口フラスコに300℃で乾燥したKF2.9g(0.05モル)とジグライム200gを仕込み、攪拌下、乾燥チッ素を流通しながら308g(1モル)の環状サルトン(IV)を徐々に滴下した。さらに170g(1.02モル)のヘキサフルオロプロピレンオキシド(HFPO)を滴下して反応させた。この溶液を分液し、下層の反応物を精留して下記の化合物を420g得た。
CFCF(COF)−O−CFC(SOF)
237g(0.5モル)の前記化合物を0.5Lの3つ口フラスコに仕込み、攪拌しながら、10質量%の水酸化ナトリウム水溶液800gを徐々に滴下して反応させた。前記反応液を乾燥させて、260gの下記の化合物を得た。
CFCF(COONa)−O−CFCF(SONa)
還流管を備えた容量1Lの3つ口フラスコに前記化合物210gとCaHで乾燥したジグライム200gを仕込み、乾燥チッ素を流通しながら150℃まで昇温し、30分間反応させた。反応物を遠心分離した上澄みを濃縮・再結晶して、目的の化合物である、CF=CF−O−CFC(SONa)を95g得た。
実施例5
CF=CF−O−CFCF(SONa)(k=2、l=1、X=ONa、Y=F、m=1、n=0)とテトラフルオロエチレン(TFE)の共重合
攪拌機構を備えた容量100ccのガラス製オートクレーブに、トリフルオロ酢酸50mlにCF=CF−O−CFCF(SONa)9.5gを溶解した溶液を仕込み、パーロイルNPP(日本油脂(株)製)を0.015g添加した。つぎに、室温にて真空、チッ素置換を3回繰り返した後、ヘキサフルオロプロペンを5g導入し、60℃まで昇温した。その後、テトラフルオロエチレンをゲージ圧力で0.5MPaまで導入して重合を開始させた。圧力を一定に保つようにテトラフルオロエチレンを導入し、導入量が5gになった時点で重合を停止した。その後、攪拌を停止し、系の圧力を開放した。引き続き減圧下でトリフルオロ酢酸を揮発させて回収し、未反応モノマーと共重合体の混合物を得た。この混合物を水に投入し、不溶物を濾別、洗浄して乾燥し、6.2gの共重合体を得た。得られた共重合体を、密閉容器中250℃で水/エタノール混合溶液に溶解し、GPC分析を行ったところ、数平均分子量が12万であった。
実施例6
共重合体の溶解、および製膜
実施例5で得られた共重合体1gと、水/エタノールの混合溶液19gを、容量50mlのステンレス製圧力容器に仕込み、密封状態で250℃まで昇温し、3時間保持した。室温まで冷却した後、溶液をメンブランフィルターで濾過し、共重合体が溶解した溶液を得た。この溶液をNMR測定した結果、共重合体の組成は、CF=CF−O−CFCF(SONa)を8モル%、テトラフルオロエチレンを92モル%含むものであった。得られた溶液のうち10gを容量50mlのナス型フラスコにとり、DMSO1gを追加して、真空下80℃で加熱して低沸点成分を除去し、やや黄色に着色した粘稠な溶液を得た。この溶液を、ガラス板上に500μmのギャップを有するアプリケータを用いて塗布し、250℃で乾燥した。その後、水に浸漬して剥離し、均質で強度のある膜を得た。この膜を乾燥した後、厚みを測定すると、51μmであった。つぎにこの膜を、希塩酸に浸漬して水洗し、真空乾燥した。この膜を通常の方法でEW測定したところ、810であった。
得られた膜を、前記評価法にしたがって評価した。結果を表1に示す。
比較例1
1分子当たりスルホン酸基を1つだけもつナフィオン117(デュポン社製)を、NaOHで中和してNa塩型とし、実施例6と同様にして製膜した。膜厚は50μmであった。得られた膜を、前記評価法にしたがって評価した。結果を表1に示す。
Figure 0004412171
産業上の利用可能性
本発明のスルホン酸官能基含有フッ素化単量体は、1分子当たり複数のスルホン酸官能基を有するため、含フッ素共重合体として用いる場合、従来のスルホン酸官能基を含有する単量体よりも少量の重合比率で高いイオン伝導度や機械的強度を付与する効果が得られる。Technical field
The present invention relates to novel sulfonic acid functional group-containing fluorinated monomers, and further to fluorine-containing copolymers and ion exchange membranes using them.
Background art
Copolymers with sulfonic acid groups bonded to perfluoropolymer chains such as Nafion (trademark of DuPont) and Flemion (trademark of Asahi Glass Co., Ltd.) are developed as ion exchange membranes used for salt electrolysis. The use of chemical sensors, separation membranes, polymer super strong acid catalysts, and proton transport polymer electrolytes in fuel cells is being studied. These electrolyte membranes are generally used by processing a copolymer of a monomer containing a sulfonic acid group and an ethylenically unsaturated monomer typified by tetrafluoroethylene into a film shape. The physical properties required for the electrolyte membrane are mainly (1) high ion exchange capacity and (2) high mechanical strength of the membrane.
However, in order to increase the ion exchange capacity, it is necessary to increase the composition of the monomer component containing a sulfonic acid group in the copolymer, which inevitably decreases the mechanical strength.
In order to improve this problem, many methods such as a method of crosslinking a copolymer after film formation and a method of impregnating a porous polymer substrate with an ionomer have been proposed. However, these methods have a problem in that the ion exchange ability, which is the original purpose, is adversely affected or the manufacturing process becomes complicated.
Further, as a means for satisfying the required physical properties as an ion exchange membrane, a method of providing a plurality of proton dissociable groups in one molecule of monomer can be considered. For example, the method of introducing phosphonic acid into α, α, β-trifluorostyrene makes it possible to donate two protons per monomer molecule, 3 milliequivalents · g-1The above extremely large ion exchange capacity is obtained. However, in this method, the second-stage proton dissociation property of phosphonic acid is very small, so that the ability as an ion exchange membrane is insufficient (Journal of New Materials for Electronic Systems, 3, 43-50).
Summary of invention
The present invention solves the above problems and provides a novel monomer having a structure having a plurality of proton dissociable groups per monomer molecule. At the same time, a copolymer obtained by copolymerizing these monomers and a monomer containing an ethylenically unsaturated group in the presence of a radical generator if necessary, and a sheet of these copolymers An ion exchange membrane obtained by processing into a shape and applying the necessary treatment is provided.
As a result of earnest search for a structure having a plurality of proton dissociable groups per monomer molecule, (XSO2)kCYl(CF2)mO (CFZCF2O)nCF = CF2It came to obtain the novel compound represented by these.
That is, the present invention has the general formula:
(XSO2)kCYl(CF2)mO (CFZCF2O)nCF = CF2
(1)
(Where k = 2 or 3, k + 1 = 3, m = 0-5, n = 0-5,
X = F, Cl, OH, O (M)1 / L(M is a 1 to 3 valent metal, L is a valence of the metal), OR (R is an alkyl group having 1 to 5 carbon atoms, and the alkyl group contains an element that is neither carbon nor hydrogen. Or A- (SO2Rf)aB (A is nitrogen or carbon, a is a = 1 when A is nitrogen, a = 2 when A is carbon, B is hydrogen or a monovalent metal, and Rf is hydrogen fluoride. Alkyl group).
Y = F, Cl or CF3,
Z = F, Cl, CF3, Br or I)
The sulfonic acid functional group containing fluorinated monomer represented by these.
X is F or OM1(M1= Li, Na or K).
The k is preferably 2.
The present invention also relates to a fluorinated polymer comprising the sulfonic acid functional group-containing fluorinated monomer.
The present invention further includes 0.1 to 50 mol% of the sulfonic acid functional group-containing fluorinated monomer and 50 to 99.9 mol% of the monomer having an ethylenically unsaturated bond copolymerizable therewith. And a fluorine-containing copolymer.
The monomer having an ethylenically unsaturated bond preferably contains tetrafluoroethylene.
The fluorine-containing copolymer is composed of 3 to 40 mol% of the sulfonic acid functional group-containing fluorinated monomer and 60 to 97 mol% of a monomer having an ethylenically unsaturated bond containing tetrafluoroethylene. Is more preferable.
The present invention also relates to an ion exchange membrane having a thickness of 5 to 500 μm made of the fluorine-containing copolymer.
The present invention further relates to an electrolyte membrane of a fuel cell comprising the ion exchange membrane.
Detailed Disclosure of the Invention
The sulfonic acid functional group-containing fluorinated monomer of the present invention is (XSO2)kCYl(CF2)mO (CFZCF2O)nCF = CF2A novel sulfonic acid functional group-containing fluorinated monomer represented by the following (hereinafter sometimes referred to as a sulfonate-containing fluorinated monomer, where k = 2 or 3, k + 1 = 3, m = 0 to 0) 5, n = 0-5, X = F, Cl, OH, O (M)1 / L(M is a 1 to 3 valent metal, L is a valence of the metal), OR (R is an alkyl group having 1 to 5 carbon atoms, and the alkyl group contains an element that is neither carbon nor hydrogen. Or A- (SO2Rf)aB (A is nitrogen or carbon, a is a = 1 when A is nitrogen, a = 2 when A is carbon, B is hydrogen or a monovalent metal, and Rf is hydrogen fluoride. Alkyl group), Y = F, Cl or CF3, Z = F, Cl, CF3, Br or I).
This compound can be synthesized, for example, by the following process.
Process sheet with k = 2
Process for compounds with k = 2
Figure 0004412171
Figure 0004412171
Step II of the cyclic sultone of D. D. DesMarteau et al. (Journal of Fluorine Chemistry, 66 (1994) 101-104) are well known.
Process sheet with k = 3
Process for compounds with k = 3
Figure 0004412171
Figure 0004412171
With respect to the starting materials used in 1), 2), 4) and 5), it is possible to synthesize the target substance even if a part of the fluorine is replaced with another halogen.
By applying the steps A to F, it is possible to obtain a sulfonic acid functional group-containing fluorinated monomer in which m, n, X, Y, and Z are arbitrarily changed.
The sulfonic acid functional group-containing fluorinated monomer (XSO2)kK in the group is 2 or 3, and those having k = 2 are preferably used because they can be produced relatively easily industrially.
In the sulfonic acid functional group-containing fluorinated monomer, k and l have a relationship of k + 1 = 3, and when k = 2, l = 1, and when k = 3, l = 0.
The sulfonic acid functional group-containing fluorinated monomer (XSO2)kX in the group is F, Cl, OH, O (M)1 / L, OR, or A- (SO2Rf)aB is used.
O (M)1 / LM in the group is a 1-3 valent metal, a monovalent metal such as an alkali metal (Na, Li, K, Cs, etc.), a divalent metal such as an alkaline earth metal (Mg, Ca, etc.) or Al, etc. These are trivalent metals. Of these, Na or K is preferably used because it is industrially easy to handle.
R in the OR group is an alkyl group having 1 to 5 carbon atoms, and the alkyl group may contain an element that is neither carbon nor hydrogen. Examples of R include -CH3, -C2H5, -CH2CF3Etc. Especially, in terms of industrial ease of handling, -CH3Is preferably used. In the present specification, the “element that is neither carbon nor hydrogen” is a heteroatom such as halogen, oxygen, or nitrogen.
A- (SO2Rf)aA in the B group is nitrogen or carbon, a is a = 1 when A is nitrogen, and a = 2 when A is carbon.
In addition, the A- (SO2Rf)aB in the B group is hydrogen or a monovalent metal, and examples thereof include H, Li, and Na. Among these, when used as an electrolyte membrane, H is preferably used.
In addition, the A- (SO2Rf)aRf in the B group represents a perfluorinated alkyl group, and —CF3, -C2F5Etc.
In particular, the sulfonated functional group-containing fluorinated monomer (XSO2)kAs X in the group, F, OLi, ONa and OK are preferable, and F and ONa are more preferably used in that a copolymer with a monomer having an ethylenically unsaturated bond described later can be easily produced.
CY of the sulfonic acid functional group-containing fluorinated monomerlY in the group is F, Cl or CF3Is used.
(CFZCF) of the sulfonic acid functional group-containing fluorinated monomer2O)nZ in the group is F, Cl, Br, I or CF.3Is used. Above all, CF can be easily manufactured.3Is preferably used.
(CF) of the sulfonic acid functional group-containing fluorinated monomer2)mAs m in group, it is 0-5, Preferably it is 1-3, More preferably, it is 1. When m exceeds 5, the equivalent weight (EW) becomes large, so that the performance as an electrolyte membrane cannot be sufficiently exhibited.
(CFZCF) of the sulfonic acid functional group-containing fluorinated monomer2O)nAs n in group, it is 0-5, Preferably it is 0-3, More preferably, it is 0 or 1. When n exceeds 5, the equivalent weight (EW) becomes large, so that the performance as an electrolyte membrane cannot be sufficiently exhibited.
The fluorinated polymer comprising the sulfonic acid functional group-containing fluorinated monomer of the present invention is also one aspect of the present invention.
The sulfonic acid functional group-containing fluorinated monomer of the present invention can be generally used as a copolymer with a monomer having a copolymerizable ethylenically unsaturated bond.
Examples of the copolymerizable monomer having an ethylenically unsaturated bond include hydrocarbon olefins such as ethylene and propylene, vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, Fluoroolefins such as hexafluoropropene and perfluoro-1-butene can be mentioned, and each may be used alone or in combination of two or more.
In addition to the sulfonic acid functional group-containing fluorinated monomer and the monomer having a copolymerizable ethylenically unsaturated bond, in order to add various functions to the resulting fluorinated copolymer, You may select and use from such a monomer.
For example, CF2= CFI, CF2= CF2I, CF2= CF-O- (CFCF3CF2)nCF2CF2I-containing monomers such as I, monomers having two or more unsaturated bonds such as divinylbenzene, monomers containing cyano groups, (fluorinated) vinyl ethers, (fluorinated) vinyl esters, (fluorinated) acrylic acid esters And (fluorinated) methacrylic acid esters can be used.
The composition of the fluorinated copolymer is preferably 0.1 to 50 mol%, more preferably the lower limit is 3 mol%, based on the sulfonic acid functional group-containing fluorinated monomer of the present invention. The upper limit is 40 mol%. Moreover, it is preferable that the polymer unit based on the monomer which has the said ethylenically unsaturated bond is 50-99.9 mol%, More preferably, a minimum is 60 mol% and an upper limit is 97 mol%. The composition of the fluorinated copolymer is usually controlled by a known method such as selection of the concentration of the sulfonic acid functional group-containing fluorinated monomer during polymerization, the polymerization pressure, or the polymerization temperature. When the number of polymerized units based on the sulfonic acid functional group-containing fluorinated monomer of the present invention is less than 0.1 mol%, the effect of including the sulfonic acid functional group-containing fluorinated monomer of the present invention tends to be not obtained. If it exceeds 50 mol%, a high molecular weight polymer tends to be difficult to obtain.
Further, considering the ion exchange ability when an ion exchange membrane is used, the composition of the fluorinated copolymer is 1 to 50 mol% of polymerized units based on the sulfonic acid functional group-containing fluorinated monomer of the present invention. More preferably, the lower limit is 3 mol%, and the upper limit is 40 mol%. Moreover, it is preferable that the polymerization unit based on the monomer which has the said ethylenically unsaturated bond is 50-99 mol%, More preferably, a minimum is 60 mol% and an upper limit is 97 mol%. When the amount of polymerized units based on the sulfonic acid functional group-containing fluorinated monomer of the present invention is less than 1 mol%, sufficient ion exchange ability tends to be difficult to obtain, and when the amount exceeds 50 mol%, the film has sufficient strength. Tends to be difficult to obtain.
Furthermore, in consideration of chemical durability, the monomer having an ethylenically unsaturated bond preferably contains tetrafluoroethylene. In this case, the composition of the obtained fluorine-containing copolymer is preferably 3 to 40 mol% of the polymer units based on the sulfonic acid functional group-containing fluorinated monomer of the present invention, more preferably the lower limit is 5 mol. %, And the upper limit is 30 mol%. Moreover, it is preferable that the polymerization unit based on the monomer which has the ethylenically unsaturated bond containing the said tetrafluoroethylene is 60-97 mol%, More preferably, a minimum is 70 mol% and an upper limit is 95 mol%. When the polymerization unit based on the monomer having an ethylenically unsaturated bond containing tetrafluoroethylene is less than 60 mol%, the strength of the formed electrolyte membrane tends to be insufficient, and when it exceeds 97 mol%, Ion exchange capacity tends to be insufficient. Moreover, it is more preferable that the monomer having an ethylenically unsaturated bond containing tetrafluoroethylene is composed only of tetrafluoroethylene in view of excellent chemical and electrochemical stability.
The fluorine-containing copolymer obtained in the present invention is used as an ion exchange membrane, and its use includes a chemical sensor, a separation membrane, a polymer super strong acid catalyst, a proton transport polymer electrolyte of a fuel cell, and the like.
When the ion exchange membrane of the present invention is used as a proton transport polymer electrolyte membrane of a fuel cell, an equivalent weight (EW) of 600 to 2000, preferably 600 or less is used. When EW is smaller than 600, water tends to swell significantly and sufficient membrane strength tends not to be obtained, and when it exceeds 2000, sufficient ion exchange ability tends to be not obtained.
The molecule of the fluorine-containing copolymer need not be particularly limited, but when used in the form of a film, it is advantageous to have an appropriate molecular weight, and those having a number average molecular weight of 5,000 to 3,000,000 are suitable. is there. The molecular weight can be controlled by controlling the concentration of the polymerization initiator, the polymerization temperature, the polymerization pressure, the addition of a chain transfer agent, and the like.
The polymerization method is not particularly limited, and known emulsion polymerization, solution polymerization, suspension polymerization, and the like are possible.
Here, the emulsion polymerization essentially requires the sulfonic acid functional group-containing fluorinated monomer of the present invention and a monomer having an ethylenically unsaturated bond copolymerizable therewith with water as a medium. A method of obtaining a desired copolymer by copolymerization in the presence of a radical generator, if necessary, in a copolymer system constituted by adding an emulsifier selected according to the above. The emulsifier is not particularly limited, but an emulsifier having a structure having a dissociative polar group such as a carboxyl group at the end of the perfluoroalkyl group is preferably used, and 0.01 to 30 relative to the total mass of the monomer. A mass% range is preferably used.
Solution polymerization can be copolymerized with the sulfonic acid functional group-containing fluorinated monomer in the presence of a radical generator in a solvent capable of dissolving the sulfonic acid functional group-containing fluorinated monomer of the present invention. A method for obtaining a copolymer by copolymerizing with a monomer having an ethylenically unsaturated bond is shown.
Further, suspension polymerization is a method in which a droplet of the monomer or a solution thereof is suspended in a solvent that hardly dissolves the sulfonic acid functional group-containing fluorinated monomer of the present invention. A method for obtaining a copolymer by copolymerizing a monomer having an ethylenically unsaturated bond copolymerizable with this monomer in the presence of a radical generator will be described.
In each of the above polymerization methods, the radical generator is not particularly limited, but a peroxide radical generator, a redox radical generator, an iodine compound, an azo compound, ultraviolet light, ionizing radiation, and the like can be used. Alternatively, a combination thereof may be used.
In each of the above polymerization methods, the polymerization pressure is not particularly limited, but a range of 0.01 to 20 MPa is preferably used depending on the purpose of controlling the molecular weight of the polymer and the purpose of controlling the polymerization rate. The polymerization temperature is not particularly limited, but a range of −20 ° C. to 200 ° C. is preferably used depending on the decomposition temperature of the radical generator used, the melting point of the solvent used, and the like.
In each of the above polymerization methods, regarding the selection of the solvent, it is easier to obtain a high molecular weight fluorine-containing copolymer by using a non-telogenic solvent, so that halogen-substituted hydrocarbons such as hydrochlorofluorocarbon, hydrofluorocarbon, and fluorocarbon are used. A solvent, an acid such as acetic acid or trifluoroacetic acid, a halogen-substituted product thereof, an esterified product thereof, a ketone or a tertiary alcohol is preferably used.
In each of the polymerization methods, a surfactant, an acid acceptor, or the like can be added as necessary.
The ion exchange membrane made of the fluorine-containing copolymer of the present invention preferably has a thickness of 5 to 500 μm. When the ion exchange membrane comprising the fluorine-containing copolymer of the present invention is used in applications such as a proton transport polymer electrolyte membrane of a fuel cell, the film thickness is preferably 5 to 500 μm, more preferably a lower limit of 10 μm and an upper limit of 100 μm. is there. When the film thickness is smaller than 5 μm, the mechanical strength is decreased, and the handling property tends to be inferior or the gas permeability tends to be remarkably deteriorated. When the film thickness exceeds 500 μm, the film resistance increases and the performance is sufficiently exhibited. Tend to become impossible.
As a method for obtaining such an ion exchange membrane, a known technique can be used.
For example, when the fluorine-containing copolymer of the present invention contains a fluorosulfonyl group as a sulfonic acid functional group, normal melt extrusion molding is possible, and at a temperature equal to or higher than the melting point of the fluorine-containing copolymer, a T-die is used. The fluorine-containing copolymer in a molten state extruded from the above is processed into a thin film and cooled to obtain a film. If necessary, this membrane-like product can be treated with a strong alkaline solution or the like to hydrolyze the fluorosulfonyl group to obtain a proton conductive polymer electrolyte membrane having a sulfonic acid functional group.
On the other hand, when the fluorine-containing copolymer of the present invention has a sulfonic acid functional group as a sulfonic acid functional group, or a salt type functional group thereof, melting and pressurizing using the method disclosed in JP-B-1-53695 The proton conductive polymer electrolyte membrane can be obtained by molding.
In addition, using the method disclosed in JP-A No. 1-217042, the fluorine-containing copolymer of the present invention containing a sulfonic acid functional group as a sulfonic acid functional group is pressurized and heated in a polar solvent. The proton-conducting polymer electrolyte membrane can be obtained by dissolving and dissolving, casting the solution on a substrate, and drying.
BEST MODE FOR CARRYING OUT THE INVENTION
In order to illustrate the present invention, specific examples are given below, but the present invention is not limited thereto.
Evaluation method
(Ion exchange capacity)
The ion exchange membrane is subjected to a pretreatment such as hydrolysis or immersion in an acid, and -SO3Convert to H type. This membrane was subjected to AC four-terminal measurement in pure water at 25 ° C., and ion conductivity was measured. The higher the ion conductivity, the better the electrolyte membrane has better ion exchange capability.
(Mechanical strength)
The ion exchange membrane was subjected to a tensile test using an autograph. The elastic modulus at 25 ° C. was determined from the slope of the stress-strain curve. The larger the elastic modulus, the better the mechanical strength.
Example 1
CF2= CF-O-CF2CF (SO3Na)2(K = 2, l = 1, X = ONa, Y = F, m = 1, n = 0)
According to step 1-1) of the process of k = 2, the compound of (I) was obtained. Furthermore, according to step 2 of the process of k = 2, the cyclic sultone of (II) was obtained. (This method is reported by DD Desmartau et al. (Journal of Fluorine Chemistry, 66 (1994) 101-104) and is well known.) A two-necked flask was charged with 2.9 g (0.05 mol) of KF dried at 300 ° C. and 200 g of diglyme, and 244 g (1 mol) of cyclic sultone (II) was gradually added dropwise with stirring while flowing dry nitrogen. . Further, 170 g (1.02 mol) of hexafluoropropylene oxide (HFPO) was dropped and reacted. This solution was separated, and the lower layer reaction product was rectified to obtain 340 g of the following compound.
CF3CF (COF) -O-CF2CF (SO2F)2
205 g (0.5 mol) of the above compound was charged into a 0.5 L three-necked flask, and 600 g of a 10% by mass aqueous sodium hydroxide solution was gradually added dropwise and allowed to react with stirring. The reaction solution was dried to obtain 235 g of the following compound.
CF3CF (COONa) -O-CF2CF (SO3Na)2
In a 1 L three-necked flask equipped with a reflux tube, 235 g of the compound and CaH were added.2200 g of dried diglyme was charged, heated to 150 ° C. while flowing dry nitrogen, and allowed to react for 30 minutes. The supernatant obtained by centrifuging the reaction product is concentrated and recrystallized to obtain the target compound, CF.2= CF-O-CF2CF (SO2Na)2Of 136 g was obtained.
Example 2
CF2= CF-O-CF2CF (SO2F)2(K = 2, l = 1, X = F, Y = F, m = 1, n = 0)
The following compounds were obtained using 3-chloropentafluoropropylene oxide instead of HFPO used in the step of Example 1.
CF2ClCF (COF) -O-CF2CF (SO2F)2
Next, 53 g of sodium carbonate dried at 300 ° C. and 100 g of dried diglyme were charged into a 0.5 L three-necked flask equipped with a reflux tube, and the above compound was stirred while cooling with ice under a flow of dry nitrogen. 200 g was added dropwise. Thereafter, the temperature is raised to 150 ° C. while circulating dry nitrogen, and after reacting for 30 minutes, rectification is performed to obtain the target compound, CF.2= CF-O-CF2CF (SO2F)292 g was obtained.
Example 3
CF2= CF-O-CF2CF (CF3) -O-CF2CF (SO2F)2(K = 2, l = 1, X = F, Y = F, Z = CF3, M = 1, n = 1)
7.6 g (1 mol) of CsF 7.6 g (0.05 mol) dried at 300 ° C. and 200 g of diglyme were charged into a three-necked flask with a capacity of 1 liter, cooled with ice water, and while flowing dry nitrogen under stirring. The cyclic sultone (II) was gradually added dropwise. Further, 340 g (2.05 mol) of HFPO was dropped and reacted. The reaction solution is rectified under reduced pressure to give CF3CF (COF) -O-CF2CF (CF3) -O-CF2CF (SO2F)2144g was obtained. Next, in a 0.3 L three-necked flask equipped with a reflux tube, 18 g of sodium carbonate dried at 300 ° C. and 50 g of dried diglyme were charged, and the above compound was stirred while cooling with ice while circulating dry nitrogen. 100 g was added dropwise. Thereafter, the temperature is raised to 150 ° C. while circulating dry nitrogen, and after reacting for 30 minutes, rectification is performed to obtain the target compound, CF.2= CF-O-CF2CF (CF3) -O-CF2CF (SO2F)271 g of was obtained.
Example 4
CF2= CF-O-CF2C (SO3Na)3(K = 3, X = ONa, m = 1, n = 0)
According to steps 1-4) of the process of k = 3 described above, the compound of (III) was obtained. That is, CClF in a mixed solvent of DMF / water at 60 ° C.2CClICF3And Na2S2O5And reacting with CClF2CCl (CF3) SO2Na was obtained. The solvent is changed to water, reaction is performed by blowing chlorine gas at room temperature, the oil layer is extracted, and CClF is extracted.2CCl (CF3) SO2Cl was obtained. Next, using ClSO as a solvent, CClF2CCl (CF3) SO2Reaction of Cl and NaF, CClF2CCl (CF3) SO2F was obtained. Next, it is reacted with metallic zinc powder in a DMF solvent to produce CF.2= C (CF3) SO2F was obtained. Furthermore, according to step 2 of the process of k = 3, the cyclic sultone of (IV) was obtained. Next, 2.9 g (0.05 mol) of KF dried at 300 ° C. and 200 g of diglyme were charged in a 1-liter three-necked flask cooled with ice water, and 308 g (1 Mole) of cyclic sultone (IV) was gradually added dropwise. Furthermore, 170 g (1.02 mol) of hexafluoropropylene oxide (HFPO) was dropped and reacted. This solution was separated, and the reaction product in the lower layer was rectified to obtain 420 g of the following compound.
CF3CF (COF) -O-CF2C (SO2F)3
237 g (0.5 mol) of the compound was charged into a 0.5 L three-necked flask, and 800 g of a 10% by mass aqueous sodium hydroxide solution was gradually added dropwise and allowed to react with stirring. The reaction solution was dried to obtain 260 g of the following compound.
CF3CF (COONa) -O-CF2CF (SO3Na)3
In a 1 L three-necked flask equipped with a reflux tube, 210 g of the compound and CaH were added.2200 g of dried diglyme was charged, heated to 150 ° C. while flowing dry nitrogen, and allowed to react for 30 minutes. The supernatant obtained by centrifuging the reaction product is concentrated and recrystallized to obtain the target compound, CF.2= CF-O-CF2C (SO3Na)3Was obtained.
Example 5
CF2= CF-O-CF2CF (SO3Na)2(K = 2, l = 1, X = ONa, Y = F, m = 1, n = 0) and tetrafluoroethylene (TFE) copolymerization
In a 100 cc glass autoclave equipped with a stirring mechanism, 50 ml of trifluoroacetic acid and CF2= CF-O-CF2CF (SO3Na)2A solution in which 9.5 g was dissolved was charged, and 0.015 g of Parroyl NPP (manufactured by NOF Corporation) was added. Next, after vacuum and nitrogen substitution were repeated three times at room temperature, 5 g of hexafluoropropene was introduced and the temperature was raised to 60 ° C. Thereafter, tetrafluoroethylene was introduced to 0.5 MPa at a gauge pressure to initiate polymerization. Tetrafluoroethylene was introduced so as to keep the pressure constant, and the polymerization was stopped when the introduced amount reached 5 g. Thereafter, stirring was stopped and the system pressure was released. Subsequently, trifluoroacetic acid was volatilized and recovered under reduced pressure to obtain a mixture of an unreacted monomer and a copolymer. This mixture was poured into water, insoluble matters were filtered off, washed and dried to obtain 6.2 g of a copolymer. The obtained copolymer was dissolved in a water / ethanol mixed solution at 250 ° C. in a closed container and subjected to GPC analysis. As a result, the number average molecular weight was 120,000.
Example 6
Dissolution of copolymer and film formation
1 g of the copolymer obtained in Example 5 and 19 g of a mixed solution of water / ethanol were charged into a stainless steel pressure vessel having a capacity of 50 ml, heated to 250 ° C. in a sealed state, and held for 3 hours. After cooling to room temperature, the solution was filtered through a membrane filter to obtain a solution in which the copolymer was dissolved. As a result of NMR measurement of this solution, the composition of the copolymer was CF.2= CF-O-CF2CF (SO3Na)28 mol% and tetrafluoroethylene 92 mol%. 10 g of the obtained solution was placed in a 50 ml eggplant type flask, 1 g of DMSO was added, and the mixture was heated at 80 ° C. under vacuum to remove low boiling point components to obtain a viscous solution colored slightly yellow. This solution was applied on a glass plate using an applicator having a gap of 500 μm and dried at 250 ° C. Then, it was immersed in water and peeled to obtain a homogeneous and strong film. After the membrane was dried, the thickness was measured to be 51 μm. Next, this membrane was immersed in dilute hydrochloric acid, washed with water, and vacuum-dried. The EW of this film was 810 measured by a conventional method.
The obtained film was evaluated according to the evaluation method. The results are shown in Table 1.
Comparative Example 1
Nafion 117 (manufactured by DuPont) having only one sulfonic acid group per molecule was neutralized with NaOH to form a Na salt form, and a film was formed in the same manner as in Example 6. The film thickness was 50 μm. The obtained film was evaluated according to the evaluation method. The results are shown in Table 1.
Figure 0004412171
Industrial applicability
Since the sulfonic acid functional group-containing fluorinated monomer of the present invention has a plurality of sulfonic acid functional groups per molecule, when used as a fluorine-containing copolymer, the conventional sulfonic acid functional group-containing monomer is used. In addition, the effect of imparting high ionic conductivity and mechanical strength can be obtained with a small polymerization ratio.

Claims (9)

一般式:
(XSOCY(CFO(CFZCFO)CF=CF
(1)
(ここで、k=2または3、k+l=3、m=0〜5、n=0〜5、
X=F、Cl、OH、O(M)1/L(Mは1〜3価金属、Lは該金属の価数)、OR(Rは、炭素数1〜5のアルキル基であり、前記アルキル基は、炭素でなく水素でもない元素を含むものであってもよい)、または、A−(SORf)B(Aは、チッ素または炭素であり、aは、Aがチッ素のときa=1、Aが炭素のときa=2であり、Bは水素または一価の金属であり、Rfは過フッ化アルキル基である。)、
Y=F、ClまたはCF
Z=F、Cl、CF、BrまたはIである)
で表わされるスルホン酸官能基含有フッ素化単量体。
General formula:
(XSO 2 ) k CY 1 (CF 2 ) m O (CFZCF 2 O) n CF═CF 2
(1)
(Where k = 2 or 3, k + 1 = 3, m = 0-5, n = 0-5,
X = F, Cl, OH, O (M) 1 / L (M is a 1-3 valent metal, L is a valence of the metal), OR (R is an alkyl group having 1-5 carbon atoms, The alkyl group may contain an element that is neither carbon nor hydrogen), or A- (SO 2 Rf) a B (A is nitrogen or carbon, and a is A is nitrogen. A = 1 when A is carbon, a = 2 when A is carbon, B is hydrogen or a monovalent metal, and Rf is a perfluorinated alkyl group).
Y = F, Cl or CF 3 ,
Z = F, Cl, CF 3 , Br or I)
A sulfonic acid functional group-containing fluorinated monomer represented by:
前記Xが、FまたはOM(M=Li、NaもしくはK)である、請求の範囲第1項記載のスルホン酸官能基含有フッ素化単量体。The sulfonic acid functional group-containing fluorinated monomer according to claim 1 , wherein X is F or OM 1 (M 1 = Li, Na or K). k=2である請求の範囲第2項記載のスルホン酸官能基含有フッ素化単量体。The sulfonic acid functional group-containing fluorinated monomer according to claim 2, wherein k = 2. 請求の範囲第1、2または3項記載のスルホン酸官能基含有フッ素化単量体からなる含フッ素重合体。A fluorine-containing polymer comprising the sulfonic acid functional group-containing fluorinated monomer according to claim 1, 2 or 3. 請求の範囲第1、2または3項記載のスルホン酸官能基含有フッ素化単量体0.1〜50モル%、および、前記スルホン酸官能基含有フッ素化単量体と共重合可能なエチレン性不飽和結合を有する単量体50〜99.9モル%からなる含フッ素共重合体。The sulfonic acid functional group-containing fluorinated monomer according to claim 1, 2 or 3, 0.1 to 50 mol%, and ethylenic copolymerizable with the sulfonic acid functional group-containing fluorinated monomer A fluorine-containing copolymer comprising 50 to 99.9 mol% of a monomer having an unsaturated bond. 前記エチレン性不飽和結合を有する単量体が、テトラフルオロエチレンを含む請求の範囲第5項記載の含フッ素共重合体。The fluorine-containing copolymer according to claim 5, wherein the monomer having an ethylenically unsaturated bond contains tetrafluoroethylene. 請求の範囲第1、2または3項記載のスルホン酸官能基含有フッ素化単量体3〜40モル%、および、テトラフルオロエチレンを含むエチレン性不飽和結合を有する単量体60〜97モル%からなる請求の範囲第6項記載の含フッ素共重合体。The sulfonic acid functional group-containing fluorinated monomer according to claim 1, 2 or 3 and 3 to 40 mol% of a monomer having an ethylenically unsaturated bond containing tetrafluoroethylene The fluorine-containing copolymer according to claim 6, comprising: 請求の範囲第5、6または7項記載の含フッ素共重合体からなる厚さ5〜500μmのイオン交換膜。An ion exchange membrane having a thickness of 5 to 500 µm comprising the fluorine-containing copolymer according to claim 5, 6 or 7. 請求の範囲第8項記載のイオン交換膜からなる燃料電池の電解質膜。An electrolyte membrane for a fuel cell comprising the ion exchange membrane according to claim 8.
JP2004513344A 2002-06-14 2003-06-16 Sulfonic acid functional group-containing fluorinated monomer, fluorine-containing copolymer containing the same, and ion exchange membrane Expired - Fee Related JP4412171B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002174736 2002-06-14
JP2002174736 2002-06-14
PCT/JP2003/007603 WO2003106515A1 (en) 2002-06-14 2003-06-16 Fluorinated monomer having sulfonate functional group, fluorinated copolymer therefrom and ion exchange membrane

Publications (2)

Publication Number Publication Date
JPWO2003106515A1 JPWO2003106515A1 (en) 2005-10-13
JP4412171B2 true JP4412171B2 (en) 2010-02-10

Family

ID=29727988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004513344A Expired - Fee Related JP4412171B2 (en) 2002-06-14 2003-06-16 Sulfonic acid functional group-containing fluorinated monomer, fluorine-containing copolymer containing the same, and ion exchange membrane

Country Status (3)

Country Link
JP (1) JP4412171B2 (en)
AU (1) AU2003241669A1 (en)
WO (1) WO2003106515A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438570B1 (en) * 2012-11-14 2014-09-12 한국에너지기술연구원 Synthesis Method of Electrode Active Material with Core-Shell Structure
KR20210007566A (en) * 2019-07-12 2021-01-20 (주)상아프론테크 composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR20210007567A (en) * 2019-07-12 2021-01-20 (주)상아프론테크 composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792972B2 (en) 2003-07-02 2011-10-12 旭硝子株式会社 Fluorine-containing sulfonyl fluoride compound
JP4993462B2 (en) * 2004-03-08 2012-08-08 旭化成株式会社 Method for producing fluorine compound
EP1914824B1 (en) * 2005-07-27 2010-03-17 Asahi Glass Company, Limited Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
DE602006014165D1 (en) * 2005-07-27 2010-06-17 Asahi Glass Co Ltd A COMPOSITION CONTAINING A FLUOROSULFONYL GROUP, METHOD FOR THE PRODUCTION THEREOF AND POLYMER THEREOF
US8017257B2 (en) * 2007-01-26 2011-09-13 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
US8124295B2 (en) * 2007-01-26 2012-02-28 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
JP7173019B2 (en) 2017-09-01 2022-11-16 Agc株式会社 Fluorosulfonyl group-containing compound, fluorosulfonyl group-containing monomer, and production method thereof
WO2020129991A1 (en) * 2018-12-19 2020-06-25 Agc株式会社 Polymer, method for producing polymer and method for producing film
CN112510236B (en) * 2020-11-30 2022-04-15 中国石油大学(北京) Proton exchange membrane and preparation method and application thereof
WO2024068676A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers
WO2024068675A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers
WO2024068677A1 (en) 2022-09-28 2024-04-04 Solvay Specialty Polymers Italy S.P.A. Perfluoropolyether polymers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8804858D0 (en) * 1988-03-01 1988-03-30 Ici Plc Organic polymeric material & ionexchange membrane produced therefrom
US5463005A (en) * 1992-01-03 1995-10-31 Gas Research Institute Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom
WO1999045048A1 (en) * 1998-03-03 1999-09-10 E.I. Du Pont De Nemours And Company Substantially fluorinated ionomers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438570B1 (en) * 2012-11-14 2014-09-12 한국에너지기술연구원 Synthesis Method of Electrode Active Material with Core-Shell Structure
KR20210007566A (en) * 2019-07-12 2021-01-20 (주)상아프론테크 composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR20210007567A (en) * 2019-07-12 2021-01-20 (주)상아프론테크 composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212929B1 (en) * 2019-07-12 2021-02-05 (주)상아프론테크 composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same
KR102212930B1 (en) * 2019-07-12 2021-02-05 (주)상아프론테크 composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same

Also Published As

Publication number Publication date
WO2003106515A1 (en) 2003-12-24
JPWO2003106515A1 (en) 2005-10-13
AU2003241669A1 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
JP5454592B2 (en) Electrolyte material for polymer electrolyte fuel cell, electrolyte membrane and membrane electrode assembly
JP4412171B2 (en) Sulfonic acid functional group-containing fluorinated monomer, fluorine-containing copolymer containing the same, and ion exchange membrane
EP0289869B1 (en) Low equivalent weight sulfonic fluoropolymers
CA2414506C (en) Polymerization process of sulphonic monomers
JP5482652B2 (en) Method for producing fluoropolymer and fluorine-containing ion exchange membrane
JPH06322034A (en) Polymerization of fluorinated copolymer
JP2018528316A (en) Method for making a copolymer of tetrafluoroethylene having a sulfonyl pendant group
WO2001060876A1 (en) Process for producing fluoroionomer, method for purification and concentration of the ionomer, and method of film formation
WO2007013533A1 (en) Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
EP0030104B1 (en) Process for preparing organic dispersion of acid-type fluorinated polymer
TW201805316A (en) Fluorinated copolymer having sulfonyl pendant groups and method of making an ionomer
CN113717310A (en) Perfluoro ion exchange resin with high-efficiency ion transmission channel and preparation method thereof
EP2989131B1 (en) Cross-linkable polymers comprising sulfonic acid functional groups
JP5486693B2 (en) High exchange capacity perfluorinated ion exchange resin, method for its preparation and use
JP5799926B2 (en) Method for producing fluorine-containing copolymer
EP2220038A1 (en) Crosslinkable monomer
JP2003246822A (en) Fluorinated ionomer
JP4449278B2 (en) Fluorine-containing molded article, method for producing fluorine-containing molded article, fluorine-containing polymer, and method for producing fluorine-containing polymer
US7456314B2 (en) Partially fluorinated ionic compounds
US20110230575A1 (en) Crosslinkable trifluorostyrene polymers and membranes
US8664282B2 (en) Process to prepare crosslinkable trifluorostyrene polymers and membranes
US8415070B2 (en) Partially fluorinated cyclic ionic polymers and membranes
JPS6134725B2 (en)
JP2011052186A (en) Coagulation separation method for fluorine-containing polymer
US20140128560A1 (en) Process to prepare crosslinkable trifluorostyrene polymers and membranes

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4412171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees