JPH039798B2 - - Google Patents

Info

Publication number
JPH039798B2
JPH039798B2 JP18905086A JP18905086A JPH039798B2 JP H039798 B2 JPH039798 B2 JP H039798B2 JP 18905086 A JP18905086 A JP 18905086A JP 18905086 A JP18905086 A JP 18905086A JP H039798 B2 JPH039798 B2 JP H039798B2
Authority
JP
Japan
Prior art keywords
ion exchange
water
fibers
fiber
ultrapure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18905086A
Other languages
Japanese (ja)
Other versions
JPS6344988A (en
Inventor
Nami Kubo
Masaru Noyori
Akihiro Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP18905086A priority Critical patent/JPS6344988A/en
Publication of JPS6344988A publication Critical patent/JPS6344988A/en
Publication of JPH039798B2 publication Critical patent/JPH039798B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超純水の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing ultrapure water.

[従来の技術] 従来、超純水の製造方法は次のように二段階で
行なわれている。工業用水、市水、井水、水道水
および地下水等の原水を活性炭で処理して遊離塩
素を除去し逆浸透装置を経てイオン交換樹脂に通
水し、電気比抵抗10MΩcm程度の水にする。この
一次製造装置で得られた水を紫外線殺菌装置に送
り生菌を殺し、次にイオン交換樹脂に再度通水し
て比抵抗18MΩcm以上の超純水とする。
[Prior Art] Conventionally, a method for producing ultrapure water has been carried out in two steps as follows. Raw water such as industrial water, city water, well water, tap water, and groundwater is treated with activated carbon to remove free chlorine, and the water is passed through a reverse osmosis device to an ion exchange resin to produce water with an electrical resistivity of approximately 10 MΩcm. The water obtained in this primary production device is sent to an ultraviolet sterilizer to kill viable bacteria, and then the water is passed through the ion exchange resin again to produce ultrapure water with a specific resistance of 18 MΩcm or more.

これらの方法は多段階に渡るため、複雑であり
設備面に難点があつた。
Since these methods involve multiple steps, they are complex and have difficulties in terms of equipment.

また、TOC(全有機炭素)除去に有効とされる
活性炭を工程の前半部に組み込み、なおかつその
後の工程が非常に長いため、配管・ポンプ・チユ
ーブ・タンク等から溶出されるTOCが超純水に
多く含まれ、比抵抗は18MΩcm以上あるが、高
TOC値の超純水であるという大きい欠点があつ
た。
In addition, activated carbon, which is effective in removing TOC (total organic carbon), is incorporated in the first half of the process, and the subsequent process is extremely long, so TOC eluted from piping, pumps, tubes, tanks, etc. is removed from ultrapure water. It is contained in large amounts in
The major drawback was that it was ultrapure water with a TOC value.

一方、超純水は電子工業分野、医薬分野、分析
分野などで広く使用されており、装置・工程の小
型化・簡易化が強く望まれている。しかも各分野
の飛躍的な技術革新により現状の超純水の水質で
は問題が発生している所があり、その大部分が
TOCの値が高いというものである。
On the other hand, ultrapure water is widely used in the electronics industry, medicine, analysis field, etc., and there is a strong desire for miniaturization and simplification of equipment and processes. Moreover, due to dramatic technological innovations in various fields, there are some places where problems are occurring with the current quality of ultrapure water, and most of them are
This means that the TOC value is high.

[発明が解決しようとする問題点] 本発明は、超純水の水質(TOC値)を現状以
上に向上させると同時に装置を小型化できる超純
水の製造方法を提供するものである。
[Problems to be Solved by the Invention] The present invention provides a method for producing ultrapure water that can improve the quality (TOC value) of ultrapure water more than the current level and at the same time reduce the size of the apparatus.

[問題点を解決するための手段] すなわち本発明は、次の構成を有する。[Means for solving problems] That is, the present invention has the following configuration.

(1) 原水を巨大網目状イオン交換樹脂とイオン交
換繊維で処理することを特徴とする超純水の製
造方法。
(1) A method for producing ultrapure water characterized by treating raw water with a giant reticulated ion exchange resin and ion exchange fibers.

(2) 巨大網目状イオン交換樹脂の処理が、イオン
交換繊維の処理前に行なわれるものである特許
請求の範囲第1項に記載の超純水の製造方法。
(2) The method for producing ultrapure water according to claim 1, wherein the treatment of the giant reticulated ion exchange resin is performed before the treatment of the ion exchange fibers.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明で用いる巨大網目状イオン交換樹脂と
は、MR型(macro reticular)およびMP型
(macro porous)と呼ばれるものである。通常
のゲル型イオン交換樹脂の内部構造は、分子の架
橋度によつて決まる網目の構造(ミクロ多孔性)
をもつが、巨大網目状イオン交換樹脂はこれとは
区別される物理的細孔(マクロ多孔性)とミクロ
多孔性を併せて有する。これはスチレン−ジビニ
ルベンゼンを共重合させ、イオン交換基を導入す
る際の重合方法を変えることによつて製造するこ
とができる。
The giant reticular ion exchange resins used in the present invention are called MR type (macro reticular) and MP type (macro porous). The internal structure of normal gel-type ion exchange resins is a network structure (microporous) determined by the degree of crosslinking of molecules.
However, giant network ion exchange resins have both physical pores (macroporosity) and microporosity that are distinct from this. This can be produced by copolymerizing styrene-divinylbenzene and changing the polymerization method when introducing an ion exchange group.

イオン交換容量は従来のものよりやや小さいが
有機物の除去に優れた性能を有する。また、機械
的強度が大きく高度に精製可能で、化学的にも安
定である。直径が100〜1000μの公知ならびに市
販の巨大網目状イオン交換樹脂が用いられる。
Although the ion exchange capacity is slightly lower than that of conventional products, it has excellent performance in removing organic matter. In addition, it has high mechanical strength, can be purified to a high degree, and is chemically stable. Known and commercially available giant network ion exchange resins having a diameter of 100 to 1000 μm are used.

例として巨大網目状カチオン交換樹脂として
は、オルガノ社製アンバーライト(IR252、
IR200C、CG50)、三菱化成社製ダイヤイオン
(PK216、WK10)、巨大網目状アニオン交換樹脂
としてはオルガノ社製アンバーライト(IRA900、
IRA904、IRA938、IRA911、IRA93)、三菱化成
社製ダイヤイオン(PK308、PA316、PA416、
WA30)等の市販品を挙げることができる。
For example, a giant reticulated cation exchange resin is Amberlite (IR252, manufactured by Organo).
IR200C, CG50), Diamond ion (PK216, WK10) manufactured by Mitsubishi Kasei, Amberlite manufactured by Organo (IRA900,
IRA904, IRA938, IRA911, IRA93), Mitsubishi Kasei Diamondion (PK308, PA316, PA416,
Commercial products such as WA30) can be mentioned.

本発明において、巨大網目状イオン交換樹脂と
イオン交換繊維で処理する前に原水を限外濾過膜
あるいは逆浸透膜で処理することが好ましい。こ
れは原水をそのままイオン交換体で処理する方法
ではイオン交換体が汚染され、長期間安定して水
質の高い超純水が得られないからである。
In the present invention, it is preferable that the raw water is treated with an ultrafiltration membrane or a reverse osmosis membrane before being treated with the giant reticulated ion exchange resin and ion exchange fiber. This is because if raw water is directly treated with an ion exchanger, the ion exchanger becomes contaminated and ultrapure water of high quality cannot be obtained stably for a long period of time.

限外濾過膜としては、セルロース系、ポリプロ
ピレン系、ポリメタクリレート系、ポリエチレン
系、ポリスルホン系等の有機質膜および無機質
膜、逆浸透膜としては酢酸セルロース系、芳香族
ポリアミド系等が挙げられる。それらの形態は平
膜・中空糸膜のいずれでもよい。
Examples of ultrafiltration membranes include organic and inorganic membranes such as cellulose-based, polypropylene-based, polymethacrylate-based, polyethylene-based, and polysulfone-based membranes, and examples of reverse osmosis membranes include cellulose acetate-based and aromatic polyamide-based membranes. Their form may be either a flat membrane or a hollow fiber membrane.

原水を前期の限外濾過膜あるいは逆浸透膜で処
理する方法としては、それらを内蔵したモジユー
ルを用いて通水する。モジユールの濾圧が上昇し
た時には逆洗することにより元の濾圧に回復する
ことができる。
The method of treating raw water with an ultrafiltration membrane or a reverse osmosis membrane is to pass water through a module that incorporates these membranes. When the filtration pressure of the module increases, it can be restored to the original filtration pressure by backwashing.

イオン交換繊維とは通常直径が0.1〜100μ、好
ましくは1〜100μの公知のイオン交換繊維を意
味する。その具体例としては、ポリスチレン系、
ポリフエノール系、ポリビニルアルコール系、ポ
ルアクリル系、ポリエチレン系、ポリアミド系な
どの合成有機質ポリマ(イオン交換用ポリマ)に
イオン交換基を導入した不溶性合成有機質イオン
交換繊維を挙げることができる。そのなかでもイ
オン交換用ポリマと補強用ポリマからなる繊維、
好ましくはイオン交換用ポリマを鞘成分の主成分
に、補強用ポリマを芯成分にした多芯型混合およ
び複繊維を基材としたイオン交換繊維が操作上の
十分な機械的強度ならびに形態保持性を有してい
るのでよい。補強用ポリマの割合は通常10〜90%
であるが、あまり少なすぎると機械的強度が弱く
なり、逆にあまり多すぎるとイオン交換量や吸着
量が低下するので、20〜80%の範囲が好ましい。
イオン交換用ポリマとしてはポリ(モノビニル芳
香族化合物)特にポリスチレン系化合物が耐薬品
性、耐熱性に優れ、操作を長期にわたつて何回も
繰り返してできるので好ましい。また補強用ポリ
マとしてはポリ−α−オレフインが耐薬品性に優
れているので好ましい。
The ion exchange fiber means a known ion exchange fiber having a diameter of usually 0.1 to 100 microns, preferably 1 to 100 microns. Specific examples include polystyrene,
Examples include insoluble synthetic organic ion exchange fibers in which ion exchange groups are introduced into synthetic organic polymers (ion exchange polymers) such as polyphenols, polyvinyl alcohols, polyacrylics, polyethylenes, and polyamides. Among them, fibers made of ion exchange polymers and reinforcing polymers,
Preferably, a multifilamentary mixture in which an ion exchange polymer is used as the main component of the sheath component and a reinforcing polymer is used as the core component, or an ion exchange fiber based on double fibers has sufficient mechanical strength and shape retention for operation. It is good because it has The proportion of reinforcing polymer is usually 10-90%
However, if it is too small, the mechanical strength will be weakened, and if it is too large, the amount of ion exchange and adsorption will be reduced, so a range of 20 to 80% is preferable.
As the ion exchange polymer, poly(monovinyl aromatic compounds), particularly polystyrene compounds, are preferred because they have excellent chemical resistance and heat resistance, and can be produced by repeating the operation many times over a long period of time. Further, as the reinforcing polymer, poly-α-olefin is preferable because it has excellent chemical resistance.

イオン交換繊維の含水度は通常0.5〜10である
が、あまり小さすぎると高度にイオン交換や吸着
を行なうのが難しくなり、逆にあまり大きすぎる
と通液抵抗が大きくなるので、1〜5の範囲が好
ましい。ここで含水度とはNa型(Cl型)のカチ
オン(アニオン)交換繊維を蒸溜水に浸した後、
家庭用の遠心脱水機で5分間遠心脱水して表面の
水分を除去し、ただちに重量(W)を測定し、さ
らに絶乾して重さを測り(Wd)、次式より求めた
値である。
The water content of ion-exchange fibers is usually 0.5 to 10, but if it is too small, it will be difficult to perform ion exchange and adsorption to a high degree, and if it is too large, the resistance to liquid will increase, so A range is preferred. Here, the water content is after soaking Na type (Cl type) cation (anion) exchange fiber in distilled water.
Centrifugally dehydrate the product for 5 minutes using a household centrifugal dehydrator to remove surface moisture, immediately measure the weight (W), then dry it thoroughly, measure the weight (W d ), and calculate the value using the following formula. be.

含水度=W−Wd/Wd 繊維の形態としては、短繊維、フイラメント
糸、フエルト、織物、不織布、編物、繊維束、ひ
も状物、紙などの公知の任意の形態、集合体もし
くはそれらの裁断物を挙げることができる。その
なかでも特に0.1〜3mm、望ましくは0.3〜1mmの
短繊維が充填しやすく、また異種繊維同志の混合
が容易なので好ましく用いられる。
Water content = W - W d / W d The fiber may be in any known form, such as short fiber, filament yarn, felt, woven fabric, non-woven fabric, knitted fabric, fiber bundle, string-like material, paper, or an aggregate thereof. Cuttings can be mentioned. Among these, short fibers of 0.1 to 3 mm, preferably 0.3 to 1 mm, are preferably used because they are easy to fill and it is easy to mix different types of fibers.

本発明における原水の処理方法としては、限外
濾過膜あるいは逆浸透膜を通した水をイオン交換
体の層を通してイオン交換や吸着を行なう固定床
式法が操作を容易に行なえるので好ましい。
As a method for treating raw water in the present invention, a fixed bed method in which water that has passed through an ultrafiltration membrane or a reverse osmosis membrane is subjected to ion exchange or adsorption through a layer of an ion exchanger is preferred because it can be easily operated.

本発明で用いるイオン交換樹脂に対するイオン
交換繊維の使用交換容量の割合は通常0.01〜50%
であるが、あまり小さすぎると短時間に高度にイ
オン交換や吸着を行なうことが難しくなり、また
逆にあまり大きすぎると固定床容量当りの処理容
量が低下するので好ましくは0.05〜30%、特に好
ましくは0.1〜20%がよい。
The exchange capacity ratio of the ion exchange fiber to the ion exchange resin used in the present invention is usually 0.01 to 50%.
However, if it is too small, it will be difficult to perform high ion exchange and adsorption in a short time, and if it is too large, the processing capacity per fixed bed capacity will decrease, so it is preferably 0.05 to 30%, especially Preferably it is 0.1 to 20%.

処理法の具体例としては、KFAR、KRAF、KR
AR→KFAF、KRAF→KFAF、KR→KF→AR→AF
KR→AR→KF→AF、KR→AR→KFAF、KRAR→KF
AF、KR→AR→KRAR→KFAF、などを挙げること
ができるがこれに限定されるものではない。
Specific examples of processing methods include K F A R , K R A F , K R
A R →K F A F , K R A F →K F A F , K R →K F →A R →A F ,
K R →A R →K F →A F , K R →A R →K F A F , K R A R →K F
Examples include, but are not limited to, A F , K R →A R →K R A R →K F A F , and the like.

ここで、KR、ARはそれぞれ巨大網目状カチオ
ン交換樹脂、巨大網目状アニオン交換樹脂、KF
AFはそれぞれカチオン交換繊維、アニオン交換
繊維である。KRARは、巨大網目状カチオンおよ
び巨大網目状アニオン交換樹脂の混合体、KFAF
は、カチオンおよびアニオン交換繊維の混合体で
ある。KFARはカチオン交換繊維と巨大網目状ア
ニオン交換樹脂の混合体である。
Here, K R and AR are respectively giant reticulated cation exchange resin, giant reticulated anion exchange resin, K F ,
A F is a cation exchange fiber and an anion exchange fiber, respectively. K R A R is a mixture of macroreticular cation and macroreticular anion exchange resins, K F A F
is a mixture of cation and anion exchange fibers. KFAR is a mixture of cation exchange fibers and macromesh anion exchange resins.

KRAFは巨大網目状カチオン交換樹脂とアニオ
ン交換繊維の混合体を意味する。カチオンおよび
アニオン交換繊維の混合体のかわりにカチオン交
換繊維と粉末アニオン交換樹脂の混合体もしくは
アニオン交換繊維と粉末カチオン交換樹脂の混合
体を用いてもよい。
K R A F means a mixture of macromesh cation exchange resin and anion exchange fiber. Instead of the mixture of cation and anion exchange fibers, a mixture of cation exchange fibers and powdered anion exchange resin or a mixture of anion exchange fibers and powdered cation exchange resin may be used.

しかし、電気比抵抗18MΩcm以上でかつ低
TOCの超純水を製造するには、イオン交換繊維
による処理が巨大網目状イオン交換樹脂で処理し
た後に行なわれる方法が好ましく、特に巨大網目
状イオン交換樹脂で処理した後、少なくともカチ
オンおよびアニオン交換繊維の混合体で処理する
のが最も好ましい。
However, with an electrical specific resistance of 18 MΩcm or more and a low
In order to produce ultrapure water of TOC, a method in which treatment with ion exchange fibers is carried out after treatment with a giant reticulated ion exchange resin is preferred, and in particular, after treatment with a giant reticulated ion exchange resin, at least cation and anion exchange Most preferably, it is treated with a mixture of fibers.

処理する順序の具体例としては、前記したKF
AR→KFAF、KRAF→KFAF、KR→AR→KFAF、KR
→AR→KFAF、KR→AR→KRAR→KFAFなどを挙げ
ることができる。ここでカチオン交換体とアニオ
ン交換体、特に繊維の混合(当量)比率として
は、通常10:1〜1:10であるが、好ましくは
6:1〜1:6がよい。
As a specific example of the processing order, the above-mentioned K F
A R →K F A F , K R A F →K F A F , K R →A R →K F A F , K R
Examples include →A R →K F A F , K R →A R →K R A R →K F A F , etc. Here, the mixing (equivalent) ratio of cation exchanger and anion exchanger, especially fiber, is usually 10:1 to 1:10, preferably 6:1 to 1:6.

通常カチオン交換基好ましくはスルホン酸基を
有するカチオン交換体は、酸で活性化し、アニオ
ン交換基好ましくは四級アンモニウム基を有する
アニオン交換体は、アルカリで活性化して用いら
れる。
Usually, a cation exchanger having a cation exchange group, preferably a sulfonic acid group, is activated with an acid, and an anion exchanger having an anion exchange group, preferably a quaternary ammonium group, is activated with an alkali.

原水としては、通常工業用水、市水、井水、水
道水、地下水などが用いられるが、蒸溜水、イオ
ン交換水などを用いても何ら差支えはない。
As the raw water, industrial water, city water, well water, tap water, underground water, etc. are usually used, but there is no problem in using distilled water, ion-exchanged water, etc.

さらに、無菌の超純水を製造するには、イオン
交換処理の前後で紫外線殺菌処理を行なうこと、
また最後にメンブレンフイルタ処理を行なうこと
が望ましい。
Furthermore, in order to produce sterile ultrapure water, ultraviolet sterilization treatment must be performed before and after ion exchange treatment.
Furthermore, it is desirable to perform membrane filter treatment at the end.

本発明は、巨大網目状イオン交換樹脂(MR型
およびMP型樹脂)とイオン交換繊維で処理する
ことによつて、その吸着・イオン交換性能の高さ
から、電気抵抗18MΩcm以上の超純水が安定し
て、高流速で得られることにより従来法のような
多段階処理を不要にした。そのため装置は、小型
化・簡易化されチユーブ・タンク等が減少し、配
管系でのTOC溶出が大幅に減少した。
The present invention produces ultrapure water with an electrical resistance of 18 MΩcm or more due to its high adsorption and ion exchange performance by treating it with a giant reticulated ion exchange resin (MR type and MP type resin) and ion exchange fiber. Since it is stable and can be obtained at a high flow rate, the multi-step treatment required in conventional methods is no longer necessary. As a result, the equipment has been made smaller and simpler, reducing the number of tubes and tanks, and significantly reducing TOC elution from the piping system.

また、通常のゲル型イオン交換樹脂では吸着で
きないTOCが、巨大網目状イオン交換樹脂およ
びイオン交換繊維の併用処理で吸着可能なことを
見い出し、これらのことによつて非常に低TOC
値(現在、一般に超純水のTOCの実用的基準は
50ppb以下と言われている)の超純水製造を可能
にした。
We also discovered that TOC, which cannot be adsorbed by ordinary gel-type ion exchange resins, can be adsorbed by combined treatment with giant reticular ion exchange resins and ion exchange fibers.
value (currently, the practical standard for TOC in ultrapure water is generally
This makes it possible to produce ultra-pure water (said to be less than 50ppb).

以下に実施例を示すが、これに限定されるもの
ではない。
Examples are shown below, but the invention is not limited thereto.

[実施例] 実施例 1 逆浸透膜を内蔵したモジユールを設置し、その
後に市販の巨大網目状イオン交換樹脂アンバーラ
イトEG−290、[アンバーライトIR200C/アンバ
ーライトIRA900:1/1混合品]1.8(カチオ
ン1.7モル当量、アニオン1.2モル当量)を前段に
設置し、0.5mmカツトフアイバー状の繊維混合体
0.2(カチオン28ミリ当量、アニオン24ミリ当
量)を後段に設置したイオン交換カートリツジ、
さらに水質計および市販の0.22μmメンブレンフ
イルタ(ミリポア社製MILLISTAK−GS)から
なる超純水装置を作製した。
[Example] Example 1 A module with a built-in reverse osmosis membrane was installed, and then a commercially available giant mesh ion exchange resin Amberlite EG-290, [Amberlite IR200C/Amberlite IRA900: 1/1 mixed product] 1.8 (1.7 molar equivalents of cations, 1.2 molar equivalents of anions) was installed in the front stage, and a fiber mixture in the form of 0.5mm cut fibers was prepared.
Ion exchange cartridge with 0.2 (28 meq. of cations, 24 meq. of anions) installed in the latter stage,
Furthermore, an ultrapure water apparatus consisting of a water quality meter and a commercially available 0.22 μm membrane filter (MILLISTAK-GS, manufactured by Millipore) was prepared.

この装置に水道水(電気比抵抗0.01MΩcm)を
100/hrの流速で通水して超純水を製造したと
ころ、電気比抵抗18MΩcm以上の超純水が2500
得られ、その後比抵抗が急速に低下した。超純粋
(原水)の水質分析を行なつたところ、ナトリウ
ム1ppb以下(7200ppb)、シリカ5ppb以下
(850ppb)、生菌0.0個/ml以下(0.6個/ml)、パ
イロジエン0.01ng/ml以下(7.1ng/ml)、0.2μm
以上の微粒子25個/ml(63500個/ml)であつた。
また、TOC計(アストロ社製.モデル180ppb)
で測定したTOCは、20ppb(680ppb)であつた。
Pour tap water (electrical specific resistance 0.01MΩcm) into this device.
When ultrapure water was produced by passing water at a flow rate of 100/hr, ultrapure water with an electrical resistivity of 18MΩcm or more was produced at a flow rate of 2500/hr.
was obtained, and then the specific resistance decreased rapidly. A water quality analysis of ultra-pure (raw water) revealed that it contained less than 1 ppb of sodium (7200 ppb), less than 5 ppb of silica (850 ppb), less than 0.0 viable bacteria/ml (0.6 pieces/ml), and less than 0.01 ng/ml of pyrodiene (7.1 ng/ml), 0.2μm
The number of fine particles was 25/ml (63,500/ml).
Also, TOC meter (manufactured by Astro. Model 180ppb)
The TOC measured was 20ppb (680ppb).

比較例 1 イオン交換カートリツジに前記のイオン交換樹
脂アンバーライトEG−290、2を入れて、イオ
ン交換繊維を用いない以外は実施例1と全く同様
の装置を設置し、同様の手順で超純水を製造しよ
うとしたところ、電気比抵抗は最高16.4MΩcmま
でしか上がらず、又16.4MΩcmの水が1600得ら
れた後、電気抵抗が徐々に低下した。
Comparative Example 1 The above ion exchange resin Amberlite EG-290, 2 was placed in an ion exchange cartridge, and the same equipment as in Example 1 was installed except that ion exchange fibers were not used, and ultrapure water was added using the same procedure. When attempting to produce , the electrical resistivity rose only to a maximum of 16.4 MΩcm, and after 1600 of water of 16.4 MΩcm was obtained, the electrical resistance gradually decreased.

比較例 2 イオン交換カートリツジに通常のゲル型イオン
交換樹脂アンバーライトMB−2[アンバーライ
トIR120B/アンバーライトIRA410:1/2混合
体](カチオン1.1モル当量、アニオン1.6モル等
量)を1.8入れ、前記の0.5mmカツトフアイバー
のイオン交換繊維混合体0.2を後段に入れたカ
ートリツジを用意し、実施例1と全く同様に超純
水を製造した。
Comparative Example 2 Into an ion exchange cartridge, put 1.8 of the usual gel-type ion exchange resin Amberlite MB-2 [Amberlite IR120B/Amberlite IRA410: 1/2 mixture] (1.1 molar equivalent of cation, 1.6 molar equivalent of anion), A cartridge containing 0.2 of the ion exchange fiber mixture of the 0.5 mm cut fibers described above was prepared in the latter stage, and ultrapure water was produced in exactly the same manner as in Example 1.

電気比抵抗18MΩcmの超純水が4000得られ、
その後電気比抵抗は急激に低下した。
4000 ultrapure water with electrical resistivity of 18MΩcm was obtained.
After that, the electrical resistivity decreased rapidly.

超純水(原水)の水質分析を行なつたところ、
ナトリウム1ppb以下(7500ppb)、シリカ5ppb以
下(850ppb)、生菌0.0(1.5個/ml)、パイロジエ
ン0.01ng/ml以下(2.6ng/ml)、0.2μ以下の微粒
子27個/ml(100000個/ml)であつた。
When we conducted a water quality analysis of ultrapure water (raw water), we found that
Sodium 1ppb or less (7500ppb), silica 5ppb or less (850ppb), live bacteria 0.0 (1.5 pieces/ml), pyrogen 0.01ng/ml or less (2.6ng/ml), fine particles 0.2μ or less 27 pieces/ml (100000 pieces/ml) ml).

しかし、前記のTOC計で測定したところ
139ppb(630ppb)と高い値を示した。
However, when measured with the TOC meter mentioned above,
It showed a high value of 139ppb (630ppb).

なお前記実施例および比較例で用いたカチオン
ならびにアニオン交換繊維は次の方法で製造した
ものである。
The cation and anion exchange fibers used in the Examples and Comparative Examples were manufactured by the following method.

多芯海島型複合繊維(未延伸糸)〔海成分(ポ
リスチレン/ポリプロピレン)/島成分(ポリプ
ロピレン)=(47/4)/49(島数16、繊維直径
34μ)〕を長さ1mmに切断してカツトフアイバー
を得た。該カツトフアイバー1重合部を市販の1
級硫酸7.5容量部とパヒド0.15重量部からなる架
橋・スルホン化液に加え80℃で4時間反応処理し
た後、水洗した。次にアルカリで処理してから水
洗することによつてスルホン酸基を有するカチオ
ン交換繊維を得た(交換容量2.8ミリ当量/g−
Na、含水度1.5)。
Multicore sea-island composite fiber (undrawn yarn) [sea component (polystyrene/polypropylene)/island component (polypropylene) = (47/4)/49 (number of islands 16, fiber diameter
34μ)] to a length of 1 mm to obtain a cut fiber. The polymerized part of the cut fiber 1 was converted into commercially available 1
The mixture was added to a crosslinking/sulfonation solution consisting of 7.5 parts by volume of grade sulfuric acid and 0.15 parts by weight of pahydride, and reacted at 80°C for 4 hours, followed by washing with water. Next, a cation exchange fiber having sulfonic acid groups was obtained by treating with alkali and washing with water (exchange capacity: 2.8 meq/g).
Na, water content 1.5).

上記カツトフアイバー1重合部を市販の1級硫
酸5容量部、水0.5要領部とパラホルムアルデヒ
ド0.2重合部からなる架橋液に加え80℃で4時間
架橋反応を行なつた。次にクロルメチルエーテル
8.5容量部と塩化第2スズ1.5容量部からなる溶液
に架橋糸を加え、30℃で1時間反応した。反応終
了後、10%塩酸、蒸溜水、アセトンで洗浄した。
クロルメチル化系を30%トリメチルアミン水溶液
10容量部に加え、30℃で1時間アミノ化して水洗
した。さらに塩酸で処理してから水洗することに
よつてトリメチルアンモニウムメチル基を有する
アニオン交換繊維を得た(交換容量2.4ミリ当
量/g−Cl、含水度1.8)。
The polymerized portion of Cut Fiber 1 was added to a crosslinking solution consisting of 5 parts by volume of commercially available primary sulfuric acid, 0.5 parts of water and 0.2 parts of paraformaldehyde, and a crosslinking reaction was carried out at 80° C. for 4 hours. Then chloromethyl ether
The crosslinked thread was added to a solution consisting of 8.5 parts by volume and 1.5 parts by volume of stannic chloride, and the mixture was reacted at 30°C for 1 hour. After the reaction was completed, it was washed with 10% hydrochloric acid, distilled water, and acetone.
Add chloromethylated system to 30% trimethylamine aqueous solution
The mixture was added to 10 parts by volume, aminated at 30°C for 1 hour, and washed with water. Further, by treating with hydrochloric acid and washing with water, anion exchange fibers having trimethylammonium methyl groups were obtained (exchange capacity: 2.4 milliequivalents/g-Cl, water content: 1.8).

繊維混合体はカチオン交換繊維およびアニオン
交換繊維をそれぞれ酸、アルカリで活性化した
後、両者を所定の割合で撹拌混合したものを用い
た。
The fiber mixture used was obtained by activating cation exchange fibers and anion exchange fibers with acid and alkali, respectively, and then stirring and mixing the two in a predetermined ratio.

[発明の効果] 本発明の超純水の製造方法は、現在多分野で要
望されている低TOCで水質の極めて高い超純水
が得られるだけでなく、装置の小型化に適した方
法であり、電子工業分野、医薬品分野、分析分野
などでの広い適用が考えられる。特に、電子工業
分野には非常に有効に用いられる。
[Effects of the Invention] The method for producing ultrapure water of the present invention not only provides ultrapure water with low TOC and extremely high quality, which is currently required in many fields, but also is a method suitable for downsizing equipment. Therefore, it can be widely applied in the electronic industry, pharmaceutical field, analytical field, etc. In particular, it is very effectively used in the electronic industry field.

Claims (1)

【特許請求の範囲】 1 原水を巨大網目状イオン交換樹脂とイオン交
換繊維で処理することを特徴とする超純水の製造
方法。 2 巨大網目状イオン交換樹脂の処理が、イオン
交換繊維の処理前に行なわれるものである特許請
求の範囲第1項に記載の超純水の製造方法。
[Scope of Claims] 1. A method for producing ultrapure water, which comprises treating raw water with a giant reticulated ion exchange resin and ion exchange fibers. 2. The method for producing ultrapure water according to claim 1, wherein the treatment of the giant reticulated ion exchange resin is performed before the treatment of the ion exchange fibers.
JP18905086A 1986-08-12 1986-08-12 Method for making ultrapure water Granted JPS6344988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18905086A JPS6344988A (en) 1986-08-12 1986-08-12 Method for making ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18905086A JPS6344988A (en) 1986-08-12 1986-08-12 Method for making ultrapure water

Publications (2)

Publication Number Publication Date
JPS6344988A JPS6344988A (en) 1988-02-25
JPH039798B2 true JPH039798B2 (en) 1991-02-12

Family

ID=16234451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18905086A Granted JPS6344988A (en) 1986-08-12 1986-08-12 Method for making ultrapure water

Country Status (1)

Country Link
JP (1) JPS6344988A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798187B2 (en) * 1989-07-25 1995-10-25 東レ株式会社 Aqueous solution purification method
US5722442A (en) * 1994-01-07 1998-03-03 Startec Ventures, Inc. On-site generation of ultra-high-purity buffered-HF for semiconductor processing
JP6198368B2 (en) * 2011-05-24 2017-09-20 三菱ケミカルアクア・ソリューションズ株式会社 Deionizer
EP3580179B1 (en) 2017-02-13 2024-01-17 Merck Patent GmbH A method for producing ultrapure water
WO2018146309A1 (en) * 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water
EP3580177B1 (en) 2017-02-13 2023-12-13 Merck Patent GmbH Method and system for producing ultrapure water
WO2018146310A1 (en) 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water

Also Published As

Publication number Publication date
JPS6344988A (en) 1988-02-25

Similar Documents

Publication Publication Date Title
WO1986001744A1 (en) Method for ion-exchange or adsorption
JPH10504995A (en) Water treatment method
JPH039798B2 (en)
JPH0310388B2 (en)
JPH0478483A (en) System for producing ultrapure water
JPS6211593A (en) Production of ultrapure water
JPH0679268A (en) Production of ultra-pure water
US3186941A (en) Water softening with fine cation exchange tubes
JPH0153118B2 (en)
JPH054051A (en) Ion exchange resin for production of ultrapure water, its production and production of ultrapure water using same
JPH03151092A (en) Column for producing ultra-pure water
JPH0623282A (en) Tower packed with ion exchange fiber
JPH02228332A (en) Ion-exchange fiber and preparation thereof
JPH02126990A (en) Production of ultra pure water
WO1990014311A1 (en) Method of water treatment
JPH06126278A (en) Water purifying apparatus
JPH02233193A (en) Pure water preparation method
JPH04108588A (en) Production of ultrapure water
JPH0696147B2 (en) Method for producing ultrapure water using ion exchange resin composition
JPS61100254A (en) Molded product having antibacterial function
JPH0440076B2 (en)
JPH0550064A (en) Manufacturing system for ultrapure water
JPH0290991A (en) Ion removing method
JP2006061747A (en) Filter medium for water treatment, water treatment apparatus using filter medium and method for producing filter medium
JPS59162954A (en) Separation of ion-exchange fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term