JPH0310388B2 - - Google Patents

Info

Publication number
JPH0310388B2
JPH0310388B2 JP8760387A JP8760387A JPH0310388B2 JP H0310388 B2 JPH0310388 B2 JP H0310388B2 JP 8760387 A JP8760387 A JP 8760387A JP 8760387 A JP8760387 A JP 8760387A JP H0310388 B2 JPH0310388 B2 JP H0310388B2
Authority
JP
Japan
Prior art keywords
water
activated carbon
ion
ion exchange
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8760387A
Other languages
Japanese (ja)
Other versions
JPS63156591A (en
Inventor
Nami Kubo
Toshio Yoshioka
Masaru Noyori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPS63156591A publication Critical patent/JPS63156591A/en
Publication of JPH0310388B2 publication Critical patent/JPH0310388B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、超純水の製造法に関するものであ
る。 [従来の技術] 従来、超純水の製造法は次のように二段階で行
なわれている。工業用水、市水、井水、水道水お
よび地下水等の原水を活性炭で処理して遊離塩素
を除去し逆浸透装置を経てイオン交換樹脂に通水
し、電気比抵抗10MΩ・cm程度の水にする。この
一次製造装置で得られた水を紫外線殺菌装置に送
り生菌を殺し、次にイオン交換樹脂に再度通水し
て18MΩ・cm以上の超純水とする。 これらの方法は多段階に渡るため複雑で設備面
で難点があつた。 また、TOC(全有機炭素)除去に有効とされる
活性炭を工程の前半部に組みこみ、なおかつその
後の工程が非常に長いため、配管・ポンプ・チユ
ーブ・タンク等から溶出されるTOCが超純水に
多く含まれ、比抵抗は18MΩ・cm以上あるが、高
TOC値の超純水であるという大きい欠点があつ
た。 一方、超純水は電子工業分野、医薬品分野、分
析分野などで広く使用されており、装置・工程の
小型化・簡易化が強く望まれている。しかも各分
野の飛躍的な技術革新により現状の超純水の水質
では問題が発生している所があり、その大部分が
TOCの値が高いというものである。 [発明が解決しようとする問題点] 本発明は、超純水の水質(特にTOC値)を現
状以上に向上させると同時に樹脂を小型化できる
超純水の製造法を提供するものである。 [問題点を解決するための手段] すなわち本発明は、次の構成を有する。 原水をイオン交換体と活性炭で処理した後、イ
オン交換繊維で処理することを特徴とする超純水
の製造法。 以下、本発明を詳細に説明する。 本発明は、イオン交換樹脂およびイオン交換繊
維では吸着できない、あるいはそれ等イオン交換
体から溶出したと考えられるTOCを活性炭に吸
着させ、イオン交換繊維で最終処理することによ
り小規模の設備で、電気比抵抗18MΩ・cm以上で
TOC50ppb以下の超純水を安定して得ることを可
能にした。最終処理にイオン交換繊維を使つた場
合は、その比表面積の大きさと吸着能力の大きさ
からイオンのリークが極端に少なく、そのイオン
交換能が破過する直前まで電気比抵抗18MΩ・cm
以上を維持することができるが、樹脂ではブロー
ドに電気比抵抗が減少し、18MΩ・cmという厳し
い水質は安定して得ることができない。 ここで原水処理の方法は、活性炭とイオン交換
体を混合したもので処理した後にイオン交換繊維
で最終処理する方法と、イオン交換体で処理した
後活性炭で処理してさらにイオン交換繊維で処理
する方法のどちらをとつても良い。これらの方法
ならば原水がそれぞれの層を一通りするだけで電
気比抵抗18MΩ・cm以上の超純水を得ることがで
きる。また、イオン交換繊維の層から出た処理水
をもう一度活性炭の層に戻す循環系方式をとるな
らば活性炭→イオン交換体→イオン交換繊維の順
で処理も可能である。この場合も採水はイオン交
換繊維を出たところで行なう。 詳しくは、まずイオン交換体が原水中の微粒子
やイオンを大ざつぱに吸着・イオン交換し、電気
比抵抗をあげる。また、ポンプやチユーブ等配管
系あるいはイオン交換体からの溶出、あるいは原
水が初めから含んでいるTOCを活性炭が吸着す
る。 しかし活性炭を通したことによつて電気比抵抗
は低下し、また活性炭からの微細流出炭もあつ
て、このままでは超純水としての使用は不可能で
ある。この水を少量のイオン交換繊維で処理する
ことにより、その吸着・イオン交換性能の高さか
ら微細流出炭を素早く吸着し電気比抵抗18MΩ・
cm以上に上げ、高流速で安定して低TOC(現在、
一般に超純水の実用的基準は50ppb以下といわれ
ている。)、高電気比抵抗(18MΩ・cm以上)の超
純水を得ることができる。この際用いられるイオ
ン交換繊維はその表面積の大きさから、樹脂に比
べ極めて少量で良く、そのためイオン交換繊維か
らのTOC溶出は無視できる程度のものである。
また、この方法により装置は小型化・簡易化され
チユーブ・タンク等が減少し、配管系でのTOC
溶出が大幅に減少した。 本発明で用いるイオン交換体としては直径が
100〜1000μの公知ならびに市販のイオン交換樹
脂およびイオン交換繊維を挙げることができる。
イオン交換樹脂は具体的には耐薬品性・耐熱性に
優れたスチレンジ−ビニルベンゼン共重合体にイ
オン交換基を導入したゲル型ならびにMR型・
MP型イオン交換樹脂を挙げることができる。 市販のものとしてアンバーライト(オルガノ社
製)・ダイヤイオン(三菱化成社製)等がある。 本発明で用いる活性炭は、10〜100000Åの細孔
分布を持ち、特に10〜20Åのミクロポアを多く持
つ吸着材である。ミクロポアが発達しているた
め、低濃度物質の吸着に特に優れた性能を発揮
し、水処理では無機物も吸着するが特にTOCの
吸着に優れている。 また、原料別にヤシ殻系・石炭系・石油系等が
あり、いずれでもよいが特に石炭系活性炭が好ま
しい。形態は粒状・粉末状・活性炭素繊維のいず
れでもよいが、微細流出炭の問題が有り、粒状あ
るいは球状、繊維状が好ましい。市販の物として
GW10/32・KW10/32(クラレ社製)クレハビ
ーズ活性炭(クレハ社製)等が挙げられる。 イオン交換体と活性炭の使用比率(重量)は、
通常50:1〜1:5であるが、イオン交換体の比
率が大きすぎるとTOCを充分吸着できなくなり、
逆に小さすぎると電気比抵抗の低下が大きくなる
ので、好ましくは20:1〜1:1が良い。最も好
ましくは15:1〜2:1が良い。 本発明で用いるイオン交換繊維とは通常直径が
0.1〜100μ、好ましくは1〜100μの公知のイオン
交換繊維を意味する。その具体例としては、ポリ
スチレン系、ポリフエノール系、ポリビニルアル
コール系、ポリアクリル系、ポリエチレン系、ポ
リアミド系などの合成有機質ポリマー(イオン交
換用ポリマ)にイオン交換基を導入した不溶性合
成有機質イオン交換繊維を挙げることがきる。そ
のなかでもイオン交換用ポリマと補強用ポリマか
らなる繊維、好ましくはイオン交換用ポリマを鞘
成分の主成分に、補強用ポリマを芯成分にした多
芯型混合および複合繊維を基材としたイオン交換
繊維が操作上の十分な機械的強度ならびに形態保
持性を有しているのでよい。補強用ポリマの割合
は通常10〜90%であるが、あまり少なすぎると機
械的強度が弱くなり、逆にあまり多すぎるとイオ
ン交換量や吸着量が低下するので、20〜80%の範
囲が好ましい。イオン交換用ポリマとしてはポリ
(モノビニル芳香族化合物)特にポリスチレン系
化合物が耐薬品性、耐熱性に優れており、操作を
長期にわたつて何回も繰り返してできるので好ま
しい。また補強用ポリマとしては、ポリ−α−オ
レフインが耐薬品性に優れているので好ましい。
イオン交換繊維の含水度は通常0.5〜10であるが、
あまり小さすぎると高度にイオン交換や吸着を行
なうのが難しくなり、逆にあまり大すぎると通液
抵抗が大きくなるので、1〜5の範囲が好まし
い。ここで含水度とはNa型(Cl型)のカチオン
(アニオン)交換繊維を蒸溜水に浸した後、家庭
用の遠心脱水機で5分間遠心脱水して表面の水分
を除去し、ただちに重量(W)を測定し、さらに
絶乾して重さ(Wd)を測り、次式より求めた値
である。 含水度=W−Wd/Wd 繊維の形態としては、短繊維、フイラメント
糸、フエルト、織物、不織布、編物、繊維束、ひ
も状物、紙などの公知の任意の形態、集合体もし
くはそれらの裁断物を挙げることができる。その
なかでも特に0.1〜3mm、望ましくは0.3〜1mmの
短繊維が充填しやすく、また異種繊維同志の混合
が容易なので好ましく用いられる。 本発明において、イオン交換体あるいは活性炭
で処理する前に原水を限外濾過膜あるいは逆浸透
膜で処理することが好ましい。これは原水をその
ままイオン交換体で処理する方法ではイオン交換
体が汚染され長期間安定して水質の高い超純水が
得られないからである。 限外濾過膜としては、セルロース系、ポリプロ
ピレン系、ポリメタクリレート系、ポリエチレン
系、ポリアクリロニトリル系、ポリスルホン系等
の有機質膜および無機質膜、逆浸透膜としては酢
酸セルロース系、芳香族ポリアミド系等が挙げら
れる。それらの形態は平膜・中空糸膜のいずれで
もよい。原水を前記の限外濾過膜あるいは逆浸透
膜で処理する方法としては、それらを内蔵したモ
ジユールを用いて通水する。モジユールの濾圧が
上昇した時には逆洗することにより元の濾圧に回
復することができる。 本発明における原水の処理方法としては、限外
濾過膜あるいは逆浸透膜を通した水をイオン交換
体・活性炭・イオン交換繊維の層を通してイオン
交換や吸着を行なう固定床式法が操作を容易に行
なえるので好ましい。 本発明で用いるイオン交換体に対するイオン交
換繊維の使用交換容量の割合は0.01〜50%である
が、あまり小さすぎると短時間に高度にイオン交
換や吸着を行なうことが難しくなり、また逆にあ
まり大きすぎると固定床容量当りの処理容量が低
下するので好ましくは0.05〜30%、特に好ましく
は0.1〜20%がよい。 処理方法の具体例としては、KR→AR→活性炭
→KFAF、AR→KR→活性炭→KFAF、KRAR→活性
炭→KFAF、KR→AF→活性炭→KFAF、KF→AR
活性炭→KFAF、AR→KF→活性炭→KFAF、KRAF
→活性炭→KFAF、KFAR→活性炭→KFAF、KF
AR→活性炭→KFAF、AF→KR→活性炭→KFAF
AF→KF→活性炭→KFAF、KF→AF→活性炭→KF
AF、KFAF→活性炭→KFAF、などを挙げることが
できるがこれに限定されるものではない。 また、KRAR・活性炭→KFAF、KFAR・活性炭
→KFAF、KRAF・活性炭→KFAF、KFAF・活性炭
→KFAF等も考えられる。 ここで、KR、ARはそれぞれカチオン交換樹脂、
アニオン交換樹脂、KF、AFはそれぞれカチオン
交換繊維、アニオン交換繊維、KRARは、カチオ
ンおよびアニオン交換樹脂の混合体、KFAFはカ
チオンおよびアニオン交換繊維の混合体、KFAR
はカチオン交換繊維とアニオン交換樹脂の混合
体、KRAFはカチオン交換樹脂とアニオン交換繊
維の混合体、KRAF・活性炭はカチオン交換樹脂
とアニオン交換繊維と活性炭の混合体、KFAR
活性炭はカチオン交換繊維とアニオン交換樹脂と
活性炭の混合体、KRAR・活性炭はカチオンおよ
びアニオン交換樹脂と活性炭の混合体、KFAF
活性炭はカチオンおよびアニオン交換繊維と活性
炭の混合体を意味する。カチオンおよびアニオン
交換繊維の混合体のかわりにカチオン交換繊維と
粉末アニオン交換樹脂の混合体もしくはアニオン
交換繊維と粉末カチオン交換樹脂の混合体を用い
てもよい。しかし電気比抵抗18MΩ・cm以上でか
つ低TOCの超純水を製造するには前記したよう
に、カチオン及びアニオン交換繊維の混合体で処
理することが最も好ましい。 また先にも述べたように、KFAFで処理した水
をもう一度元の層に戻す循環式をとるならば、活
性炭→KRAR→KFAFの様に活性炭の層を前に置く
方法も可能である。 ここでカチオン交換体とアニオン交換体、特に
繊維の混合(当量)比率としては、通常10:1〜
1:10であるが好ましくは6:1〜1:6がよ
い。 通常カチオン交換基好ましくはスルホン酸基を
有するカチオン交換体は酸で活性化し、アニオン
交換基好ましくは四級アンモニウム基を有するア
ニオン交換体はアルカリで活性化して用いられ
る。 原水としては、通常工業用水、市水、井水、水
道水、地下水などが用いられるが、蒸溜水、イオ
ン交換水などを用いても何ら差支えはない。 また、活性炭は微細流出炭をできるだけ減らす
ように、よく洗浄してから用いることが好まし
い。 さらに、無菌の超純水を製造するには、イオン
交換処理の前後で紫外線殺菌処理を行なうこと、
また最後にメンブレンフイルタ処理もしくは限外
濾過膜処理を行なうことが望ましい。 以下に実施例を示すが、これに限定されるもの
ではない。 [実施例] 実施例および比較例で用いるカチオンならびに
アニオン交換繊維は次の方法で製造したものであ
る。多芯海島型複合繊維(未延伸糸)〔海成分
(ポリスチレン/ポリプロピレン)/島成分(ポ
リプロピレン)=(47/4)/49(島数16、繊維直
径34μ)〕を長さ1mmに切断してカツトフアイバ
ーを得た。該カツトフアイバー1重量部を市販の
1級硫酸7.5容量部とパラホルムアルデヒド0.15
重量部からなる架橋・スルホン化液に加え80℃で
4時間反応処理した後、水洗した。次にアルカリ
で処理してから水洗することによつてスルホン酸
基を有するカチオン交換繊維を得た(交換容量
2.8ミリ当量/g−Na、含水度1.5)。上記カツト
フアイバー1重量部を市販の1級硫酸5容量部、
水0.5容量部とパラホルムアルデヒド0.2重量部か
らなる架橋液に加え80℃で4時間架橋反応を行な
つた。 次にクロルメチルエーテル8.5容量部と塩化第
二スズ1.5容量部からなる溶液に架橋糸を加え、
30℃で1時間反応した。反応終了後、10%塩酸、
蒸溜水、アセトンで洗浄した。クロルメチル化系
を30%トリメチルアミン水溶液10容量部に加え、
30℃で1時間アミノ化して水洗した。さらに塩酸
で処理してから水洗することによつてトリメチル
アンモニウムメチル基を有するアニオン交換繊維
を得た(交換容量2.4ミリ当量/g−Cl、含水度
1.8)。 繊維混合体はカチオン交換繊維およびアニオン
交換繊維をそれぞれ酸、アルカリで活性化した
後、両者を所定の割合で撹拌混合したものを用い
る。 実施例 1 逆浸透膜を内蔵したモジユールを設置し、その
後に市販のゲル型イオン交換樹脂アンバーライト
MB−2、[アンバーライトIR120B/アンバーラ
イトIRA410:1/2混合品]1.8(カチオン1.1
モル当量、カチオン1.6モル当量)を前段に設置
し、中段に粒状活性炭GW10/32(クラレ社製)
を100g詰めて、1mmカツトフアイバー状の繊維
混合体0.2(カチオン28ミリ当量、アニオン24
ミリ当量)を後段に設置したイオン交換カートリ
ツジ、さらに市販の0.22μmメンブレンフイルタ
(ミリポア社製MILLISTAK−GS)および水質
計からなる超純水製造装置を作製した。 この装置に水道水(電気比抵抗0.01MΩ・cm)
を100/hrの流速で通水して超純水を製造した
ところ、電気比抵抗18MΩ・cm以上の超純水が
4000得られ、その後比抵抗が急速に低下した。
また、メンブレンフイルターに微細流出炭の付着
は見られなかつた。この超純水(原水)の水質分
析結果は第1表に示した。 実施例 2 実施例1で用いたと同様のイオン交換樹脂1.8
と活性炭100gを混合して詰めた以外は実施例
1と同様に超純水を製造した。 電気比抵抗18MΩ・cm以上の超純水が4000
得られ、その後比抵抗が急速に低下した。また、
メンブレンフイルターに微細流出炭の付着は見ら
れなかつた。この超純水(原水)の水質分析結果
は第1表に示した。 実施例 3 実施例1のカートリツジの前段と中断を入れ代
えて、活性炭100g→イオン交換樹脂1.8→イオ
ン交換繊維(アニオン・カチオン混合体)0.2の
順に通水処理するように設置したカートリツジ、
さらに前記メンブレンフイルターと水質計からな
る装置を作製した。 タンクに水道水を10溜め、カートリツジに通
水し、水質計から出た処理水はまたタンクに戻る
循環システムをとり、流速100/hrで通水した。
電気比抵抗は18MΩ・cm以上にあがつた。通水を
始めて10分後水質計から出た処理水を採取し水質
を分析した。結果は第1表に示した。 比較例 1 イオン交換カートリツジに実施例1と同様に、
通常のゲル型イオン交換樹脂アンバーライトMB
−2を1.8入れ、前記の0.5mmカツトフアイバー
のイオン交換繊維混合体0.2を後段に入れたカ
ートリツジを用意し、活性炭を入れない以外は実
施例1と全く同様に超純水を製造した。電気比抵
抗18MΩ・cmの超純水が4000得られ、その後比
抵抗は急激に低下した。この超純水(原水)の水
質分析結果は第1表に示した。 比較例 2 イオン交換カートリツジに前記の活性炭を100
g入れ、その後にイオン交換樹脂アンバーライト
MB−2、2を入れて、イオン交換繊維を用い
ない以外は実施例1と全く同様の装置を設置し、
同様の手順で超純水を製造しようとしたところ電
気比抵抗は最高10MΩ・cmまでしか上らず、ま
た、メンブレンフイルターに微細流出炭が詰まり
流量に変化が見られた。
[Industrial Field of Application] The present invention relates to a method for producing ultrapure water. [Prior Art] Conventionally, a method for producing ultrapure water has been carried out in two steps as follows. Raw water such as industrial water, city water, well water, tap water, and groundwater is treated with activated carbon to remove free chlorine, and the water is passed through an ion exchange resin through a reverse osmosis device to produce water with an electrical resistivity of approximately 10 MΩ・cm. do. The water obtained from this primary production equipment is sent to an ultraviolet sterilizer to kill viable bacteria, and then the water is passed through an ion exchange resin again to produce ultrapure water with a purity of 18 MΩ·cm or higher. These methods involve multiple steps, are complex, and pose difficulties in terms of equipment. In addition, activated carbon, which is effective in removing TOC (total organic carbon), is incorporated into the first half of the process, and since the subsequent process is extremely long, the TOC eluted from piping, pumps, tubes, tanks, etc. is ultra-pure. It is contained in large amounts in water and has a specific resistance of over 18MΩ・cm, but it is highly
A major drawback was that it was ultrapure water with a TOC value. On the other hand, ultrapure water is widely used in the electronics industry, pharmaceutical industry, analysis field, etc., and there is a strong desire for miniaturization and simplification of equipment and processes. Moreover, due to dramatic technological innovations in various fields, there are some places where problems are occurring with the current quality of ultrapure water, and most of them are
This means that the TOC value is high. [Problems to be Solved by the Invention] The present invention provides a method for producing ultrapure water that can improve the quality of ultrapure water (particularly the TOC value) more than the current level and at the same time reduce the size of the resin. [Means for Solving the Problems] That is, the present invention has the following configuration. A method for producing ultrapure water characterized by treating raw water with an ion exchanger and activated carbon, and then treating it with ion exchange fibers. The present invention will be explained in detail below. The present invention enables TOC that cannot be adsorbed by ion-exchange resins and ion-exchange fibers, or that is thought to have been eluted from such ion-exchangers, to be adsorbed on activated carbon, and then subjected to final treatment using ion-exchange fibers. Specific resistance 18MΩ・cm or more
It has become possible to stably obtain ultrapure water with a TOC of 50ppb or less. When ion exchange fibers are used in the final treatment, ion leakage is extremely small due to their large specific surface area and adsorption capacity, and the electrical resistivity is 18 MΩ・cm until just before the ion exchange capacity is exceeded.
Although the above can be maintained, the electrical resistivity decreases broadly with resin, making it impossible to stably obtain the severe water quality of 18 MΩ cm. Here, the raw water treatment methods are two methods: treatment with a mixture of activated carbon and ion exchanger, followed by final treatment with ion exchange fiber, and treatment with ion exchanger, then treatment with activated carbon, and then further treatment with ion exchange fiber. Either method is fine. With these methods, it is possible to obtain ultrapure water with an electrical resistivity of 18 MΩ·cm or more just by passing the raw water through each layer once. Furthermore, if a circulation system method is used in which the treated water discharged from the ion exchange fiber layer is returned to the activated carbon layer again, it is possible to process the water in the order of activated carbon -> ion exchanger -> ion exchange fiber. In this case as well, water is sampled at the point where it exits the ion exchange fiber. Specifically, the ion exchanger roughly adsorbs and ion-exchanges fine particles and ions in the raw water, increasing the electrical resistivity. In addition, activated carbon adsorbs TOC that is eluted from piping systems such as pumps and tubes, or from ion exchangers, or that is contained in raw water from the beginning. However, passing through the activated carbon lowers the electrical resistivity, and there is also fine charcoal flowing out from the activated carbon, making it impossible to use it as ultrapure water as it is. By treating this water with a small amount of ion-exchange fiber, its high adsorption and ion-exchange performance allows it to quickly adsorb fine effluent coal, with an electrical resistivity of 18MΩ.
cm or higher, stable and low TOC at high flow rates (currently
Generally, the practical standard for ultrapure water is said to be 50 ppb or less. ), it is possible to obtain ultrapure water with high electrical resistivity (18MΩ・cm or more). Due to its large surface area, the ion exchange fiber used in this case requires only a very small amount compared to the resin, and therefore TOC elution from the ion exchange fiber is negligible.
In addition, this method makes the equipment smaller and simpler, reduces the number of tubes and tanks, and reduces TOC in the piping system.
Elution was significantly reduced. The ion exchanger used in the present invention has a diameter of
Mention may be made of known and commercially available ion exchange resins and ion exchange fibers of 100 to 1000 microns.
Specifically, ion exchange resins include gel type, MR type, and MR type, which are made by introducing ion exchange groups into styrene di-vinylbenzene copolymer, which has excellent chemical resistance and heat resistance.
MP type ion exchange resins can be mentioned. Commercially available products include Amberlite (manufactured by Organo Corporation) and Diaion (manufactured by Mitsubishi Kasei Corporation). The activated carbon used in the present invention has a pore distribution of 10 to 100,000 Å, and is an adsorbent having particularly many micropores of 10 to 20 Å. Because of its well-developed micropores, it exhibits particularly excellent performance in adsorbing low-concentration substances, and while it also adsorbs inorganic substances in water treatment, it is especially excellent in adsorbing TOC. In addition, there are coconut shell-based, coal-based, petroleum-based, etc. raw materials, and any of them may be used, but coal-based activated carbon is particularly preferred. The form may be granular, powder, or activated carbon fiber, but there is a problem of fine charcoal flow, so granular, spherical, or fibrous forms are preferable. as a commercial product
Examples include GW10/32/KW10/32 (manufactured by Kuraray Co., Ltd.), Kureha Beads activated carbon (manufactured by Kureha Co., Ltd.), etc. The usage ratio (weight) of ion exchanger and activated carbon is
Usually the ratio is 50:1 to 1:5, but if the ratio of ion exchanger is too large, TOC cannot be adsorbed sufficiently.
On the other hand, if it is too small, the electrical resistivity will decrease significantly, so it is preferably 20:1 to 1:1. The most preferred ratio is 15:1 to 2:1. The ion exchange fiber used in the present invention usually has a diameter of
It means a known ion exchange fiber of 0.1 to 100μ, preferably 1 to 100μ. Specific examples include insoluble synthetic organic ion exchange fibers in which ion exchange groups are introduced into synthetic organic polymers (ion exchange polymers) such as polystyrene, polyphenol, polyvinyl alcohol, polyacrylic, polyethylene, and polyamide. can be mentioned. Among them, fibers made of ion-exchange polymers and reinforcing polymers, preferably multifilamentary mixed fibers and composite fibers with ion-exchange polymers as the main component of the sheath component and reinforcing polymers as the core component, and ion-based composite fibers. It is preferable that the replacement fiber has sufficient mechanical strength and shape retention for operation. The proportion of reinforcing polymer is usually 10 to 90%, but if it is too small, the mechanical strength will be weakened, and if it is too large, the amount of ion exchange and adsorption will decrease, so the range of 20 to 80% is recommended. preferable. As the ion-exchange polymer, poly(monovinyl aromatic compound), especially polystyrene-based compounds, are preferred because they have excellent chemical resistance and heat resistance, and can be used many times over a long period of time. Further, as the reinforcing polymer, poly-α-olefin is preferable because it has excellent chemical resistance.
The water content of ion exchange fibers is usually 0.5-10,
If it is too small, it will be difficult to perform ion exchange or adsorption to a high degree, and if it is too large, the resistance to liquid passage will increase, so a range of 1 to 5 is preferable. Here, moisture content refers to Na-type (Cl-type) cation (anion) exchange fibers that are soaked in distilled water, centrifuged for 5 minutes in a household centrifugal dehydrator to remove surface water, and immediately weighed ( W) was measured, and the weight (W d ) was measured after being completely dried, and the value was obtained from the following formula. Water content = W - W d / W d The fiber may be in any known form, aggregate, or aggregate thereof, such as short fiber, filament yarn, felt, woven fabric, nonwoven fabric, knitted fabric, fiber bundle, string-like material, paper, etc. For example, cut items can be mentioned. Among these, short fibers of 0.1 to 3 mm, preferably 0.3 to 1 mm, are preferably used because they are easy to fill and it is easy to mix different types of fibers. In the present invention, it is preferable that raw water is treated with an ultrafiltration membrane or a reverse osmosis membrane before being treated with an ion exchanger or activated carbon. This is because if raw water is directly treated with an ion exchanger, the ion exchanger will be contaminated and ultrapure water of high quality cannot be obtained stably for a long period of time. Ultrafiltration membranes include organic and inorganic membranes such as cellulose, polypropylene, polymethacrylate, polyethylene, polyacrylonitrile, and polysulfone, and reverse osmosis membranes include cellulose acetate and aromatic polyamide. It will be done. Their form may be either a flat membrane or a hollow fiber membrane. As a method for treating raw water with the ultrafiltration membrane or reverse osmosis membrane described above, water is passed through a module containing the ultrafiltration membrane or reverse osmosis membrane. When the filtration pressure of the module increases, it can be restored to the original filtration pressure by backwashing. The raw water treatment method used in the present invention is a fixed bed method in which water that has passed through an ultrafiltration membrane or reverse osmosis membrane is ion-exchanged and adsorbed through a layer of ion exchanger, activated carbon, and ion-exchange fibers, which is easy to operate. This is preferable because it can be done. The ratio of the exchange capacity of the ion exchange fiber to the ion exchanger used in the present invention is 0.01 to 50%, but if it is too small, it will be difficult to perform ion exchange or adsorption to a high degree in a short time, or conversely, If it is too large, the processing capacity per fixed bed capacity will decrease, so it is preferably 0.05 to 30%, particularly preferably 0.1 to 20%. Specific examples of treatment methods include K R → A R → activated carbon → K F A F , A R → K R → activated carbon → K F A F , K R A R → activated carbon → K F A F , K R → A F → activated carbon → K F A F , K F → A R
Activated carbon → K F A F , A R → K F → Activated carbon → K F A F , K R A F
→Activated carbon→K F A F , K F A R →Activated carbon → K F A F , K F
A R → activated carbon → K F A F , A F → K R → activated carbon → K F A F ,
A F →K F →Activated carbon→K F A F , K F →A F →Activated carbon→K F
Examples include, but are not limited to, A F , K F A F → activated carbon → K F A F . Also, K R A R / activated carbon → K F A F , K F A R / activated carbon → K F A F , K R A F / activated carbon → K F A F , K F A F / activated carbon → K F A F , etc. can also be considered. Here, K R and AR are cation exchange resins, respectively.
Anion exchange resin, K F and A F are cation exchange fiber and anion exchange fiber respectively, K R A R is a mixture of cation and anion exchange resin, K F A F is a mixture of cation and anion exchange fiber, K F A R
is a mixture of cation exchange fiber and anion exchange resin, K R A F is a mixture of cation exchange resin and anion exchange fiber, K R A F /activated carbon is a mixture of cation exchange resin, anion exchange fiber, and activated carbon, K F A R
Activated carbon is a mixture of cation exchange fiber, anion exchange resin and activated carbon, K R A R , activated carbon is a mixture of cation and anion exchange resin and activated carbon, K F A F.
Activated carbon refers to a mixture of cation and anion exchange fibers and activated carbon. Instead of the mixture of cation and anion exchange fibers, a mixture of cation exchange fibers and powdered anion exchange resin or a mixture of anion exchange fibers and powdered cation exchange resin may be used. However, in order to produce ultrapure water with an electrical resistivity of 18 MΩ·cm or more and a low TOC, it is most preferable to use a mixture of cation and anion exchange fibers as described above. Also, as mentioned earlier, if we adopt a circulation method in which the water treated with K F A F is returned to its original layer, the activated carbon layer is placed before the activated carbon layer → K R A R → K F A F. It is also possible to place the Here, the mixing (equivalent) ratio of cation exchanger and anion exchanger, especially fiber, is usually 10:1 to
The ratio is 1:10, but preferably 6:1 to 1:6. Usually, a cation exchanger having a cation exchange group, preferably a sulfonic acid group, is activated with an acid, and an anion exchanger having an anion exchange group, preferably a quaternary ammonium group, is activated with an alkali. As the raw water, industrial water, city water, well water, tap water, underground water, etc. are usually used, but there is no problem in using distilled water, ion-exchanged water, etc. In addition, it is preferable to thoroughly wash the activated carbon before using it so as to reduce the amount of finely discharged carbon as much as possible. Furthermore, in order to produce sterile ultrapure water, ultraviolet sterilization treatment must be performed before and after ion exchange treatment.
Furthermore, it is desirable to finally perform membrane filter treatment or ultrafiltration membrane treatment. Examples are shown below, but the invention is not limited thereto. [Example] Cation and anion exchange fibers used in Examples and Comparative Examples were manufactured by the following method. A multicore sea-island composite fiber (undrawn yarn) [sea component (polystyrene/polypropylene)/island component (polypropylene) = (47/4)/49 (number of islands 16, fiber diameter 34μ)] was cut into lengths of 1 mm. I got a cutoff eye bar. 1 part by weight of the cut fiber was mixed with 7.5 parts by volume of commercially available primary sulfuric acid and 0.15 parts by volume of paraformaldehyde.
It was added to a crosslinking/sulfonation solution consisting of parts by weight and reacted at 80°C for 4 hours, and then washed with water. Next, a cation exchange fiber having sulfonic acid groups was obtained by treating with alkali and washing with water (exchange capacity
2.8 meq/g-Na, water content 1.5). 1 part by weight of the above cut fiber was mixed with 5 parts by volume of commercially available primary sulfuric acid,
The mixture was added to a crosslinking solution consisting of 0.5 parts by volume of water and 0.2 parts by weight of paraformaldehyde, and a crosslinking reaction was carried out at 80°C for 4 hours. Next, the crosslinked thread was added to a solution consisting of 8.5 parts by volume of chloromethyl ether and 1.5 parts by volume of stannic chloride.
The reaction was carried out at 30°C for 1 hour. After the reaction is complete, add 10% hydrochloric acid,
Washed with distilled water and acetone. Add the chloromethylation system to 10 parts by volume of 30% trimethylamine aqueous solution,
The mixture was aminated at 30°C for 1 hour and washed with water. By further treating with hydrochloric acid and washing with water, anion exchange fibers having trimethylammonium methyl groups were obtained (exchange capacity: 2.4 meq/g-Cl, water content:
1.8). The fiber mixture used is obtained by activating cation exchange fibers and anion exchange fibers with acid and alkali, respectively, and then stirring and mixing the two in a predetermined ratio. Example 1 A module with a built-in reverse osmosis membrane was installed, and then a commercially available gel type ion exchange resin Amberlite was installed.
MB-2, [Amberlite IR120B/Amberlite IRA410: 1/2 mixture product] 1.8 (cation 1.1
molar equivalent, cation 1.6 molar equivalent) was installed in the front stage, and granular activated carbon GW10/32 (manufactured by Kuraray Co., Ltd.) was installed in the middle stage.
Packed 100g of fiber mixture in the form of 1mm cut fibers (28 milliequivalents of cations, 24 milliequivalents of anions).
An ultrapure water production apparatus was prepared, which consisted of an ion exchange cartridge with a ion exchange cartridge (milliequivalent) installed in the latter stage, a commercially available 0.22 μm membrane filter (MILLISTAK-GS manufactured by Millipore), and a water quality meter. Tap water (electrical specific resistance 0.01MΩ・cm) is added to this device.
When we produced ultrapure water by passing it through at a flow rate of 100/hr, we found that ultrapure water with an electrical resistivity of 18MΩ・cm or more was produced.
4000 was obtained, and then the resistivity decreased rapidly.
In addition, no fine charcoal adhesion was observed on the membrane filter. The results of water quality analysis of this ultrapure water (raw water) are shown in Table 1. Example 2 Ion exchange resin 1.8 similar to that used in Example 1
Ultrapure water was produced in the same manner as in Example 1, except that 100 g of activated carbon was mixed and packed. 4000 ultrapure water with electrical specific resistance of 18MΩ・cm or more
was obtained, and then the specific resistance decreased rapidly. Also,
No fine charcoal adhesion was observed on the membrane filter. The results of water quality analysis of this ultrapure water (raw water) are shown in Table 1. Example 3 A cartridge was installed in which water was passed in the order of 100 g of activated carbon → 1.8 g of ion exchange resin → 0.2 g of ion exchange fiber (anion/cation mixture) by replacing the front stage and the interruption of the cartridge in Example 1.
Furthermore, a device consisting of the membrane filter and a water quality meter was manufactured. A circulation system was used in which tap water was stored in a tank for 10 minutes and was passed through a cartridge, and the treated water from the water quality meter was returned to the tank at a flow rate of 100/hr.
The electrical resistivity rose to over 18MΩ・cm. Ten minutes after starting water flow, the treated water from the water quality meter was sampled and the water quality was analyzed. The results are shown in Table 1. Comparative Example 1 In the same manner as in Example 1, the ion exchange cartridge was
Ordinary gel type ion exchange resin Amberlite MB
A cartridge containing 1.8 of -2 and 0.2 of the ion exchange fiber mixture of the 0.5 mm cut fibers was prepared in the latter stage, and ultrapure water was produced in the same manner as in Example 1 except that activated carbon was not added. 4,000 hours of ultrapure water with an electrical resistivity of 18 MΩ·cm was obtained, and the resistivity decreased rapidly thereafter. The results of water quality analysis of this ultrapure water (raw water) are shown in Table 1. Comparative Example 2 100% of the above activated carbon was added to an ion exchange cartridge.
g, then add ion exchange resin Amberlite.
A device exactly the same as in Example 1 was installed, except that MB-2, 2 was put in and ion exchange fiber was not used.
When an attempt was made to produce ultrapure water using the same procedure, the electrical resistivity rose only to a maximum of 10 MΩcm, and the membrane filter was clogged with fine charcoal flow, resulting in a change in flow rate.

【表】 [発明の効果] 本発明の超純水の製造法は、現在多分野で要望
されている低TOCでかつ水質の極めて高い超純
水が得られるだけでなく、装置の小変化に適した
方法である。イオン交換樹脂・活性炭・イオン交
換繊維を1本あるいはそれぞれにカートリツジ化
するることによつて簡単で扱いやすいものとな
り、また非常に安価である。電子工業分野、医薬
品分野、分析分野などでの広い適用が考えられ
る。特に、低TOCの超純水が即必要とされてい
る電子工業分野には非常に有効に用いられる。
[Table] [Effects of the invention] The method for producing ultrapure water of the present invention not only provides ultrapure water with low TOC and extremely high water quality, which is currently required in many fields, but also allows for small changes in equipment. This is a suitable method. By packaging the ion exchange resin, activated carbon, and ion exchange fiber into one or each cartridge, it becomes simple and easy to handle, and is also very inexpensive. It can be widely applied in the electronic industry, pharmaceuticals, analysis fields, etc. In particular, it is very effectively used in the electronic industry where ultrapure water with low TOC is urgently needed.

Claims (1)

【特許請求の範囲】[Claims] 1 原水をイオン交換体と活性炭で処理した後、
イオン交換繊維で処理することを特徴とする超純
水の製造法。
1 After treating raw water with an ion exchanger and activated carbon,
A method for producing ultrapure water characterized by treatment with ion exchange fibers.
JP8760387A 1986-08-28 1987-04-09 Production of ultra-pure water Granted JPS63156591A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-202565 1986-08-28
JP20256586 1986-08-28

Publications (2)

Publication Number Publication Date
JPS63156591A JPS63156591A (en) 1988-06-29
JPH0310388B2 true JPH0310388B2 (en) 1991-02-13

Family

ID=16459598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8760387A Granted JPS63156591A (en) 1986-08-28 1987-04-09 Production of ultra-pure water

Country Status (1)

Country Link
JP (1) JPS63156591A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794036B2 (en) * 1988-07-05 1995-10-11 東レ株式会社 Ultrapure water production method
JPH0343396U (en) * 1989-09-04 1991-04-23
US5378802A (en) * 1991-09-03 1995-01-03 Ocg Microelectronic Materials, Inc. Method for removing impurities from resist components and novolak resins
JP6082192B2 (en) * 2012-06-11 2017-02-15 野村マイクロ・サイエンス株式会社 Pure water production equipment
US11629071B2 (en) 2017-02-13 2023-04-18 Merck Patent Gmbh Method for producing ultrapure water
WO2018146309A1 (en) * 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water
CN110300735A (en) * 2017-02-13 2019-10-01 默克专利股份公司 Method for producing ultrapure water
WO2018146308A1 (en) 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water

Also Published As

Publication number Publication date
JPS63156591A (en) 1988-06-29

Similar Documents

Publication Publication Date Title
US4693828A (en) Method of ion-exchanging and/or adsorption
US5110479A (en) Water purification systems
US4664812A (en) Liquid filtration apparatus and process
US6514413B2 (en) Method of drinking water disinfection
CN110300734A (en) Method for producing ultrapure water
JPH0310388B2 (en)
JPH039798B2 (en)
JPH0478483A (en) System for producing ultrapure water
US2962438A (en) Ion exchange process for water purification
JPH0153118B2 (en)
JPS6211593A (en) Production of ultrapure water
JP3659716B2 (en) Use point filter system
JPH03151092A (en) Column for producing ultra-pure water
JPH0623282A (en) Tower packed with ion exchange fiber
RU2221641C2 (en) Bactericide additive for sorbents and water-treatment sorbent
JPH02126990A (en) Production of ultra pure water
JPH06126278A (en) Water purifying apparatus
JP3293705B2 (en) Water purifier
JPH02228332A (en) Ion-exchange fiber and preparation thereof
JPH02233193A (en) Pure water preparation method
RU2038316C1 (en) Water treating equipment
JPH04108588A (en) Production of ultrapure water
JPH0440076B2 (en)
JPS61100254A (en) Molded product having antibacterial function
CN117916013A (en) Filtering to remove virus in water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees