JPH0397823A - Ni-base alloy for cryogenic use - Google Patents

Ni-base alloy for cryogenic use

Info

Publication number
JPH0397823A
JPH0397823A JP23346089A JP23346089A JPH0397823A JP H0397823 A JPH0397823 A JP H0397823A JP 23346089 A JP23346089 A JP 23346089A JP 23346089 A JP23346089 A JP 23346089A JP H0397823 A JPH0397823 A JP H0397823A
Authority
JP
Japan
Prior art keywords
less
base alloy
strength
temperature
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23346089A
Other languages
Japanese (ja)
Inventor
Masayoshi Takano
正義 高野
Osamu Matsumoto
修 松本
Takemitsu Honjo
本庄 武光
Tadaaki Yamada
山田 忠昭
Masanori Moribe
森部 正典
Eiji Takahashi
英司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23346089A priority Critical patent/JPH0397823A/en
Publication of JPH0397823A publication Critical patent/JPH0397823A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the Ni-base alloy with high strength from an ordinary temp. to a very low temp. and to improve weldability by specifying the componental compsn. in an Ni-base alloy and specifying the relationship between the content of Nb+Ti and that of Mo. CONSTITUTION:The compsn. of an Ni-base alloy for cryogenic use is formed from the compsn. constituted of, by weight, <=0.03% C, <=0.25% Si, <=0.25% Mn, <=0.015%, P, <=0.015% S, 38.0 to 49.0% Ni, 12.0 to 20.0% Cr, 2.0 to 4.0% Nb, 0.7 to 2.5% Ti, 0.2 to 0.8% Al, >1.0 to 5.0% Mo and the balance Fe with impurities. Furthermore, 3.5%<= Nb+Ti <=[(Mo/4)+4.6]% is satisfied. In this way, the Ni-base alloy for cryogenic use having high strength of about >=80kgf/ mm<2> 0.2% proof stress at a room temp. and having excellent weldability to such a degree that HAZ cracks are not generated can be offered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、極低温を利用した機器の構造材料として適す
るNi基合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a Ni-based alloy suitable as a structural material for equipment that utilizes cryogenic temperatures.

(従来の技術及び解決しようとする課題)最近の極低温
を利用した真空技術,宇宙開発、超電導技術等の発展に
伴い、これらの機器に使用される構造材料には、常温か
ら極低温まで高強度が求められている。
(Conventional technology and issues to be solved) With the recent development of vacuum technology that utilizes cryogenic temperatures, space development, superconducting technology, etc., the structural materials used in these devices have a high temperature range from room temperature to cryogenic temperature. Strength is required.

従来より使用されている極低温用の構造材料としては、
オーステナイト系ステンレス鋼や高Mn鋼等があるが、
これらは常温での強度が低いという欠点がある。
Structural materials for cryogenic temperatures that have been traditionally used include:
There are austenitic stainless steels, high Mn steels, etc.
These have the disadvantage of low strength at room temperature.

これらに代わる高強度材として、Fe基耐熱合金のA2
86等があるが、近年、更に高い強度が要求されており
、Ni基耐熱合金のインコネル706、718が検討さ
れつつある。
As a high-strength material to replace these, the Fe-based heat-resistant alloy A2
Inconel 706 and 718, which are Ni-based heat-resistant alloys, are being considered as higher strength is required in recent years.

一方、極低温機器は、大型,複雑構造を採るものが多く
、これらに用いられる構造材料には、溶接が必要となる
On the other hand, many cryogenic devices are large and have complex structures, and the structural materials used in these devices require welding.

この点、上記のNi基耐熱合金は、高強度ではあるが,
溶接部の熱影響部(以下、HAZと称する)に割れ等の
欠陥を生ずるという問題があり、Nb.Ti.C.Si
.Mn.B.S等を低減することにより、耐HAZ割れ
性を高める効果があると報告されている(R.G.Th
ompson ; J .Matal,Vol. 4 
0 (1988) p . 4 4参照)。シカシ2、
Nb、T1は析出強化元素であるため、これらを低減す
ると高い強度が得られない。
In this regard, although the above Ni-based heat-resistant alloy has high strength,
Nb. Ti. C. Si
.. Mn. B. It is reported that reducing S etc. has the effect of increasing HAZ cracking resistance (R.G.Th
ompson; J. Matal, Vol. 4
0 (1988) p. (See 4 4). Shikashi 2,
Since Nb and T1 are precipitation strengthening elements, if these are reduced, high strength cannot be obtained.

本発明は、上記従来技術の欠点を解消し、常温から極低
温まで高強度を有すると共に、H A Z割れ等を生じ
ない溶接性の優れた極低温用Nj基合金を提供すること
を目的とするものである。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned prior art and provide an Nj-based alloy for cryogenic use that has high strength from room temperature to cryogenic temperatures and has excellent weldability that does not cause H A Z cracking etc. It is something to do.

(11Mを解決するための手段) かNる目的を達或するため、本発明者は、従来のNi基
1ナ熱合金がHAZ割れを生ずる原因を究明すると共に
その対策について鋭意研究を重ねた結果,ここに新規な
或分組成を有するNj基合金を見い出したものである。
(Means for solving 11M) In order to achieve the above objective, the present inventor investigated the cause of HAZ cracking in conventional Ni-based monothermal alloys and conducted extensive research on countermeasures. As a result, we have discovered an Nj-based alloy with a new partial composition.

すなわち,本発明に係る極低温用Ni基合金は、C :
 0.0 3%以下、Si:0.25%以下、Mn:0
.25%以下、P : 0.0 1 5%以下、S:0
.015%以下,Ni:38.0−49.0%、Cr:
12.0〜20.0%、Nb:2.0〜4.0%、Ti
:0.7〜2.5%、Al:0.2〜0.8%及びMO
=1.0%を超え5.0%以下を含み、かつ3.5%≦
Nb+Ti≦((Mo/ 4 )+4 . 6 )%を
満足し,残部がFe及び不純物がらなることを特徴とす
るものである。
That is, the cryogenic Ni-based alloy according to the present invention has C:
0.0 3% or less, Si: 0.25% or less, Mn: 0
.. 25% or less, P: 0.0 1 5% or less, S: 0
.. 015% or less, Ni: 38.0-49.0%, Cr:
12.0-20.0%, Nb: 2.0-4.0%, Ti
:0.7~2.5%, Al:0.2~0.8% and MO
= more than 1.0% and 5.0% or less, and 3.5%≦
It is characterized by satisfying Nb+Ti≦((Mo/4)+4.6)%, with the remainder being Fe and impurities.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) 本発明における化学成分の限定理由は次のともりである
(Function) The reasons for limiting the chemical components in the present invention are as follows.

C : Cは合金強化のための元素として必要であるが、0.0
3%を超えると溶接性を低下させるので、C量は0.0
3%以下とする。
C: C is necessary as an element for alloy strengthening, but 0.0
If it exceeds 3%, weldability will deteriorate, so the amount of C should be 0.0
3% or less.

Si: Siは溶解時の脱酸剤として必要な元素であるが,多す
ぎると溶接性を低下させ、その上限は0.25%である
。したがって、Sijttは0.25%以下とする。
Si: Si is a necessary element as a deoxidizing agent during melting, but if it is present too much, weldability is degraded, and its upper limit is 0.25%. Therefore, Sijtt is set to 0.25% or less.

Mn: Mnは溶解時の脱酸及び脱硫剤として必要な元素である
が、多すぎると溶接性を低下させるので好ましくなく、
その上限は0.25%である。したがって、Mnffi
は0.25%以下とする。
Mn: Mn is a necessary element as a deoxidizing and desulfurizing agent during melting, but too much Mn is undesirable because it reduces weldability.
Its upper limit is 0.25%. Therefore, Mnffi
shall be 0.25% or less.

p,s: P及びSは共に溶接性を低下させるので、それぞれ0.
0 1 5%以下とする。
p, s: Both P and S reduce weldability, so 0.
0 1 5% or less.

Cr: Crは耐食性並びに強化のために必要な元素として添加
し、良好な耐食性を得るためには少なくとも12.0%
以上が必要である。しかし,多すぎると組織安定性及び
靭性の低下を招き、その上限は20.0%である。した
がって、Criは12.0〜20.0%の範囲とする. Nb: Nbは析出強化元素として不町欠な元素である。
Cr: Cr is added as a necessary element for corrosion resistance and strengthening, and is at least 12.0% in order to obtain good corrosion resistance.
The above is necessary. However, if the content is too large, the structural stability and toughness will deteriorate, and the upper limit is 20.0%. Therefore, Cri is set in the range of 12.0 to 20.0%. Nb: Nb is an unpopular element as a precipitation strengthening element.

しかし、2.0%より少ないとその効果は少なく、また
多すぎると高温加工性及び靭性を低下させ、特に溶接性
に悪影響を及ぼし、その」二限は4.0%である。した
がって、N b itは2.0〜4.0%の範囲とする
However, if it is less than 2.0%, the effect will be small, and if it is too much, it will reduce high-temperature workability and toughness, and in particular will have an adverse effect on weldability, and the second limit is 4.0%. Therefore, N bit is set in the range of 2.0 to 4.0%.

Ti: Tiは.Nbと同様、析出強化元素として重要であるが
、0.7%より少ないとその効果は少なく、また多すぎ
ると、高温加工性及び靭性を低下させ、溶接性を低下さ
せ、その上限は2.5%である。
Ti: Ti is. Like Nb, it is important as a precipitation strengthening element, but if it is less than 0.7%, its effect is small, and if it is too much, it reduces high temperature workability, toughness, and weldability, and the upper limit is 2. It is 5%.

したがって、Tiffiは0.7〜2.5%の範囲とす
る。
Therefore, Tiffi is set in the range of 0.7 to 2.5%.

AQ: AQは析出強化に必要な元素であるが 0.2%未満で
はこれらの効果は少なく、また多すぎると高温加工性及
び靭性を低下させ、そのし限は0.8%である。したが
って.AQfJcは0.2〜0.8%の範囲とする。
AQ: AQ is an element necessary for precipitation strengthening, but if it is less than 0.2%, these effects will be small, and if it is too much, it will reduce high temperature workability and toughness, and the upper limit is 0.8%. therefore. AQfJc is in the range of 0.2 to 0.8%.

Mo: MOは固溶強化元素として効果があり,特に低温におけ
る強度(0.2%耐力)の増加が著しい。
Mo: MO is effective as a solid solution strengthening element, and the strength (0.2% yield strength) increases particularly at low temperatures.

また,Moの添加は溶接時、H A Zの割れを低減す
る効果がある。このような効果は1.0%以下の添加で
は少なく、また5.0%を超えると靭性を低下させる。
Furthermore, the addition of Mo has the effect of reducing H A Z cracking during welding. Such an effect is small when the addition amount is 1.0% or less, and when it exceeds 5.0%, the toughness decreases.

したがって、M o iは1.0%を超え、5 . Q
%以トの範囲とする。
Therefore, M o i exceeds 1.0% and 5. Q
% or less.

Ni: Niはオーステナイトを安定化させ、非磁性を確保する
と共にγ ,γ″相による析出強化を図るために必要な
元素であり、そのために38.0%以上が必要である。
Ni: Ni is an element necessary to stabilize austenite, ensure nonmagnetism, and strengthen precipitation by γ and γ″ phases, and for this purpose, 38.0% or more is required.

しかし、Ni量が49.0%を超えると組織安定性及び
強度の低下を招くので、Ni量は38.0〜4980%
の範囲とする。
However, if the Ni amount exceeds 49.0%, the structure stability and strength will decrease, so the Ni amount should be 38.0 to 4980%.
The range shall be .

残部はFe及び不純物である。不純物としては、B等が
あるが、Bitは0.0005%以下に抑制することが
望ましい。
The remainder is Fe and impurities. Impurities include B and the like, but it is desirable to suppress Bit to 0.0005% or less.

但し、Nb.Tiの各量は、上記の範囲内において以下
の条件を満足することが重要である。
However, Nb. It is important that each amount of Ti satisfies the following conditions within the above range.

すなわち、3.5%≦Nb+Tiを満足することにより
、80kgf/mm”以上の高い室温耐力が得られる。
That is, by satisfying 3.5%≦Nb+Ti, a high room temperature yield strength of 80 kgf/mm'' or more can be obtained.

また、溶接熱影響部の割れは粒界に偏析したNb.Ti
が溶接時に液化するために生ずるが、N b + T 
i≦((Mo/ 4 )+ 4 . 6 )%を満足す
ることにより、HAZの割れを防止することができ、優
れた溶接性が得られる. したがって,3.5%≦Nb+Ti≦((Mo/4)+
4.6)%の条件を満足することによって,優れた溶接
性と室温及び低温での優れた強度を同時に満足させるこ
とができる。
In addition, cracks in the weld heat affected zone are caused by Nb segregated at grain boundaries. Ti
is produced because it liquefies during welding, but N b + T
By satisfying i≦((Mo/4)+4.6)%, cracking of the HAZ can be prevented and excellent weldability can be obtained. Therefore, 3.5%≦Nb+Ti≦((Mo/4)+
By satisfying the condition of 4.6)%, it is possible to simultaneously satisfy excellent weldability and excellent strength at room temperature and low temperature.

なお、上記化学或分を有するNi基合金は、常法により
溶製されるが,鋳造用を除き、鍛造、押出、圧延等の種
々の塑性加工により製造され、極低温を利用した機器の
構造材料用として適用することができる。
Ni-based alloys with the above chemical properties are melted by conventional methods, but other than those for casting, they are manufactured by various plastic working methods such as forging, extrusion, and rolling, and are used for the construction of equipment that utilizes cryogenic temperatures. It can be applied as a material.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 第l表に示す化学成分を有する供試材を高周波真空溶解
により20kgインゴットとし,熱間鍛造によって30
mm厚の板材とした。
(Example) A 20 kg ingot was made from a test material having the chemical composition shown in Table 1 by high frequency vacuum melting, and 30 kg was made by hot forging.
It was made into a plate material with a thickness of mm.

得られた板材を引張試験及び溶接試験に供した。The obtained plate material was subjected to a tensile test and a welding test.

まず,引張試験は、溶体化処理として980℃X3hr
保持後油冷し、続いて、時効処理として72 o6cx
 8hr+6 2 0℃X8hr保持後空冷した。
First, the tensile test was conducted at 980°C for 3 hours as a solution treatment.
After holding, oil cooling, followed by aging treatment at 72 o6cx
After holding at 8 hr + 620°C for 8 hr, it was air cooled.

この試験結果を第1図及び第2図に示す。The test results are shown in FIGS. 1 and 2.

また、溶接試験は,得られた板材Ha 1〜Na 7、
&10−Nal3を溶体化処理後,第3図に示す形状に
加工し,第4図に示す要領で拘束し,第2表に示す条件
でTIG溶接を行った。溶接後,溶接まま及び時効処理
を施した材料について,溶接方向と直角方向の断面を切
り出し、鏡面研磨したものを光学顕微鏡によって溶接熱
影響部の割れの有無を観察することにより、溶接割れ性
の評価を行った。その結果を第5図に示す。
In addition, the welding test was performed on the obtained plate materials Ha 1 to Na 7,
After solution treatment, &10-Nal3 was processed into the shape shown in FIG. 3, restrained as shown in FIG. 4, and TIG welded under the conditions shown in Table 2. After welding, cross-sections of the as-welded and aged materials are cut out in a direction perpendicular to the welding direction, and the cross-sections are mirror-polished and examined with an optical microscope for the presence or absence of cracks in the weld heat-affected zone. We conducted an evaluation. The results are shown in FIG.

以上の試験結果より,以下の如く考察される。Based on the above test results, the following considerations can be made.

第1図は,室温(3 0 0 K)及び液体ヘリウム温
度(4K)で引張試験を行った結果を示している。
FIG. 1 shows the results of tensile tests conducted at room temperature (300 K) and liquid helium temperature (4 K).

いずれの供試材も、0.2%耐力はNb+Tiiの増加
と共に増加している。一般に析出強化型のNi基合金で
は、Nb及びTi量を増加するとγγ″相などの金属間
化合物の析出量が増加することにより、強度が増すこと
が知られているが、Nb+Ti量を3.5%以上に規制
することにより、室温における0.2%耐力が8 0 
kgf / IIIn”以上を有し、優れた強度を示す
In all test materials, the 0.2% yield strength increases as Nb+Tii increases. Generally, in precipitation-strengthened Ni-based alloys, it is known that increasing the amount of Nb and Ti increases the amount of precipitated intermetallic compounds such as γγ'' phase, thereby increasing the strength. By regulating it to 5% or more, the 0.2% proof stress at room temperature is 80
kgf/IIIn” or more, showing excellent strength.

また,第2図は,ほぼ同量のNb+Ti量を有する供試
材Nα3〜Na 4、yα10について、液体ヘリウム
温度(4K)、液体窒素温度(7 7 K)及び室温(
3 0 0 K)で引張試験を行った結果を示している
.この結果より.Moを添加することによって優れた低
温強度を示し、低温において高強度を要求される場合は
MOを添加することが有効であることがわかる。
Furthermore, Figure 2 shows the liquid helium temperature (4K), liquid nitrogen temperature (77K), and room temperature (
The results of a tensile test at 300 K) are shown. From this result. It can be seen that the addition of Mo shows excellent low-temperature strength, and that adding MO is effective when high strength is required at low temperatures.

一方、第5図の溶接試験結果より、Nb+Tj量が多く
なる程.HAZに割れを生ずる傾向が有ることがわかる
。しかし.Moを添加することによって、HAZ割れを
抑制する効果がある。
On the other hand, from the welding test results shown in Figure 5, as the amount of Nb+Tj increases. It can be seen that there is a tendency for cracks to occur in the HAZ. but. Adding Mo has the effect of suppressing HAZ cracking.

この第5図により、HAZ割れを生じないためのMO量
とNi+Ti量の関係はほぼ次式のようになる。
According to FIG. 5, the relationship between the amount of MO and the amount of Ni+Ti for preventing HAZ cracking is approximately expressed by the following equation.

Nb+Ti≦((Mo/ 4 )+ 4 . 6 )%
なお、比較材No 1 0は溶接性は良好であるものの
、第2図に示したように低温強度が低い。
Nb+Ti≦((Mo/4)+4.6)%
In addition, although comparative material No. 1 0 has good weldability, as shown in FIG. 2, low-temperature strength is low.

したかって、Mo量を1.0〜5.0%の範囲に規制し
、かつ365%≦Nb+Ti≦((Mo/4)+4.6
)%を満足する本発明材は、室温により極低温まで優れ
た強度を有すると共に、溶接熱影響部ニ割れを生ずるこ
とがないことが確認された。
Therefore, the amount of Mo should be regulated within the range of 1.0 to 5.0%, and 365%≦Nb+Ti≦((Mo/4)+4.6
)%, it was confirmed that the material of the present invention has excellent strength from room temperature to extremely low temperature, and does not cause cracking in the weld heat affected zone.

[以下余白1 Nb+Ti  (l,JtZ) (発明の効果) 以上詳述したように、本発明によれば,常温から極低温
まで室温0.2%耐力≧8 0 kgf / mn2の
如く高強度を有し、且つHAZ割れを生じない溶接性の
優れた極低温用Ni基合金を提供することができる。
[Margin below 1 Nb+Ti (l, JtZ) (Effects of the invention) As detailed above, according to the present invention, high strength such as room temperature 0.2% proof stress ≧80 kgf/mn2 can be achieved from room temperature to extremely low temperature. It is possible to provide a cryogenic Ni-based alloy with excellent weldability that does not cause HAZ cracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は室温(3 0 0 K)及び液体ヘリウム温度
(4K)で引張試験を行った結果を示す図、第2図は液
体ヘリウム温度(4K)、液体窒素温度(7 7 K)
及び室温(3 0 0 K)で引張試験を行った結果を
示す図、 第3図は溶接試験片の形状、寸法を示す図、第4図は溶
接試験片の拘束条件を説明する図、第5図は溶接試験結
果をMo量とNb+Ti量の関係を示す図である。
Figure 1 shows the results of a tensile test at room temperature (300K) and liquid helium temperature (4K), Figure 2 shows the results of a tensile test at room temperature (300K) and liquid helium temperature (4K), and Figure 2 shows the results at liquid helium temperature (4K) and liquid nitrogen temperature (77K).
Figure 3 is a diagram showing the shape and dimensions of the welded test piece, Figure 4 is a diagram explaining the constraint conditions of the welded test piece, FIG. 5 is a diagram showing the relationship between the amount of Mo and the amount of Nb+Ti based on the welding test results.

Claims (1)

【特許請求の範囲】 重量%で(以下、同じ)、C:0.03%以下、Si:
0.25%以下、Mn:0.25%以下、P:0.01
5%以下、S:0.015%以下、Ni:38.0〜4
9.0%、Cr:12.0〜20.0%、Nb:2.0
〜4.0%、Ti:0.7〜2.5%、Al:0.2〜
0.8%及びMo:1.0%を超え5.0%以下を含み
、かつ 3.5%≦Nb+Ti≦((Mo/4)+4.6)%を
満足し、残部がFe及び不純物からなることを特徴とす
る極低温用Ni基合金。
[Claims] In weight% (the same applies hereinafter), C: 0.03% or less, Si:
0.25% or less, Mn: 0.25% or less, P: 0.01
5% or less, S: 0.015% or less, Ni: 38.0-4
9.0%, Cr: 12.0-20.0%, Nb: 2.0
~4.0%, Ti:0.7~2.5%, Al:0.2~
0.8% and Mo: more than 1.0% and 5.0% or less, and satisfies 3.5%≦Nb+Ti≦((Mo/4)+4.6)%, with the remainder being Fe and impurities. A cryogenic Ni-based alloy characterized by the following properties:
JP23346089A 1989-09-08 1989-09-08 Ni-base alloy for cryogenic use Pending JPH0397823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23346089A JPH0397823A (en) 1989-09-08 1989-09-08 Ni-base alloy for cryogenic use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23346089A JPH0397823A (en) 1989-09-08 1989-09-08 Ni-base alloy for cryogenic use

Publications (1)

Publication Number Publication Date
JPH0397823A true JPH0397823A (en) 1991-04-23

Family

ID=16955381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23346089A Pending JPH0397823A (en) 1989-09-08 1989-09-08 Ni-base alloy for cryogenic use

Country Status (1)

Country Link
JP (1) JPH0397823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806047A1 (en) 2013-05-21 2014-11-26 Daido Steel Co.,Ltd. Precipitation hardened FE-NI alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806047A1 (en) 2013-05-21 2014-11-26 Daido Steel Co.,Ltd. Precipitation hardened FE-NI alloy
JP2015004125A (en) * 2013-05-21 2015-01-08 大同特殊鋼株式会社 PRECIPITATION HARDENED Fe-Ni ALLOY

Similar Documents

Publication Publication Date Title
EP2119802B1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP4529872B2 (en) High Mn steel material and manufacturing method thereof
JPS60133996A (en) Welding material having excellent creep rupture ductility
JPS6184359A (en) Heat resistant austenitic cast steel
US3514284A (en) Age hardenable nickel-iron alloy for cryogenic service
JPH04218642A (en) Low thermal expansion superalloy
US5425912A (en) Low expansion superalloy with improved toughness
JPH0397823A (en) Ni-base alloy for cryogenic use
JPH03122243A (en) High strength aluminum alloy plate material for welding excellent in stress corrosion cracking resistance
JPH03122248A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JPS59226151A (en) Austenitic high-alloy stainless steel with superior weldability and hot workability
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP3281685B2 (en) Hot bolt material for steam turbine
JP3365190B2 (en) Post heat treatment method for α + β type titanium alloy welded members
JP3254002B2 (en) High temperature bolt material
JPH01215491A (en) Covered arc welding electrode for cr-mo low alloy steel
JP2021021130A (en) Austenitic heat-resistant alloy weld joint
JPS5953653A (en) Very thick steel for low temperature use with superior toughness at weld zone
JPH0578791A (en) High toughness ferritic stainless steel for use at high temperature
JP3137426B2 (en) High temperature bolt material
JPS62243742A (en) Austenitic stainless steel having superior creep rupture strength
JP3837083B2 (en) One-pass large heat input welding method with excellent weld heat-affected zone toughness
JP4215161B2 (en) Welded structure made of low thermal expansion coefficient alloy and welding material for low thermal expansion coefficient alloy
JPS648692B2 (en)