JP4215161B2 - Welded structure made of low thermal expansion coefficient alloy and welding material for low thermal expansion coefficient alloy - Google Patents

Welded structure made of low thermal expansion coefficient alloy and welding material for low thermal expansion coefficient alloy Download PDF

Info

Publication number
JP4215161B2
JP4215161B2 JP2003402532A JP2003402532A JP4215161B2 JP 4215161 B2 JP4215161 B2 JP 4215161B2 JP 2003402532 A JP2003402532 A JP 2003402532A JP 2003402532 A JP2003402532 A JP 2003402532A JP 4215161 B2 JP4215161 B2 JP 4215161B2
Authority
JP
Japan
Prior art keywords
thermal expansion
expansion coefficient
low thermal
less
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003402532A
Other languages
Japanese (ja)
Other versions
JP2004268137A (en
JP2004268137A5 (en
Inventor
弘征 平田
和博 小川
真人 池辺
尚重 久保
修二 山本
毅彦 枝光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003402532A priority Critical patent/JP4215161B2/en
Publication of JP2004268137A publication Critical patent/JP2004268137A/en
Publication of JP2004268137A5 publication Critical patent/JP2004268137A5/ja
Application granted granted Critical
Publication of JP4215161B2 publication Critical patent/JP4215161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、液化天然ガスのような低温物質の貯蔵や輸送に使用される貯蔵タンクや管、その管を突き合わせて周溶接してつなぎ合わせた、いわゆる配管および付属する各種の機器であって、Fe−Ni系低熱膨張係数合金で構成され、少なくともその一部に溶接部分を有する物(本発明では、これらを総称して「低熱膨張係数合金製溶接構造物」という)と、この低熱膨張係数合金製溶接構造物の製造に用いるのに好適な製造性に優れた低熱膨張係数合金用溶接材料に関する。   The present invention is a storage tank and pipes used for storage and transportation of low-temperature substances such as liquefied natural gas, so-called pipes and various devices attached to the pipes, which are joined together by circumferential welding. An alloy composed of an Fe—Ni-based low thermal expansion coefficient alloy and having a welded portion at least in part (in the present invention, these are collectively referred to as “welded structure made of low thermal expansion coefficient alloy”), and this low thermal expansion coefficient The present invention relates to a welding material for a low thermal expansion coefficient alloy excellent in manufacturability suitable for use in manufacturing an alloy welded structure.

Fe−Ni系合金の中で特定の成分比を有するものが非常に小さい線膨張係数を有することはインバー効果として広く知られている。その代表的なものとしてはFe−36%Ni、Fe−42%Niが挙げられる。これらは、その低熱膨張係数を活かして、温度変化による伸縮が問題となる部位等に使用されている。   It is widely known as the Invar effect that an Fe—Ni alloy having a specific component ratio has a very small linear expansion coefficient. Typical examples thereof include Fe-36% Ni and Fe-42% Ni. These have been used in areas where expansion and contraction due to temperature changes is a problem, taking advantage of its low thermal expansion coefficient.

Fe−Ni系低熱膨張係数合金からなる部材を溶接接合して溶接構造物に組み立てる場合、母材と同等の熱膨張係数を有する溶接材料を使用するのが望ましいことはいうまでもない。そのため、以下に示すような種々の共金系の低熱膨張係数合金用溶接材料が提案されている。   Needless to say, it is desirable to use a welding material having a thermal expansion coefficient equivalent to that of the base material when a member made of an Fe—Ni low thermal expansion coefficient alloy is welded and assembled into a welded structure. Therefore, various types of welding materials for low thermal expansion coefficient alloys as shown below have been proposed.

(a) Ni、Fe以外に、C:0.05〜0.5%、Nb:0.5〜5%を含み、必要に応じてMn、Ti、Al、Ce、Mg等を選択的に含有させることにより、溶接時の耐溶接割れ性を向上させた溶接材料(特許文献1)。   (a) In addition to Ni and Fe, C: 0.05 to 0.5%, Nb: 0.5 to 5%, optionally containing Mn, Ti, Al, Ce, Mg, etc. By making it, the welding material which improved the weld cracking resistance at the time of welding (patent document 1).

(b) Ni:30〜45%、C:0.03〜0.3%、Nb:0.1〜3%、P:0.015%以下、S:0.005%以下、Si:0.05〜0.6%、Mn:0.05〜4%、Al:0.05%以下およびO:0.015%以下に制限するとともに、NbとCの関係を[%Nb]×[%C]≧0.01と規定することによって凝固組織を微細にし、多層溶接時の耐再熱割れ性および靭性を両立させ得るようにした溶接材料(特許文献2)。   (b) Ni: 30-45%, C: 0.03-0.3%, Nb: 0.1-3%, P: 0.015% or less, S: 0.005% or less, Si: 0.00. While limiting to 05-0.6%, Mn: 0.05-4%, Al: 0.05% or less, and O: 0.015% or less, the relationship between Nb and C is [% Nb] × [% C ] A welding material in which the solidification structure is made fine by defining ≧ 0.01 so that both reheat cracking resistance and toughness during multi-layer welding can be achieved (Patent Document 2).

(c) CとNbの含有量を、−0.01[%Nb]+0.04≦[%C]≦−0.04[%Nb]+0.40を満たす値とすることによって凝固組織を微細にし、多層溶接時の再熱割れを防止する一方、Si、Mn、Al、O、S量を所定の範囲に規定することによって全姿勢での円周溶接を可能となした溶接材料(特許文献3)。   (c) By setting the contents of C and Nb to a value satisfying −0.01 [% Nb] + 0.04 ≦ [% C] ≦ −0.04 [% Nb] +0.40, the solidified structure is refined. In addition, while preventing reheat cracking during multi-layer welding, welding materials that enable circumferential welding in all positions by regulating the amounts of Si, Mn, Al, O, and S within a predetermined range (Patent Documents) 3).

(d) Nbまたは/およびZrの含有量をS量およびSi量との関係で制限して、その炭化物によって凝固組織を複雑にし、溶接金属の耐溶接割れ性、靭性および耐SCC性を両立させた溶接金属を有する溶接構造物と、Nbまたは/およびZrの含有量をC量との関係で制限するとともに、Si、Mn、Al、O、S量の関係を規定することによって、全姿勢での溶接性と製造性を向上させた溶接材料(特許文献4)。   (d) Limiting the content of Nb or / and Zr in relation to the amount of S and the amount of Si, making the solidified structure complicated by the carbide, and achieving both weld crack resistance, toughness and SCC resistance of the weld metal By limiting the content of Nb or / and Zr in relation to the amount of C and the relationship between the amounts of Si, Mn, Al, O, and S in all positions Welding material with improved weldability and manufacturability (Patent Document 4).

(e) TiとNbをそれぞれ0.1〜0.5%の範囲で添加し、これらの炭化物もしくは酸化物を生成させて凝固組織を微細にし、多層溶接時の耐溶接割れ性、中でも耐再熱割れ性および靭性、円周溶接性等を向上させ得るようにした溶接材料(特許文献5)。   (e) Ti and Nb are added in the range of 0.1 to 0.5%, respectively, and these carbides or oxides are formed to refine the solidification structure, and weld crack resistance during multilayer welding, A welding material that can improve thermal cracking and toughness, circumferential weldability, etc. (Patent Document 5).

(f) Ta:0.1〜1.5%、Ti:0.05〜0.5%で、C、Nb、Ta、Tiの含有量が、20×C/(2Nb+Ta+4Ti)≧1.0、{1.3×(Ta/181)+(Ti/48)−1.2×(Nb/93)}×100≧0.5を満たす低熱膨張係数Fe−Ni合金用溶接材料(特許文献6)。   (f) Ta: 0.1 to 1.5%, Ti: 0.05 to 0.5%, and the content of C, Nb, Ta, and Ti is 20 × C / (2Nb + Ta + 4Ti) ≧ 1.0, {1.3 × (Ta / 181) + (Ti / 48) −1.2 × (Nb / 93)} × welding material for Fe—Ni alloy satisfying 100 ≧ 0.5 (Patent Document 6) .

しかし、上記(a)〜(f)の低熱膨張率合金用溶接材料には、これを実際の溶接構造物の製造に適用した場合、次のような問題がある。   However, the above-mentioned welding materials for low thermal expansion alloys (a) to (f) have the following problems when applied to the production of an actual welded structure.

(a) の溶接材料は、溶接時に生じる割れのうち、当該溶接時に得られる溶接金属部分に割れが生じる凝固割れに関しては十分に考慮されているが、大型の溶接構造物などの厚肉材の多層溶接時に先の溶接で得られた溶接金属部分が後の溶接の熱サイクルを受けて割れる再熱割れについては十分には考慮されておらず、多層溶接には安心して使用できない。   In the welding material (a), of the cracks that occur during welding, solidification cracks that cause cracks in the weld metal part obtained during the welding are fully considered, but thick welded materials such as large welded structures are considered. The reheat cracking in which the weld metal part obtained by the previous welding during the multi-layer welding breaks due to the heat cycle of the subsequent welding is not sufficiently considered, and cannot be used with confidence in the multi-layer welding.

これに対し、(b)〜(e)の溶接材料は、多層溶接時の再熱割れに関して考慮されているが、その具体的な手段は、いずれも、NbやZr、あるいはTiを添加し、これらの炭化物や酸化物を形成させることで凝固組織を微細で複雑な組織にして多層溶接時の再熱割れを防止することを特徴としている。   On the other hand, the welding materials (b) to (e) are considered with respect to reheat cracking during multi-layer welding, but all of their specific means add Nb, Zr, or Ti, By forming these carbides and oxides, the solidified structure becomes a fine and complex structure, and reheat cracking during multilayer welding is prevented.

本発明者らが行った試験結果によれば、確かに、Nb、Zr、およびTiを添加した場合には、これらが凝固時に液相中で炭素と結合して共晶炭化物を生成し、凝固組織が微細で複雑な組織となり、多層溶接時の再熱割れ防止に有効であった。   According to the test results conducted by the present inventors, when Nb, Zr, and Ti are added, they are bonded to carbon in the liquid phase during solidification to produce eutectic carbides. The structure was fine and complex, and was effective in preventing reheat cracking during multi-layer welding.

ところが、Nb、ZrおよびTiの添加量の許容範囲は狭く、これらの添加量が過剰な場合、言い換えれば、添加したこれら元素の全量が凝固時に液相中で共晶炭化物を形成せず、液相中にフリーな状態で存在した場合には、凝固割れ感受性が著しく増大し、凝固割れが発生することが明らかとなった。これは、実際の商業生産に際しては、これら元素の添加量を厳密に管理する必要があること、および性能確保の余裕度が小さいことを意味する。   However, the allowable range of the addition amount of Nb, Zr and Ti is narrow, and when these addition amounts are excessive, in other words, the total amount of these added elements does not form eutectic carbides in the liquid phase at the time of solidification. When it was present in a free state in the phase, it became clear that the solidification cracking sensitivity was remarkably increased and solidification cracking occurred. This means that in actual commercial production, it is necessary to strictly control the addition amount of these elements, and the margin for securing performance is small.

(f)の溶接材料は、TiとTaを複合添加し、これらの炭化物により凝固組織を微細にし、溶接時の高温割れを防止することを特徴としている。しかし、本発明者らの検討によれば、Taは溶接時の酸化消耗が大きく、例えば管の全姿勢自動円周溶接などで健全な裏波形成を確保するのに必要なU開先を用いる母材希釈の大きい溶接の場合、あるいはプラズマ溶接などのように母材希釈の大きい溶接の場合、溶接割れ防止効果は必ずしも十分ではない。   The welding material (f) is characterized in that Ti and Ta are added in combination, the solidified structure is refined by these carbides, and hot cracking during welding is prevented. However, according to the studies by the present inventors, Ta has a large amount of oxidation consumption during welding, and uses a U groove necessary for ensuring a sound back wave formation in, for example, automatic all-around circumferential welding of a pipe. In the case of welding with a large base metal dilution or welding with a large base material dilution such as plasma welding, the effect of preventing weld cracking is not always sufficient.

特開平4−231194号公報JP-A-4-231194

特開平8−267272号公報JP-A-8-267272 特開平11−104885号公報Japanese Patent Laid-Open No. 11-104885 WO00/20160号公報WO00 / 20160 Publication 特開2001−179486号公報JP 2001-179486 A 特開2003−19593号公報JP 2003-19593 A

本発明の第1の目的は、十分な耐溶接割れ性、即ち耐凝固割れ性および耐再熱割れ性は勿論、極低温での靭性にも優れた溶接金属を有する低熱膨張係数合金製溶接構造物を提供することにある。また、第2の目的は、前記の溶接金属を確実に得ることができるだけでなく、性能確保の余裕度が大きくて所定の性能を有する製品が安定して得られるという製造性にも優れた低熱膨張率合金用溶接材料を提供することにある。   A first object of the present invention is to provide a welded structure made of a low thermal expansion coefficient alloy having a weld metal having excellent weld cracking resistance, that is, solidification cracking resistance and reheat cracking resistance as well as toughness at extremely low temperatures. To provide things. In addition, the second object is not only to obtain the above-mentioned weld metal reliably, but also to provide a low heat which is excellent in manufacturability in that a product having a predetermined performance can be stably obtained with a large margin for securing performance. It is to provide a welding material for an expansion coefficient alloy.

第3の目的は、例えば管の全姿勢自動円周溶接において、健全な裏波形成確保に必要なU開先を用いる母材希釈の大きい溶接や、プラズマ溶接のように母材希釈の大きい溶接においても、上記のような優れた特性を有する溶接金属を確実に形成することができる溶接材料を提供することにある。   The third purpose is, for example, automatic welding of all postures of a pipe, welding with a large base metal dilution using a U groove necessary for ensuring sound back-wave formation, and welding with a large base material dilution such as plasma welding. However, it is providing the welding material which can form the weld metal which has the above outstanding characteristics reliably.

本発明の要旨は、下記(1)および(2)の低熱膨張係数合金製溶接構造物と、(3)および(4)の低熱膨張係数合金用溶接材料にある。
(1)溶接で接合される部材の少なくとも一方がFe−Ni系低熱膨張係数合金製の部材である溶接構造物であって、溶接接合部の溶接金属が、質量%で、Ni:30〜45%、C:0.01〜0.5%、Si:0.01〜0.5%、Mn:0.01〜1.0%、Al:0.0002〜0.02%を含み、さらに、0.1%を超えて4%以下のTaを含有し、残部はFeおよび不純物からなり、不純物中のSが0.015%以下、Pが0.015%以下、O(酸素)が0.05%以下であることを特徴とする低熱膨張係数合金製溶接構造物。
(2)溶接で接合される部材の少なくとも一方がFe−Ni系低熱膨張係数合金製の部材である溶接構造物であって、溶接接合部の溶接金属が、質量%で、Ni:30〜45%、C:0.01〜0.5%、Si:0.01〜0.5%、Mn:0.01〜1.0%、Al:0.0002〜0.02%を含み、さらに、合計で0.1%を超えて4%以下のTaおよびHf(ただし、Hf含有量の上限は1.75%とする)を含有し、残部はFeおよび不純物からなり、不純物中のSが0.015%以下、Pが0.015%以下、O(酸素)が0.05%以下であることを特徴とする低熱膨張係数合金製溶接構造物
(3)質量%で、Ni:30〜45%、C:0.01〜0.5%、Si:0.01〜0.5%、Mn:0.01〜1.0%、Al:0.0002〜0.02%を含み、さらに、1.5%を超えて6%以下のTaを含有し、残部はFeおよび不純物からなり、不純物中のSが0.015%以下、Pが0.015%以下、O(酸素)が0.05%以下であることを特徴とする低熱膨張係数合金用溶接材料。
(4)質量%で、Ni:30〜45%、C:0.01〜0.5%、Si:0.01〜0.5%、Mn:0.01〜1.0%、Al:0.0002〜0.02%を含み、さらに、合計で0.1%を超えて6%以下のTaおよびHf(ただし、Hf含有量の上限は2.56%とし、TaとHfの合計含有量が1.5%以下の場合は、Hfを0.1%を超える量とする)を含有し、残部はFeおよび不純物からなり、不純物中のSが0.015%以下、Pが0.015%以下、O(酸素)が0.05%以下であることを特徴とする低熱膨張係数合金用溶接材料
The gist of the present invention resides in the following (1) and (2) low thermal expansion coefficient alloy welded structures, and (3) and (4) welding materials for low thermal expansion coefficient alloys.
(1) A welded structure in which at least one of the members joined by welding is a member made of an Fe—Ni-based low thermal expansion coefficient alloy, and the weld metal of the weld joint is in mass%, Ni: 30 to 45 %, C: 0.01~0.5%, Si : 0.01~0.5%, Mn: 0.01~1.0%, Al: it comprises from 0.0002 to 0.02 percent, in further , 0 . It contains more than 1% and not more than 4% Ta, and the balance consists of Fe and impurities, S in the impurities is 0.015% or less, P is 0.015% or less, O (oxygen) is 0.05% A welded structure made of a low thermal expansion coefficient alloy, characterized by:
(2) A welded structure in which at least one of the members to be joined by welding is a member made of an Fe—Ni-based low thermal expansion coefficient alloy, and the weld metal of the weld joint is in mass%, and Ni: 30 to 45 %, C: 0.01 to 0.5%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.0%, Al: 0.0002 to 0.02%, It contains Ta and Hf in excess of 0.1% and 4% or less in total (however, the upper limit of the Hf content is 1.75%), the balance consists of Fe and impurities, and S in the impurities is 0 A welded structure made of a low thermal expansion coefficient alloy, characterized in that it is 015% or less, P is 0.015% or less, and O (oxygen) is 0.05% or less .
(3) By mass%, Ni: 30 to 45%, C: 0.01 to 0.5%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.0%, Al: 0 .0002-0.02%, and more than 1.5% and not more than 6% Ta , the balance being Fe and impurities, S in the impurity being 0.015% or less, P being 0 A welding material for a low thermal expansion coefficient alloy, characterized in that the content is 0.15% or less and O (oxygen) is 0.05% or less.
(4) In mass%, Ni: 30 to 45%, C: 0.01 to 0.5%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.0%, Al: 0 .0002 to 0.02%, and more than 0.1% in total and 6% or less Ta and Hf (however, the upper limit of the Hf content is 2.56%, and the total content of Ta and Hf Is 1.5% or less, Hf is contained in an amount exceeding 0.1%), the balance is Fe and impurities, S in the impurities is 0.015% or less, and P is 0.015 %, And O (oxygen) is 0.05% or less, a welding material for a low thermal expansion coefficient alloy .

本発明の低熱膨張係数合金製溶接構造物を構成する溶接金属および低熱膨張係数合金用溶接材料は、いずれも、Feの一部に代えて、次の第1群から第4群までのうちの少なくとも1群の中から選んだ少なくとも1種の成分を含むものであってもよい。   The welding metal and the welding material for the low thermal expansion coefficient alloy constituting the welded structure made of the low thermal expansion coefficient alloy of the present invention are both of the following first to fourth groups instead of a part of Fe. It may contain at least one component selected from at least one group.

第1群…質量%で、Co:0.1〜10%。
第2群…質量%で、Nb、ZrおよびTiのうちの1種以上を合計で0.01 〜0.05%。
第3群…質量%で、Ca、Mg、LaおよびCeのうちの1種以上を合計で0 .0005〜0.01%。
First group: mass%, Co: 0.1 to 10%.
Second group: mass% and one or more of Nb, Zr and Ti in total 0.01 to 0.05%.
Third group:% by mass, and one or more of Ca, Mg, La and Ce in total 0. 0005-0.01%.

第4群…質量%で、B:0.0005〜0.008%。   Fourth group:% by mass, B: 0.0005 to 0.008%.

本発明者らは、前記の課題を達成するために種々実験を行った結果、以下のことを知見して上記の本発明を完成させた。   As a result of various experiments to achieve the above-mentioned problems, the present inventors have found the following and completed the present invention.

まず、多層溶接時に発生した再熱割れの詳細な観察を行った。その結果、再熱割れが発生した結晶粒界には、Si、Cが顕著に濃化している部分とSが顕著に濃化している部分が認められた。また、破面形態の観察の結果、Si、Cが濃化している部分では溶融痕が認められ、Sが濃化している部分は粒界で破断している様子が観察された。   First, detailed observation of reheat cracks that occurred during multilayer welding was performed. As a result, a portion where Si and C were significantly concentrated and a portion where S was significantly concentrated were observed at the grain boundary where reheat cracking occurred. Further, as a result of observation of the fracture surface form, it was observed that melting marks were observed in the portion where Si and C were concentrated, and that the portion where S was concentrated was broken at the grain boundary.

以上のことから、再熱割れは、次パスの熱サイクルにより、先に形成されたビード(溶接金属)の結晶粒界に偏析したSi、CがマトリックスのFeと低融点の共晶化合物を生成し、液化開口するか、またはSが粒界に偏析するため粒界固着力が小さくなり、その部分が熱応力により開口するためであると考えられた。   From the above, reheat cracking is caused by the thermal cycle of the next pass, and Si and C segregated at the grain boundaries of the previously formed beads (welded metal) form a low-melting eutectic compound with Fe in the matrix. However, it was considered that the liquefaction opening or S segregates at the grain boundary, so that the grain boundary fixing force becomes small and the part opens due to thermal stress.

そして、Nb、ZrおよびTiを添加した場合、前述した特許文献2、3、4および5にも記載されているように、再熱割れが防止できることを確認した。これらの効果は、Nb、ZrおよびTiが凝固時に液相中で炭素と結合し、共晶炭化物を生成するため、柱状晶の境界に偏析したSi、CがFeと低融点の共晶化合物を生成することを抑制するのに加えて、共晶炭化物の生成に伴いSの偏析サイトであるデンドライト境界および粒界の形状が複雑となり、その面積が増大することにより、Sの偏析が分散し、粒界固着力の低下が抑制されるためであると考えられた。   And when Nb, Zr, and Ti were added, it was confirmed that reheat cracking can be prevented as described in Patent Documents 2, 3, 4, and 5 described above. These effects are that Nb, Zr, and Ti combine with carbon in the liquid phase during solidification to produce eutectic carbides, so that Si and C segregated at the boundaries of the columnar crystals can form Fe and a low-melting eutectic compound. In addition to suppressing generation, the formation of eutectic carbides complicates the shape of the dendrite boundary and grain boundaries, which are the segregation sites of S, and increases the area thereof, thereby dispersing the segregation of S, It was thought that this was because the decrease in grain boundary fixing force was suppressed.

ところが、本発明者らがさらに検討を進めた結果、前述したとおり、Nb、ZrおよびTiが凝固中に炭化物として固定される以上の量で含有されていて、液相中にフリーな元素として存在する場合には、凝固割れ感受性が著しく増大することが判明した。その理由としては、次のように考えられた。   However, as a result of further investigations by the present inventors, as described above, Nb, Zr and Ti are contained in an amount more than that fixed as carbides during solidification and exist as free elements in the liquid phase. In this case, it has been found that the susceptibility to solidification cracking is remarkably increased. The reason was considered as follows.

即ち、Nb、ZrおよびTiは、固液間の分配係数が小さく、疑固時に液相中に濃化し、固液共存温度域を拡大させる元素である。液相中に炭素が十分に存在する場合には、Nb、ZrおよびTiは炭化物として液相中から晶出し、これらの元素濃度が低下するため、固液共存温度域の拡大が抑制される。しかし、Nb、ZrおよびTiが炭素の固定に必要な量よりも過剰に存在する場合には、液相中にこれらの元素がフリーな状態で存在するため、固液共存温度域の拡大を招き、疑固割れ感受性が増大する。これは、実際の商業生産に際して溶接金属および溶接材料の成分管理の余裕度が狭いことを意味しており、所定の性能を有する製品を安定して製造する上で問題となる。   That is, Nb, Zr, and Ti are elements that have a small partition coefficient between the solid and the liquid, concentrate in the liquid phase at the time of suspicion, and expand the solid-liquid coexistence temperature range. When carbon is sufficiently present in the liquid phase, Nb, Zr and Ti are crystallized from the liquid phase as carbides, and the concentration of these elements decreases, so that the expansion of the solid-liquid coexistence temperature range is suppressed. However, if Nb, Zr and Ti are present in excess of the amount necessary for carbon fixation, these elements are present in a free state in the liquid phase, leading to an expansion of the solid-liquid coexistence temperature range. Susceptibility to cracking increases. This means that the margin of component management of the weld metal and welding material is narrow in actual commercial production, which is a problem in stably producing a product having a predetermined performance.

そこで、この問題を解決すべく、発明者らがさらに検討を重ねた結果、Nb、ZrおよびTiを活用するよりも、むしろこれらの元素に比べて原子量が非常に大きいTaおよびHfを活用することで、再熱割れを防止できることに加え、凝固割れ防止に対しても、十分な余裕度が得られることが明らかとなった。その理由は以下に述べるとおりである。   Therefore, as a result of further investigations by the inventors to solve this problem, rather than using Nb, Zr and Ti, rather than using Ta and Hf, which have a very large atomic weight compared to these elements. Thus, in addition to preventing reheat cracking, it has been clarified that a sufficient margin can be obtained for preventing solidification cracking. The reason is as described below.

TaおよびHfは、Nb、ZrおよびTiと同様に、凝固時に液相中に濃化し、液相中で炭素と結合し、共晶炭化物((Ta、Hf)C)を形成するが、これらの共晶炭化物は高温まで安定である。このため、多層溶接時の溶接熱サイクルにより前のビード(溶接金属)が加熱されても柱状晶の境界に偏析したSi、CがFeと共晶を生成することがない。加えて、その共晶炭化物は、Nb、ZrおよびTiの共晶炭化物と同様に、凝固組織を微細で複雑な組織にする。その結果、Sの偏析サイトである柱状晶の境界面積が増大し、単位粒界面積あたりのSの偏析量が減少して粒界固着力の低下が抑制され、Si、Cの偏析に起因した割れ、およびSの偏析に起因した割れのいずれもが発生しなくなる。   Ta and Hf, like Nb, Zr and Ti, concentrate in the liquid phase during solidification and combine with carbon in the liquid phase to form eutectic carbides ((Ta, Hf) C). Eutectic carbides are stable up to high temperatures. For this reason, even if the previous bead (welded metal) is heated by the welding heat cycle at the time of multilayer welding, Si and C segregated at the boundaries of the columnar crystals do not form eutectic with Fe. In addition, the eutectic carbide, like the eutectic carbides of Nb, Zr and Ti, makes the solidified structure fine and complex. As a result, the boundary area of the columnar crystals that are the segregation sites of S is increased, the amount of S segregation per unit grain interfacial area is decreased, and the decrease in the intergranular adhesion force is suppressed, resulting from the segregation of Si and C. Neither cracks nor cracks due to segregation of S occur.

また、TaおよびHfは、Nb、ZrおよびTiに比べて原子量が大きいために、同じ量のCを共晶炭化物として固定するのに必要な量が多くなる。このため、組成的過冷却の効果が大きくなり、結晶の主成長方向に対して直交する方向への結晶の成長がより促進され、いわゆる枝結晶が生成しやすくなる。その結果、粒界の形状は、Nb、ZrおよびTiを活用した場合よりも一層複雑になり、再熱割れ防止効果が一段と向上する。   Further, since Ta and Hf have a larger atomic weight than Nb, Zr and Ti, an amount necessary for fixing the same amount of C as eutectic carbide is increased. For this reason, the effect of compositional supercooling is increased, the crystal growth in the direction orthogonal to the main growth direction of the crystal is further promoted, and so-called branch crystals are easily formed. As a result, the shape of the grain boundary becomes more complicated than when Nb, Zr and Ti are used, and the reheat cracking prevention effect is further improved.

さらに、Cを共晶炭化物として固定するのに必要な量を超えるTaおよびHfは、当然に液相中にフリーな状態で存在するが、この場合でも、Nb、ZrおよびTiに比べ、固液共存温度域の拡大幅が小さく、凝固割れ防止に対する余裕度も大きいことが判明した。言い換えれば、TaおよびHfを活用した場合、実際の商業生産において耐凝固割れ性と耐再熱割れ性の両方に優れた溶接金属および溶接材料の成分管理の余裕度が拡大し、これらを安定して製造できることが明らかとなった。   Further, Ta and Hf exceeding the amount necessary for fixing C as eutectic carbide are naturally present in a free state in the liquid phase, but even in this case, compared with Nb, Zr and Ti, It was found that the expansion range of the coexisting temperature range was small and the margin for preventing solidification cracking was large. In other words, when Ta and Hf are used, the margin of component management of weld metal and welding material, which is excellent in both solidification cracking resistance and reheat cracking resistance in actual commercial production, is expanded and stabilized. It became clear that it can be manufactured.

さらにまた、Taに関して次に述べる事実が判明した。即ち、Taは溶接時に酸化消耗が大きいので、溶接材料中のTa含有量が少ないと、母材希釈の大きい溶接では溶接金属中に十分に有効なTa量を確保できず、溶接割れ防止の効果が小さくなる。従って、溶接材料には酸化消耗と母材希釈の両者を考慮して、十分な量のTaを含有させる必要がある。   Furthermore, the following facts regarding Ta have been found. In other words, since Ta consumes a large amount of oxidation during welding, if the Ta content in the welding material is low, welding with a large dilution of the base metal cannot secure a sufficiently effective amount of Ta in the weld metal, and is effective in preventing weld cracking. Becomes smaller. Therefore, it is necessary that the welding material contains a sufficient amount of Ta in consideration of both oxidation consumption and base material dilution.

具体的には、溶接金属において、再熱割れ発生の直接の要因であるC、SiおよびS量をそれぞれ0.5%以下、0.5%以下および0.015%以下に制限するとともに、Taを0.1%を超えて4%以下の範囲で、またはTaおよびHfを合計で0.1%を超えて4%以下(ただし、Hf含有量の上限は1.75%とする)の範囲で含有させることにより、多層溶接時の高温割れ(再熱割れと疑固割れ)を確実に防止しうることが明らかとなった。 Specifically, in the weld metal, C is a direct cause of reheat cracking, 0.5% Si and S content respectively less, while limited to 0.5% or less and 0.015% or less, Ta In the range of more than 0.1% to 4% or less, or Ta and Hf in total exceeding 0.1% to 4% or less (however, the upper limit of the Hf content is 1.75%) It has been clarified that the high temperature cracking (reheat cracking and suspicion cracking) during multi-layer welding can be surely prevented by containing in the above.

一方、溶接材料では、再熱割れ発生の直接の要因であるC、SiおよびS量をそれぞれ0.5%以下、0.5%以下および0.015%以下に制限するとともに、1.5%を超えて6%以下のTaまたは合計で0.1%を超えて6%以下のTaおよびHf(ただし、Hf含有量の上限は2.56%とし、TaとHfの合計含有量が1.5%以下の場合は、Hf含有量を0.1%を超える量とする)を含有させることにより、多層溶接時の高温割れ(再熱割れと疑固割れ)を確実に防止しうることが明らかとなった。 On the other hand, in the welding material, the amount of C, Si and S, which are direct causes of reheat cracking, is limited to 0.5% or less, 0.5% or less and 0.015% or less, respectively, and 1.5% beyond 6% or less of Ta or the Ta of 6% or less exceeds 0.1% in total, and Hf (where the upper limit of the Hf content is 2.56%, and the total content of Ta and Hf In the case of 1.5% or less, by containing Hf content exceeding 0.1%, high temperature cracking (reheat cracking and suspicious cracking) during multi-layer welding can be surely prevented It became clear.

なお、一般にTa含有量を高めると溶接ワイヤを製造する際の加工性が低下する。しかし、後に実施例の項で述べるような適正な温度範囲で強加工を加えて、熱間加工に有害な粗大なTa炭化物を細かくして分散させ、熱間加工割れへの影響を小さくすることにより、加工性の低下を抑制することができる。これも本発明者らが新たに見出したことであり、それによって1.5%を超えるTaを含む溶接材料の実用化が可能になった。   In general, when the Ta content is increased, the workability when manufacturing a welding wire is lowered. However, by applying strong processing in an appropriate temperature range as described later in the Examples section, coarse Ta carbide harmful to hot working is finely dispersed to reduce the effect on hot working cracks. Thus, it is possible to suppress a decrease in workability. This is also a new finding by the present inventors, which has made it possible to put to practical use a welding material containing more than 1.5% Ta.

以下、本発明の低熱膨張係数合金製溶接構造物を構成する溶接金属および低熱膨張係数合金用溶接材料を前記のように定めた理由について詳細に説明する。なお、以下において「%」は、特に断らない限り「質量%」を意味する。また、低熱膨張係数合金製溶接構造物を構成する溶接金属と溶接材料とに共通する事項については、特に区別することなく説明する。   Hereinafter, the reason why the welding metal and the welding material for the low thermal expansion coefficient alloy constituting the low thermal expansion coefficient alloy welded structure of the present invention are determined as described above will be described in detail. In the following, “%” means “mass%” unless otherwise specified. The matters common to the weld metal and the weld material constituting the welded structure made of a low thermal expansion coefficient alloy will be described without particular distinction.

Ni:30〜45%
Niは低熱膨張合金を構成する主要元素である。十分低い線膨張係数を得るためには、30〜45%の含有量とする必要がある。下限として好ましいのは32%、より好ましいのは34%である。また、上限として好ましいのは44%、より好ましいのは43%である。
Ni: 30-45%
Ni is a main element constituting the low thermal expansion alloy. In order to obtain a sufficiently low linear expansion coefficient, the content needs to be 30 to 45%. The lower limit is preferably 32%, and more preferably 34%. The upper limit is preferably 44%, and more preferably 43%.

C:0.01〜0.5%
Cは母材のマトリックスであるオーステナイト相を安定にするとともに、TaおよびHfと共晶炭化物を形成して溶接金属の組織を微細かつ複雑にし、再熱割れ感受性を低下させる元素であり、0.01%以上の含有量が必要である。しかし、0.5%を超えるCは、溶接金属の粒界に偏析したSiおよびマトリックスのFeと反応し、低融点化合物を生成し、逆に再熱割れ感受性を増大させる。このため、C含有量は0.01〜0.5%とする。下限として好ましいのは0.02%、より好ましいのは0.05%である。また、上限として好ましいのは0.45%、より好ましいのは0.4%である。
C: 0.01 to 0.5%
C is an element that stabilizes the austenite phase that is the matrix of the base material, forms eutectic carbides with Ta and Hf, makes the weld metal microstructure finer and more complex, and lowers reheat cracking susceptibility. A content of 01% or more is necessary. However, C exceeding 0.5% reacts with Si segregated at the grain boundaries of the weld metal and Fe of the matrix to form a low melting point compound, and conversely increases reheat cracking susceptibility. For this reason, C content shall be 0.01 to 0.5%. The lower limit is preferably 0.02%, and more preferably 0.05%. Further, the upper limit is preferably 0.45%, and more preferably 0.4%.

Si:0.01〜0.5%
Siは脱酸剤として添加するが、0.01%未満の含有量では効果が得られない。一方、過剰なSiは溶接金属の凝固時に粒界に偏析し、CおよびマトリックスのFeと反応して低融点の化合物を生成して多層溶接時の再熱割れの原因となる。このため、Si含有量の上限は0.5%とする。下限として好ましいのは0.02%、より好ましいのは0.05%である。また、上限として好ましいのは0.45%、より好ましいのは0.4%である。
Si: 0.01 to 0.5%
Si is added as a deoxidizer, but if the content is less than 0.01%, no effect is obtained. On the other hand, excess Si segregates at the grain boundaries during solidification of the weld metal, reacts with C and the Fe of the matrix to form a low melting point compound, and causes reheat cracking during multilayer welding. For this reason, the upper limit of Si content is 0.5%. The lower limit is preferably 0.02%, and more preferably 0.05%. Further, the upper limit is preferably 0.45%, and more preferably 0.4%.

Mn:0.01〜1.0%
Mnも上記のSiと同様に脱酸剤として添加する。しかし、その含有量が0.01%未満では効果が得られない。一方、過剰なMnは溶接金属の靭性および耐食性を低下させるので、上限は1.0%とする。下限として好ましいのは0.02%、より好ましいのは0.05%である。また、上限として好ましいのは0.8%、より好ましいのは0.6%である。
Mn: 0.01 to 1.0%
Mn is also added as a deoxidizer in the same manner as Si. However, if the content is less than 0.01%, the effect cannot be obtained. On the other hand, excessive Mn lowers the toughness and corrosion resistance of the weld metal, so the upper limit is made 1.0%. The lower limit is preferably 0.02%, and more preferably 0.05%. The upper limit is preferably 0.8% and more preferably 0.6%.

Al:0.0002〜0.02%
Alも前記のSiおよびMnと同様に脱酸剤として添加するが、0.0002%未満の含有量では効果が得られない。一方、過剰なAlは介在物量を増加させ、溶接金属の靱性を劣化させる。そのため、Al含有量の上限は0.02%とする。下限として好ましいのは0.0005%、より好ましいのは0.001%である。また、上限として好ましいのは0.015%、より好ましいのは0.01%である。なお、溶接材料中のAl含有量が0.008%を超えると、溶接作業性が低下する。このため、溶接材料のAl含有量の上限は0.008%とするのが望ましい。
Al: 0.0002 to 0.02%
Al is also added as a deoxidizer in the same manner as Si and Mn described above, but if the content is less than 0.0002%, the effect cannot be obtained. On the other hand, excess Al increases the amount of inclusions and degrades the toughness of the weld metal. Therefore, the upper limit of the Al content is 0.02%. The lower limit is preferably 0.0005%, and more preferably 0.001%. The upper limit is preferably 0.015% and more preferably 0.01%. In addition, when the Al content in the welding material exceeds 0.008%, welding workability is deteriorated. For this reason, it is desirable that the upper limit of the Al content of the welding material is 0.008%.

Ta、Hf:
溶接金属ではTaを0.1%を超えて4%以下、またはTaとHfの2種合計で0.1%を超えて4%以下(ただし、Hf含有量の上限は1.75%)とする。
Ta, Hf:
In weld metal, Ta exceeds 0.1% and 4% or less, or the total of Ta and Hf exceeds 0.1% and 4% or less (however, the upper limit of Hf content is 1.75%) To do.

これらの元素は、いずれも、共晶炭化物を形成してCを固定するとともに、凝固組織を複雑にし、多層溶接時における溶接金属の耐再熱割れ性を向上させる作用を有する本発明にとって最も重要な元素の一つであり、Ta単独か、またはTaとHfの2種を合わせて含有させる。Taだけの場合、0.1%を超えて4%以下、2種の場合は、合計で0.1%を超えて4%以下、含有させる必要がある。即ち、Taの含有量または2種合計の含有量が0.1%以下では前記の効果が得られず、4%を超えると、液相中に濃化して固液共存温度幅を拡大させ、凝固割れ感受性の増大を招く。下限として好ましいのは0.5%超、より好ましいのは0.6%超である。また、上限として好ましいのは3%、より好ましいのは2.5%である。なお、TaとHfの2種を合わせて含有させる場合は、Hf含有量の上限は1.75%とするのが望ましいAll of these elements are most important for the present invention, which has the action of forming eutectic carbide and fixing C, complicating the solidification structure, and improving the reheat cracking resistance of the weld metal during multilayer welding. One of these elements, Ta alone or in combination of Ta and Hf . In the case of Ta alone , it is necessary to contain more than 0.1% to 4% or less, and in the case of two kinds, it is necessary to contain more than 0.1% to 4% or less in total. That is, if the content of Ta or the total content of the two types is 0.1% or less, the above effect cannot be obtained, and if it exceeds 4%, it concentrates in the liquid phase and expands the solid-liquid coexistence temperature range, Increases the sensitivity to solidification cracking. The lower limit is preferably more than 0.5%, more preferably more than 0.6%. The upper limit is preferably 3%, more preferably 2.5%. In addition, when two types of Ta and Hf are contained together, the upper limit of the Hf content is desirably 1.75% .

溶接材料には、1.5%を超えて6%までのTa、または合計で0.1%を超えて6%までのTaおよびHfを含有させる必要がある。Taを単独で添加する場合、その含有量が1.5%以下であれば、溶接時の酸化消耗が大きいので、前記のU開先を用いる溶接やプラズマ溶接のように、母材希釈の大きい溶接では溶接金属中に十分に有効なTa量を確保できず、溶接割れ防止の効果が小さくなる。Taの含有量が6%を超えると溶接過程で液相中にこれらが濃化し、凝固割れおよび靱性低下を招く。 The welding material should contain more than 1.5% to 6% Ta, or more than 0.1% to 6% Ta and Hf in total. When Ta is added alone, if the content is 1.5% or less, oxidation consumption during welding is large, so that the base material dilution is large, such as welding using the above-mentioned U groove or plasma welding. the welding can not be secured sufficiently effective amount of Ta in the weld metal, the effect of weld cracking prevention may turn reduced. When the content of Ta exceeds 6%, these concentrate in the liquid phase during the welding process, leading to solidification cracking and toughness reduction.

TaとHfの両方を含有させる場合は、合計含有量を0.1%を超えて6%まで(ただし、Hf含有量の上限は2.56%)とする。この下限値および上限値の限定理由は、上記のTaの単独含有の場合と同じである。なお、合計含有量を0.1%を超えて1.5%までの範囲とする場合は、その合計含有量中のHfの量が0.1%を超えるようにする必要がある。これは、例えば、合計含有量が1.0%のとき、Hfが0.05%でTaが0.95%という比率であれば、前記のようにTaの酸化消耗が大きいため、溶接金属中のTaおよびHfの量が不足するからである。 When both Ta and Hf are contained, the total content exceeds 0.1% and reaches 6% (however, the upper limit of the Hf content is 2.56%) . The reason for limiting the lower limit value and the upper limit value is the same as in the case of containing Ta alone . When the total content exceeds 0.1% and reaches 1.5%, the amount of Hf in the total content needs to exceed 0.1%. For example, when the total content is 1.0%, if the ratio of Hf is 0.05% and Ta is 0.95%, the oxidation consumption of Ta is large as described above. This is because the amount of Ta and Hf is insufficient.

P:0.015%以下
Pは不純物であり、過剰なPは溶接時の凝固割れ感受性を増大させるので、0.015%以下とする。好ましいのは0.012%以下、より好ましいのは0.010%以下である。P含有量は少ないほどよい。
P: 0.015% or less P is an impurity, and excessive P increases the susceptibility to solidification cracking during welding. It is preferably 0.012% or less, more preferably 0.010% or less. The lower the P content, the better.

S:0.015%以下
Sは上記のPと同様に不純物であり、溶接金属の凝固時に低融点の共晶物を形成し、凝固割れを発生させる。また、粒界に偏析して粒界固着力を低下させ、再熱割れ発生の原因となる。このため、S含有量は0.015%以下とする。好ましいのは0.012%以下、より好ましいのは0.010%以下である。S含有量も少ないほどよい。
S: 0.015% or less S is an impurity like P described above, and forms a eutectic having a low melting point during solidification of the weld metal, thereby causing solidification cracking. Moreover, it segregates at the grain boundary and lowers the grain boundary fixing force, causing reheat cracking. For this reason, S content shall be 0.015% or less. It is preferably 0.012% or less, more preferably 0.010% or less. The smaller the S content, the better.

O(酸素):0.05%以下
Oは鋼中に含まれる不純物元素であり、溶接金属ではその含有量が0.05%を超えると清浄度が著しく劣化し、脆化を招く。そのため、O含有量は0.05%以下とする。好ましいのは0.04%以下、より好ましいのは0.03%以下である。ただし、溶接材料中のO含有量が0.008%を超えると、合金が脆くなる。このため、溶接材料のO含有量は0.008%以下とするのが望ましい。なお、溶接金属および溶接材料ともにOの含有量は低いほどよい。
O (oxygen): 0.05% or less O is an impurity element contained in steel. When the content of the weld metal exceeds 0.05%, the cleanliness is significantly deteriorated and brittleness is caused. Therefore, the O content is 0.05% or less. Preferable is 0.04% or less, and more preferable is 0.03% or less. However, if the O content in the welding material exceeds 0.008%, the alloy becomes brittle. For this reason, it is desirable that the O content of the welding material be 0.008% or less. Note that the lower the O content, the better for the weld metal and the weld material.

本発明の低熱膨張係数合金製溶接構造物を構成する溶接金属および低熱膨張係数合金用溶接材料の一つは、上記の成分の外は実質的にFe、言い換えればFeと上記以外の不純物とからなるものである。   One of the weld metal and the welding material for the low thermal expansion coefficient alloy constituting the low thermal expansion coefficient alloy welded structure of the present invention is substantially composed of Fe, in other words, Fe and impurities other than the above. It will be.

本発明の低熱膨張係数合金製溶接構造物を構成する溶接金属および低熱膨張係数合金用溶接材料のもう一つは、Feの一部に代えて、前記の第1群から第4群までの少なくとも1群の中から選んだ少なくとも1種の成分を含む溶接金属および溶接材料である。以下、これらの成分について説明する。   Another of the weld metal and the welding material for the low thermal expansion coefficient alloy constituting the low thermal expansion coefficient alloy welded structure of the present invention is at least one of the first group to the fourth group, instead of a part of Fe. A weld metal and a weld material containing at least one component selected from the group. Hereinafter, these components will be described.

第1群(Co)
Coは前記のNiと同様に、低い線膨張係数を得るのに有効な元素である。このため、必要に応じて添加するが、0.1%未満の含有量では十分な効果が得られない。一方、CoはNiに比べて非常に高価であり、過剰な添加はコスト上昇を招く。従って、添加する場合のCo含有量は0.1〜10%とするのがよい。
First group (Co)
Co is an element effective for obtaining a low linear expansion coefficient like Ni described above. For this reason, although it adds as needed, sufficient effect is not acquired with content less than 0.1%. On the other hand, Co is very expensive compared to Ni, and excessive addition causes an increase in cost. Therefore, the Co content when added is preferably 0.1 to 10%.

第2群(Nb、ZrおよびTi)
これらの元素は、いずれも多層溶接時における溶接金属の再熱割れを防止するのに有効な元素である。このため、TaおよびHfによる再熱割れ防止効果を補う目的で必要に応じて1種以上を添加してもよいが、その合計含有量が0.01%未満では十分な効果が得られない。一方、合計で0.05%を超えると、液相中にフリーな元素として存在する量が多くなりすぎ、固液共存温度幅を拡大させて凝固割れ感受性の増大を招くようになる。従って、添加する場合のこれら元素の含有量は1種以上の合計で0.01〜0.05%とするのがよい。
Second group (Nb, Zr and Ti)
These elements are all effective elements for preventing reheat cracking of the weld metal during multilayer welding. For this reason, in order to supplement the effect of preventing reheat cracking due to Ta and Hf, one or more kinds may be added as necessary. However, if the total content is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.05% in total, the amount existing as a free element in the liquid phase becomes too large, and the solid-liquid coexistence temperature range is expanded to cause an increase in solidification cracking sensitivity. Therefore, the content of these elements when added is preferably 0.01 to 0.05% in total of one or more.

第3群(Ca、Mg、LaおよびCe)
これらの元素はいずれもSと結合し、高温で安定な硫化物を形成し、再熱割れ防止に寄与する効果がある。このため、この効果を得たい場合に1種以上を添加してもよいが、その合計含有量が0.0005%未満では十分な効果が得られない。一方、合計で0.01%を超えると、清浄度を劣化させ、加工性および靭性の劣化を招く。従って、添加する場合のこれら元素の含有量は1種以上の合計で0.0005〜0.01%とするのがよい。
Third group (Ca, Mg, La and Ce)
All of these elements combine with S to form sulfides that are stable at high temperatures, and have the effect of contributing to prevention of reheat cracking. For this reason, in order to obtain this effect, one or more kinds may be added. However, if the total content is less than 0.0005%, a sufficient effect cannot be obtained. On the other hand, if the total content exceeds 0.01%, the cleanliness is deteriorated and the workability and toughness are deteriorated. Accordingly, the content of these elements when added is preferably 0.0005 to 0.01% in total of one or more.

第4群(B)
Bは粒界に偏析しやすい元素であり、再熱過程でSよりも先に粒界に偏析してSの粒界偏析を軽減し、再熱割れ防止に寄与する効果がある。このため、この効果を得たい場合には添加してもよいが、その含有量が0.0005%未満では十分な効果が得られない。一方、0.008%を超えると、かえって凝固割れ感受性を高める。従って、添加する場合のB含有量は0.0005〜0.008%とするのがよい。
4th group (B)
B is an element that is easily segregated at the grain boundary, and has an effect of contributing to prevention of reheat cracking by segregating at the grain boundary prior to S during the reheating process to reduce grain boundary segregation of S. For this reason, when it is desired to obtain this effect, it may be added, but if its content is less than 0.0005%, a sufficient effect cannot be obtained. On the other hand, when it exceeds 0.008%, the solidification cracking sensitivity is increased. Therefore, the B content when added is preferably 0.0005 to 0.008%.

表1に示す化学組成を有する外径300mm、肉厚さ9.5mmの管の端部に機械加工により図1に示すU開先を設けた供試管を準備し、表2に示す化学組成を有する溶接材料を用いて、自動TIG溶接機で入熱10kJ/cmの円周溶接を実施した。   A test tube having a U groove shown in FIG. 1 was prepared by machining at the end of a tube having an outer diameter of 300 mm and a wall thickness of 9.5 mm having the chemical composition shown in Table 1, and the chemical composition shown in Table 2 was obtained. Using the welding material having, circumferential welding with a heat input of 10 kJ / cm was performed with an automatic TIG welding machine.

溶接材料は、表2に示す化学組成の素材に1150〜1250℃の温度範囲で鍛造比5の圧下を加え、その後1000〜1200℃の温度域で鍛造比10の圧下を加え、粗大Ta炭化物を細分化して分散させた素線材とし、この素線材を冷間加工と1100℃での軟化焼鈍とを繰り返して外径1.6mmの巻き線状の線材とした。   The welding material is a material having a chemical composition shown in Table 2, and a forging ratio of 5 is applied in a temperature range of 1150 to 1250 ° C., and then a forging ratio of 10 is applied in a temperature range of 1000 to 1200 ° C. The element wire was subdivided and dispersed, and the element wire was repeatedly subjected to cold working and soft annealing at 1100 ° C. to obtain a wound wire having an outer diameter of 1.6 mm.

上記の円周溶接によって得られた溶接継手から溶接線と直交する方向が長手方向となるように、厚さ2mm、幅9.5mm、長さ120mmの側曲げ試験片を採取し、曲げ面を鏡面研磨した後、曲げ半径4mmの条件で曲げ試験を行い、倍率500で曲げ面を観察し、割れ発生の有無を調査した。   A side bend specimen having a thickness of 2 mm, a width of 9.5 mm, and a length of 120 mm is taken from the welded joint obtained by the above circumferential welding so that the direction perpendicular to the weld line is the longitudinal direction, and the bending surface is After mirror polishing, a bending test was performed under the condition of a bending radius of 4 mm, the bending surface was observed at a magnification of 500, and the occurrence of cracks was investigated.

表3に溶接金属の化学組成および上記の調査の結果を示す。同表から明らかなように、符号WX1からWX9までの溶接材料を用いて得られた符号X1からX9までの溶接金属には割れの発生は認められなかった。一方、本発明で規定する化学組成を有しない符号WY1からWY3までの溶接材料を用いて得られた符号Y1〜Y3の溶接金属には割れが発生していた。 Table 3 shows the chemical composition of the weld metal and the results of the above investigation. As is clear from the table, no cracks were observed in the weld metals X1 to X9 obtained using the weld materials WX1 to WX9 . On the other hand, cracks occurred in the weld metals Y1 to Y3 obtained using the weld materials WY1 to WY3 having no chemical composition defined in the present invention.

Figure 0004215161
Figure 0004215161

Figure 0004215161
Figure 0004215161

Figure 0004215161
Figure 0004215161

実施例の結果から明らかなように、本発明で規定する化学組成の溶接金属を有する溶接構造物は、溶接部の耐割れ性に優れ、安全性が高い。また、本発明の溶接材料によれば、前記の溶接構造物を確実に製造できる。さらに、本発明の溶接材料は、溶接金属の組織を微細かつ複雑な組織にする共晶炭化物の形成元素としてTaおよびHfを使用しているので、その性能確保の余裕度が大きく、所定の性能を有する製品を安定して製造できる。本発明の溶接材料によれば、特に管の全姿勢自動円周溶接で、健全な裏波形成確保に必要なU開先を用いる母材希釈の大きな溶接やプラズマ溶接などの母材希釈の大きい溶接においても、耐割れ性に優れ、安全性の高い溶接金属を有する溶接構造物を得ることができる。   As is clear from the results of Examples, a welded structure having a weld metal having a chemical composition defined in the present invention is excellent in crack resistance of a welded portion and has high safety. Moreover, according to the welding material of this invention, the said welded structure can be manufactured reliably. Furthermore, since the welding material of the present invention uses Ta and Hf as the eutectic carbide forming elements that make the microstructure of the weld metal fine and complex, the margin for securing the performance is large, and the predetermined performance A product having the above can be manufactured stably. According to the welding material of the present invention, especially in all-round automatic circumferential welding of pipes, large dilution of the base metal such as welding of the base metal using a U groove necessary for ensuring sound back-wave formation and plasma welding is large. Also in welding, it is possible to obtain a welded structure having a weld metal having excellent crack resistance and high safety.

実施例で用いた供試管の開先形状を示す図である。It is a figure which shows the groove shape of the test tube used in the Example.

符号の説明Explanation of symbols

1、2:供試管の突き合わせ部
1, 2: Test tube butt

Claims (12)

溶接で接合される部材の少なくとも一方がFe−Ni系低熱膨張係数合金製の部材である溶接構造物であって、溶接接合部の溶接金属が、質量%で、Ni:30〜45%、C:0.01〜0.5%、Si:0.01〜0.5%、Mn:0.01〜1.0%、Al:0.0002〜0.02%を含み、さらに、0.1%を超えて4%以下のTaを含有し、残部はFeおよび不純物からなり、不純物中のSが0.015%以下、Pが0.015%以下、O(酸素)が0.05%以下であることを特徴とする低熱膨張係数合金製溶接構造物。 At least one of the members to be joined by welding is a welded structure that is a member made of an Fe—Ni-based low thermal expansion coefficient alloy, and the weld metal in the weld joint is in mass%, Ni: 30 to 45%, C : 0.01~0.5%, Si: 0.01~0.5% , Mn: 0.01~1.0%, Al: comprises from 0.0002 to 0.02%, in addition, 0. It contains more than 1% and not more than 4% Ta, and the balance consists of Fe and impurities, S in the impurities is 0.015% or less, P is 0.015% or less, O (oxygen) is 0.05% A welded structure made of a low thermal expansion coefficient alloy, characterized by: 溶接で接合される部材の少なくとも一方がFe−Ni系低熱膨張係数合金製の部材である溶接構造物であって、溶接接合部の溶接金属が、質量%で、Ni:30〜45%、C:0.01〜0.5%、Si:0.01〜0.5%、Mn:0.01〜1.0%、Al:0.0002〜0.02%を含み、さらに、合計で0.1%を超えて4%以下のTaおよびHf(ただし、Hf含有量の上限は1.75%とする)を含有し、残部はFeおよび不純物からなり、不純物中のSが0.015%以下、Pが0.015%以下、O(酸素)が0.05%以下であることを特徴とする低熱膨張係数合金製溶接構造物 At least one of the members to be joined by welding is a welded structure that is a member made of an Fe—Ni-based low thermal expansion coefficient alloy, and the weld metal in the weld joint is in mass%, Ni: 30 to 45%, C : 0.01 to 0.5%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.0%, Al: 0.0002 to 0.02%, and 0 in total 0.1% to 4% or less of Ta and Hf (the upper limit of the Hf content is 1.75%), with the balance being Fe and impurities, S in the impurity being 0.015% Hereinafter, P is 0.015% or less, and O (oxygen) is 0.05% or less . A welded structure made of a low thermal expansion coefficient alloy . 溶接金属が、Feの一部に代えて、質量%で、Coを0.1〜10%含有する請求項1または2に記載の低熱膨張係数合金製溶接構造物。 The welding structure made of a low thermal expansion coefficient alloy according to claim 1 or 2 , wherein the weld metal contains 0.1 to 10% of Co by mass% instead of a part of Fe. 溶接金属が、Feの一部に代えて、質量%で、Nb、ZrおよびTiのうちの1種以上を合計で0.01〜0.05%含有する請求項1から3までのいずれかに記載の低熱膨張係数合金製溶接構造物。 The weld metal according to any one of claims 1 to 3 , wherein the weld metal contains 0.01 to 0.05% in total of at least one of Nb, Zr and Ti in mass% instead of part of Fe. The welded structure made of a low thermal expansion coefficient alloy as described. 溶接金属が、Feの一部に代えて、質量%で、Ca、Mg、LaおよびCeのうちの1種以上を合計で0.0005〜0.01%含有する請求項1からまでのいずれかに記載の低熱膨張係数合金製溶接構造物。 The weld metal according to any one of claims 1 to 4 , wherein the weld metal contains 0.0005 to 0.01% in total of at least one of Ca, Mg, La and Ce in mass% instead of a part of Fe. A welded structure made of a low thermal expansion coefficient alloy according to claim 1. 溶接金属が、Feの一部に代えて、質量%で、Bを0.0005〜0.008%含有する請求項1からまでのいずれかに記載の低熱膨張係数合金製溶接構造物。 The weld structure according to any one of claims 1 to 5 , wherein the weld metal contains 0.0005 to 0.008% B in mass% instead of part of Fe. 質量%で、Ni:30〜45%、C:0.01〜0.5%、Si:0.01〜0.5%、Mn:0.01〜1.0%、Al:0.0002〜0.02%を含み、さらに、1.5%を超えて6%以下のTaを含有し、残部はFeおよび不純物からなり、不純物中のSが0.015%以下、Pが0.015%以下、O(酸素)が0.05%以下であることを特徴とする低熱膨張係数合金用溶接材料。 In mass%, Ni: 30-45%, C: 0.01-0.5%, Si: 0.01-0.5%, Mn: 0.01-1.0%, Al: 0.0002- It contains 0.02%, further contains more than 1.5% and 6% or less of Ta , the balance is made of Fe and impurities, S in the impurities is 0.015% or less, and P is 0.015% Hereinafter, a welding material for a low thermal expansion coefficient alloy, characterized in that O (oxygen) is 0.05% or less. 質量%で、Ni:30〜45%、C:0.01〜0.5%、Si:0.01〜0.5%、Mn:0.01〜1.0%、Al:0.0002〜0.02%を含み、さらに、合計で0.1%を超えて6%以下のTaおよびHf(ただし、Hf含有量の上限は2.56%とし、TaとHfの合計含有量が1.5%以下の場合は、Hfを0.1%を超える量とする)を含有し、残部はFeおよび不純物からなり、不純物中のSが0.015%以下、Pが0.015%以下、O(酸素)が0.05%以下であることを特徴とする低熱膨張係数合金用溶接材料 In mass%, Ni: 30-45%, C: 0.01-0.5%, Si: 0.01-0.5%, Mn: 0.01-1.0%, Al: 0.0002- Further, Ta and Hf including 0.02% and exceeding 0.1% in total and 6% or less (however, the upper limit of Hf content is 2.56%, and the total content of Ta and Hf is 1. In the case of 5% or less, Hf is an amount exceeding 0.1%), the balance is made of Fe and impurities, S in the impurities is 0.015% or less, P is 0.015% or less, A welding material for low thermal expansion coefficient alloys, characterized in that O (oxygen) is 0.05% or less . Feの一部に代えて、質量%で、Coを0.1〜10%含有する請求項7または8に記載の低熱膨張係数合金用溶接材料。 The welding material for a low thermal expansion coefficient alloy according to claim 7 or 8, which contains 0.1 to 10% of Co by mass% instead of part of Fe. Feの一部に代えて、質量%で、Nb、ZrおよびTiのうちの1種以上を合計で0.01〜0.05%含有する請求項7から9までのいずれかに記載の低熱膨張係数合金用溶接材料。 The low thermal expansion according to any one of claims 7 to 9 , wherein, in place of a part of Fe, at least 1% of Nb, Zr, and Ti is contained in a total of 0.01 to 0.05% by mass%. Welding material for coefficient alloys. Feの一部に代えて、質量%で、Ca、Mg、LaおよびCeのうちの1種以上を合計で0.0005〜0.01%含有する請求項7から10までのいずれかに記載の低熱膨張係数合金用溶接材料。 Instead of a part of Fe, by mass%, Ca, Mg, claim 7 containing 0.0005 to 0.01 percent in total of one or more of La and Ce as set forth in any one of up to 10 Welding material for low thermal expansion coefficient alloys. Feの一部に代えて、質量%で、Bを0.0005〜0.008%含有する請求項7から11までのいずれかに記載の低熱膨張係数合金用溶接材料。 The welding material for a low thermal expansion coefficient alloy according to any one of claims 7 to 11 , which contains 0.0005% to 0.008% B in mass% instead of a part of Fe.
JP2003402532A 2003-02-18 2003-12-02 Welded structure made of low thermal expansion coefficient alloy and welding material for low thermal expansion coefficient alloy Expired - Lifetime JP4215161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402532A JP4215161B2 (en) 2003-02-18 2003-12-02 Welded structure made of low thermal expansion coefficient alloy and welding material for low thermal expansion coefficient alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003040321 2003-02-18
JP2003402532A JP4215161B2 (en) 2003-02-18 2003-12-02 Welded structure made of low thermal expansion coefficient alloy and welding material for low thermal expansion coefficient alloy

Publications (3)

Publication Number Publication Date
JP2004268137A JP2004268137A (en) 2004-09-30
JP2004268137A5 JP2004268137A5 (en) 2005-11-04
JP4215161B2 true JP4215161B2 (en) 2009-01-28

Family

ID=33134107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402532A Expired - Lifetime JP4215161B2 (en) 2003-02-18 2003-12-02 Welded structure made of low thermal expansion coefficient alloy and welding material for low thermal expansion coefficient alloy

Country Status (1)

Country Link
JP (1) JP4215161B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113689920B (en) * 2021-08-19 2023-09-08 北京理工大学重庆创新中心 Component design method of alloy heterogeneous welding joint

Also Published As

Publication number Publication date
JP2004268137A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
EP2048255B1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
KR101256268B1 (en) Austenitic stainless steel
US8137613B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP4835771B1 (en) Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
JP3446294B2 (en) Duplex stainless steel
KR20210033519A (en) Solid wire for gas metal arc welding
JP5370537B2 (en) Martensitic stainless steel for welded structures
EP1338663A1 (en) Ni-base heat-resistant alloy and weld joint using the same
WO2016129666A1 (en) Method for manufacturing austenitic heat-resistant alloy welded joint, and welded joint obtained using same
JP4835770B1 (en) Welding material for austenitic heat resistant steel, weld metal and welded joint using the same
WO2014119197A1 (en) SUBMERGED ARC WELDING WIRE FOR HIGH-STRENGTH 2.25Cr-1Mo-V STEEL AND WELD METAL
JPWO2019098034A1 (en) Austenitic heat-resistant steel Welded metal, welded joints, austenitic heat-resistant steel welding materials, and methods for manufacturing welded joints
WO2014119189A1 (en) Coated electrode
KR20230133347A (en) Submerged arc welded joints
KR20230098880A (en) Wire for submerged arc welding and method for manufacturing a welded joint using the same
JPH11277292A (en) Welding metal and welding joint for high temp. high strength steel
JP4215161B2 (en) Welded structure made of low thermal expansion coefficient alloy and welding material for low thermal expansion coefficient alloy
JP2002331387A (en) Welding wire for highly touch martensite based-stainless steel
JP6638552B2 (en) Welding material for austenitic heat-resistant steel
WO2018066573A1 (en) Austenitic heat-resistant alloy and welding joint using same
JPS6199661A (en) High strength and high toughness welded clad steel pipe for line pipe
JP7360032B2 (en) Austenitic heat resistant steel welded joints
JP7029034B1 (en) Welded joints and their manufacturing methods
JP2014140884A (en) Welding material for austenitic heat resisting steel, and weld metal and weld joint manufactured by using the same
JP7376767B2 (en) Ferritic heat-resistant steel dissimilar welded joint and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081029

R150 Certificate of patent or registration of utility model

Ref document number: 4215161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250