JPH0397673A - Production of silicon nitride sintered body - Google Patents

Production of silicon nitride sintered body

Info

Publication number
JPH0397673A
JPH0397673A JP1233000A JP23300089A JPH0397673A JP H0397673 A JPH0397673 A JP H0397673A JP 1233000 A JP1233000 A JP 1233000A JP 23300089 A JP23300089 A JP 23300089A JP H0397673 A JPH0397673 A JP H0397673A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintering
sintered body
temperature
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1233000A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ota
博康 大田
Hiroyoshi Tonai
藤内 弘喜
Michiyasu Komatsu
通泰 小松
Hiroshi Izuhara
浩 出原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1233000A priority Critical patent/JPH0397673A/en
Publication of JPH0397673A publication Critical patent/JPH0397673A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the large-sized sintered body excellent in strength by forming a mixture of the silicon nitride material and a specified amt. of a sintering assistant, keeping the formed body at a specified temp. for a specified time when the body is heated to a specified sintering temp., then heating the body to the sintering temp. and sintering the body. CONSTITUTION:A mixture of the silicon nitride material and <=10wt.% of the sintering assistant is formed. The formed body is kept at 1400-1650 deg.C for a specified time when the body is heated to a specified sintering temp., then heated to the sintering temp. and calcined. The keeping time is preferably set at 10-60min. The sintering temp. of the formed body is generally controlled to about 1700-2000 deg.C.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は窒化けい素焼結体の製造方法に係り、特に窒化
けい素原料に含まれる遊離シリカの影響を低減し、強度
特性に優れた大型の窒化けい素焼結体を形成することが
可能な窒化けい素焼結体の製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a silicon nitride sintered body, and in particular reduces the influence of free silica contained in the silicon nitride raw material, and improves the strength. The present invention relates to a method for manufacturing a silicon nitride sintered body that can form a large-sized silicon nitride sintered body with excellent properties.

(従来の技術) 窒化けい素(Si3N4)、炭化けい素(Sic)、ア
ルミナ(A 203)、ジルコニア(ZrO2)などの
セラミックス焼結体は硬度、耐摩耗性、耐熱性、耐腐食
性等に優れているため、自動車用エンジン、機械、発電
用または航空機用のガスタービン部品や高温耐摩材料と
して広く普及しつつある。
(Prior art) Ceramic sintered bodies such as silicon nitride (Si3N4), silicon carbide (Sic), alumina (A203), and zirconia (ZrO2) have excellent hardness, wear resistance, heat resistance, corrosion resistance, etc. Because of its excellent properties, it is becoming widely used as a high-temperature wear-resistant material and as gas turbine parts for automobile engines, machinery, power generation, and aircraft.

特に窒化けい素焼結体は、その耐摩耗性、高温耐食性に
注目され、上記分野以外にもベアリング用ボールや精密
治工具および各種摺動部品等に使用され、さらに電気的
絶縁性などの特別の機能を付加した機能性セラミック部
品として電子部品等に広く使用されている。
In particular, silicon nitride sintered bodies have attracted attention for their wear resistance and high-temperature corrosion resistance, and are used not only in the above fields but also in bearing balls, precision jigs, and various sliding parts, and have special properties such as electrical insulation. It is widely used in electronic components as a functional ceramic component with added functions.

かかる窒化けい素焼結体は通常、けい素、二酸化けい素
、その他シリケート化合物などのシリコン含有材を出発
原料にして、空気から分離した窒素と反応させて合成し
た窒化けい素粉末に酸化イットリウム(Y 2 0 a
 )などの焼結助剤を添加して混合し、得られた混合体
を加圧焼結法またはホットプレス法によって成形し、得
られた成形体を第1図に破線で示すように1700〜2
000°C程度の温度で2〜6時間加熱焼或後、自然放
冷させて製造されている。
Such silicon nitride sintered bodies are usually made by using silicon-containing materials such as silicon, silicon dioxide, and other silicate compounds as starting materials, and adding yttrium oxide (Y 2 0 a
) and other sintering aids are added and mixed, and the resulting mixture is molded by a pressure sintering method or a hot press method, and the molded product obtained is 1,700 to 2
It is manufactured by baking at a temperature of about 1,000°C for 2 to 6 hours and then allowing it to cool naturally.

(発明が解決しようとする課題) しかしながら原料となる窒化けい素粉末は他のセラミッ
クス原料と比較して焼結性が極めて低く、窒化けい素粉
末を単体で使用した場合には加圧焼結やホットプレス法
による以外には焼結助剤等を添加しない方法で緻密な焼
結体を得ることは困難である。
(Problem to be solved by the invention) However, silicon nitride powder, which is a raw material, has extremely low sinterability compared to other ceramic raw materials, and when silicon nitride powder is used alone, pressure sintering and It is difficult to obtain a dense sintered body by any method other than the hot pressing method without adding a sintering aid or the like.

そこで比較的に低圧下において緻密で高強度を有する焼
結体を得ようとする場合には、焼結助剤として酸化イッ
トリウム(Y203)などの希土類酸化物、またはアル
カリ土類金属酸化物等をセラミックス原料に対して20
〜30重量%添加することが一般に行なわれている。
Therefore, when trying to obtain a sintered body that is dense and has high strength under relatively low pressure, rare earth oxides such as yttrium oxide (Y203) or alkaline earth metal oxides are used as sintering aids. 20 for ceramic raw materials
It is generally practiced to add up to 30% by weight.

これらの焼結助剤は、Si3N4原料粉末に付着した遊
離シリカ(F…−SiO2)や酸素と反応して液相を生
成し焼結体の緻密化を促進するものである。
These sintering aids react with free silica (F...-SiO2) and oxygen attached to the Si3N4 raw material powder to generate a liquid phase and promote densification of the sintered body.

しかしながらこれらの焼結助剤は成形焼結時においては
、Si3N4原料の緻密化に有用である一方、焼結体が
高温構造材料として使用された場合には、高温度条件で
組織を軟化させる作用があり、S i 3 N4本来の
強度を低下させてしまう問題点がある。そのためSi3
N4焼結体の高温強度特性を保持するためには、焼結助
剤の添加殴を可及的に抑制し、焼結体の密度を上げるこ
とが望まれている。
However, while these sintering aids are useful for densifying the Si3N4 raw material during shaping and sintering, when the sintered body is used as a high-temperature structural material, they have the effect of softening the structure under high-temperature conditions. There is a problem that the original strength of S i 3 N4 is reduced. Therefore, Si3
In order to maintain the high-temperature strength characteristics of the N4 sintered body, it is desired to suppress the addition of sintering aids as much as possible and increase the density of the sintered body.

一方、焼結体の原料となるSi3N4粉末表面には、そ
の製造工程において混入した微量の遊離シリカ(S t
 02 )が付着しており、原料組或を一定に調整した
場合においても、この遊離シリカの多少によって窒化け
い素焼結体の焼結密度が変化してしまう問題点がある。
On the other hand, the surface of the Si3N4 powder, which is the raw material for the sintered body, contains a trace amount of free silica (S t
02) is adhered to the silicon nitride sintered body, and even if the raw material composition is adjusted to a constant value, there is a problem that the sintered density of the silicon nitride sintered body changes depending on the amount of this free silica.

例えば焼結助剤としてY 2 0 3およびA  2 
03を添加したSi3N4から成るセラミックス原料を
ホットプレス法によって加圧焼結する場合、焼結時には
次のように焼結反応が進行する。すなわち、Si3N4
と、Si3N4に付着した遊離シリカ(S i02 )
と焼結助剤とが反応し、St −A  −Y−0−N系
ガラス層が生成されると同時に、低密度のαSi3N4
が高密度のβ一Si3N4に転位することによって焼結
体の緻密化が促進される。
For example, Y 2 0 3 and A 2 as sintering aids
When a ceramic raw material made of Si3N4 doped with 03 is pressure sintered by a hot press method, the sintering reaction proceeds as follows during sintering. That is, Si3N4
and free silica (S i02 ) attached to Si3N4.
and the sintering aid to form a St-A-Y-0-N glass layer, and at the same time, a low-density αSi3N4
The densification of the sintered body is promoted by dislocation into high-density β-Si3N4.

ところが遊離シリカ量が多量に存在すると上記ガラス層
の軟化温度が低下し、外部加熱方式によって昇熱される
戊形体の表層部のみで焼結反応が急速に進行し、表面部
のみが収縮してしまう問題点がる。そのため焼結体の内
部においては上記転位反応が充分に進行しないために焼
結密度が小さくなり、焼結体全体としての強度特性が低
下するという欠点がある。この現象は比較的に小型の焼
結体を形或する場合には、昇熱過程において成形体の中
心部から遊離シリカが円滑に成形体外部に揮散するため
問題とはならない。しかし大型の焼結体を形成する場合
には、或形体の表層部と内奥部との温度較差が大きくな
り、内奥部に遊離シリカを残存させたままで表層部の焼
結反応が完了してしまう結果、内奥部の焼結密度が低下
してしまう。
However, when a large amount of free silica exists, the softening temperature of the glass layer decreases, and the sintering reaction proceeds rapidly only in the surface layer of the hollow body heated by the external heating method, resulting in shrinkage only in the surface layer. There are problems. Therefore, the above-mentioned dislocation reaction does not proceed sufficiently inside the sintered body, resulting in a decrease in sintered density and a disadvantage that the strength characteristics of the sintered body as a whole deteriorate. This phenomenon does not pose a problem when a relatively small sintered body is formed, since free silica is smoothly volatilized from the center of the compact to the outside of the compact during the heating process. However, when forming a large sintered body, the temperature difference between the surface layer and the inner part of a certain shape becomes large, and the sintering reaction in the surface layer is completed while free silica remains in the inner part. As a result, the sintered density in the inner deep part decreases.

本発明は上記の問題点を解決するためになされたもので
あり、窒化けい素原料に不可避的に混入している遊離シ
リカの含有量の多少に拘らず、強度特性に優れた大型の
焼結体を形成することが可能な窒化けい素焼結体の製造
方法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and is capable of producing a large sintered material with excellent strength characteristics, regardless of the amount of free silica that is inevitably mixed in the silicon nitride raw material. An object of the present invention is to provide a method for manufacturing a silicon nitride sintered body that can be used to form a silicon nitride sintered body.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 上記目的を達成するため本発明に係る窒化けい素焼結体
の製造方法は、焼結助剤の含有量が10重量%以下とな
るように窒化けい素原f.1と焼結助剤とを混合して成
形体を形成し、この成形体を所定の焼結温度まで昇熱せ
し,める過程で、1400℃以上1650℃以下の温度
条件で成形体を所定時間保持する保持工程を設け、保持
工程完了後に戊形体を所定の焼結温度まで加熱し焼成す
ることを特徴とする。
(Means and Effects for Solving the Problems) In order to achieve the above object, the method for producing a silicon nitride sintered body according to the present invention includes a method for producing a silicon nitride sintered body such that the content of the sintering aid is 10% by weight or less. Hara f. 1 and a sintering aid are mixed to form a molded body, and the molded body is heated to a predetermined sintering temperature. The present invention is characterized in that a holding step is provided in which the holding step is held for a certain period of time, and after the holding step is completed, the rod-shaped body is heated to a predetermined sintering temperature and fired.

焼結助剤としてはY203やA  2 0aなどが用い
られ、その含有量は10重量%以下に設定される。10
重量%を超えると焼結体の高温強度が低下するからであ
る。
Y203, A20a, etc. are used as the sintering aid, and the content thereof is set to 10% by weight or less. 10
This is because if the content exceeds % by weight, the high temperature strength of the sintered body decreases.

また使用する窒化けい素原料としては平均粒径が2μm
以下のもの、より好ましくは0.1〜1μmの窒化けい
素粉末が好適である。その平均粒径が2μmを超えると
焼結体内部に細孔が多くなり充分な強度が得られないか
らである。
In addition, the silicon nitride raw material used has an average particle size of 2 μm.
The following are suitable, more preferably 0.1 to 1 μm silicon nitride powder. This is because if the average particle size exceeds 2 μm, there will be many pores inside the sintered body, making it impossible to obtain sufficient strength.

さらに保持工程の温度条件を1400℃以上1650℃
以下に設定した理由は、1400℃未満であると遊離シ
リカの放散効果が小さくなる一方、1650℃を超える
と成形体表面部に液相が生成し始め、焼結反応が急速に
進行して戊形体の収縮速度が大きくなり、成形体内部に
残留する遊離シリカ量が増大するためである。遊離シリ
カの放散量をより適量にするためには、温度をl500
℃以上1600℃にすることが望ましい。
Furthermore, the temperature conditions for the holding process were set to 1,400℃ or higher and 1,650℃.
The reason for the setting below is that when the temperature is below 1400°C, the diffusion effect of free silica becomes small, but when the temperature exceeds 1650°C, a liquid phase begins to form on the surface of the compact, and the sintering reaction progresses rapidly. This is because the shrinkage rate of the molded body increases and the amount of free silica remaining inside the molded body increases. In order to make the amount of free silica dissipated more appropriate, the temperature should be adjusted to 1500 ml.
It is desirable that the temperature be higher than 1600°C.

また保持工程の時間は10〜60分程度に設定する。1
0分未満の場合は遊離シリカの放散効果が小さく、60
分を超えると、焼結時に液相を形成するために有用な遊
離シリカまで放散されてしまうからである。
Further, the time for the holding step is set to about 10 to 60 minutes. 1
If the time is less than 0 minutes, the diffusion effect of free silica is small, and 60
This is because if the temperature exceeds 100%, free silica useful for forming a liquid phase during sintering will also be dissipated.

さらに成形体の焼結温度は、窒化けい素の焼結温度とし
て一般的に採用される工700〜2000℃に設定され
る。
Furthermore, the sintering temperature of the molded body is set at 700 to 2000°C, which is generally adopted as the sintering temperature for silicon nitride.

上記構戊に係る窒化けい素焼結体の製造方法によれば窒
化けい素の成形体を所定の焼結温度まで昇熱せしめる過
程において、1400℃以上1650℃以下の温度条件
で成形体を所定時間保持する保持工程を設けているため
、成形体内にガラス層の液相が形成される前に成形体の
表層部および内奥部に残存していた遊離シリカが効率的
に戊形体外部に放散される。
According to the method for manufacturing a silicon nitride sintered body according to the above structure, in the process of heating the silicon nitride molded body to a predetermined sintering temperature, the molded body is heated at a temperature of 1400°C or more and 1650°C or less for a predetermined time. Because a holding process is provided, the free silica remaining on the surface and deep inside of the molded body is efficiently diffused to the outside of the molded body before the liquid phase of the glass layer is formed inside the molded body. Ru.

その結果、威形体の内外部において軟化温度の差異を生
じることが少なくなり、内外部における人熱量が均一化
される結果、全体的に均質で高密度の焼結体を形成する
ことができる。
As a result, there is less difference in softening temperature between the inside and outside of the imposing body, and the amount of human heat is made uniform between the inside and outside, making it possible to form an overall homogeneous and high-density sintered body.

したがって遊離シリカの含有量が異なる多種類の窒化け
い素原料を使用した場合においても、遊離シリカの含有
量の多少に関係なく、焼結密度が大きい大容積の窒化け
い素焼結体を製造することができる。
Therefore, even when using many types of silicon nitride raw materials with different contents of free silica, it is possible to produce a large volume silicon nitride sintered body with a high sintered density, regardless of the amount of free silica. I can do it.

(実施例) 次に本発明を以下の実施例によって具体的に説明する。(Example) Next, the present invention will be specifically explained with reference to the following examples.

実施例1〜3 実施例l〜3として平均粒径が0.9μm1遊離シリカ
量が0.  5,  1.  7,  2.  6重量
%の3種類の窒化けい素粉末100重量部に対して、第
1表に示すように焼結助剤としてY203およびAl2
03をそれぞれ5重量部、2重量部を添加した混合体を
汎用のホットプレス装置に充填し、圧力400kg/c
r&で加圧しながら加熱し、第I図において実線で示す
ように温度1600℃で30分間保持した後に、温度1
750℃まで再加熱し3時間焼結した後に自然放冷し、
縦150mm,l150闘、厚さ20mの大型の窒化け
い素焼結体を製造した。そして得られた各焼結体の焼結
密度を測定し、第1表に示す結果を得た。
Examples 1 to 3 Examples 1 to 3 have an average particle size of 0.9 μm and an amount of free silica of 0.9 μm. 5, 1. 7, 2. As shown in Table 1, Y203 and Al2 were added as sintering aids to 100 parts by weight of 6% by weight three types of silicon nitride powder.
A mixture containing 5 parts by weight and 2 parts by weight of 03, respectively, was filled into a general-purpose hot press machine and heated at a pressure of 400 kg/c.
Heating while pressurizing with r&, kept at a temperature of 1600℃ for 30 minutes as shown by the solid line in Figure I, and then the temperature was increased to 1.
After reheating to 750℃ and sintering for 3 hours, let it cool naturally.
A large silicon nitride sintered body with a length of 150 mm, a length of 150 mm, and a thickness of 20 m was manufactured. Then, the sintered density of each of the obtained sintered bodies was measured, and the results shown in Table 1 were obtained.

比較例1〜3 次に比較例工〜3として実施例1〜3と同一組成を有し
、同一の圧力で加圧しながら、保持工程を設けずに温度
1750℃まで加熱して3時間焼結した後に自然放冷し
、実施例1〜3と同一寸法の大型窒化けい素焼結体を製
造し、同様に焼結密度を測定し第l表に示す結果を得た
Comparative Examples 1 to 3 Next, Comparative Examples 1 to 3 had the same composition as Examples 1 to 3, and were sintered for 3 hours by heating to a temperature of 1750°C without a holding step while applying the same pressure. After that, it was allowed to cool naturally to produce a large silicon nitride sintered body having the same dimensions as those of Examples 1 to 3, and the sintered density was measured in the same manner, and the results shown in Table 1 were obtained.

比較例4〜6 また比較例4〜6として実施例1〜3と同一組成を有し
、比較例l〜3と同様に保持工程を設けずに加熱焼成し
、縦30mm,横30mm,厚さ10mmの小型の窒化
けい素焼結体を製造し、同様に焼結体の焼結密度を測定
し第1表に示す結果を得た。
Comparative Examples 4 to 6 In addition, Comparative Examples 4 to 6 had the same composition as Examples 1 to 3, and were heated and fired without a holding step in the same manner as Comparative Examples 1 to 3, and had a length of 30 mm, a width of 30 mm, and a thickness of A small 10 mm silicon nitride sintered body was manufactured, and the sintered density of the sintered body was similarly measured, and the results shown in Table 1 were obtained.

第1表に示す結果から明らかなように実施例1〜3にお
いては、保持工程を設けているため、窒化けい素原料中
の遊離シリカが昇熱過程において効果的に放散され、高
い焼結密度を有する大型の窒化けい素焼結体を製造する
ことができる。
As is clear from the results shown in Table 1, in Examples 1 to 3, since the holding step was provided, free silica in the silicon nitride raw material was effectively dissipated during the heating process, resulting in a high sintered density. It is possible to produce a large silicon nitride sintered body having the following properties.

一方、保持工程を設けない比較例1〜3の場合には焼結
密度が低くなる。しかし比較例4〜6に示すように小型
の焼結体の場合では保持工程を設けなくても、ほぼ実施
例1〜3に示すような高密度の焼結体が得られる。した
がって本実施例法は、特に大型の窒化けい素焼結体を製
造する場合に大きな効果を発揮することがわかる。
On the other hand, in the case of Comparative Examples 1 to 3 in which no holding step is provided, the sintered density is low. However, in the case of small-sized sintered bodies as shown in Comparative Examples 4 to 6, high-density sintered bodies almost as shown in Examples 1 to 3 can be obtained without the holding step. Therefore, it can be seen that the method of this embodiment is particularly effective when manufacturing large-sized silicon nitride sintered bodies.

実施例4〜6 実施例4〜6として第1表に示すように平均粒径が0.
9μmの窒化けい素粉末100重量部対して、焼結助剤
としてのY203およびAl203をそれぞれ7重量部
、3重量部添加した原料混合体を通常の成形機に充填し
、圧力400kg/dで圧縮して3種類の成形体を多数
形威した。次に得られた成形体を3群に分けて、それぞ
れSi  N  焼結体、Al203焼結体およびAl
34 N焼結体で形成した焼成用容器(サヤ)に収容し、電気
炉にて加熱し、温度1550℃で30分間保持した後に
、温度1800℃まで再加熱し4時間焼成した後に自然
放冷し、縦200mm、横200mm、厚さ30+nm
の大型の窒化けい素焼結体を製造した。そして得られた
各焼結体の焼結密度を測定し、第1表に示す結果を得た
Examples 4 to 6 As shown in Table 1 as Examples 4 to 6, the average particle diameter was 0.
A raw material mixture containing 100 parts by weight of 9 μm silicon nitride powder and 7 parts by weight and 3 parts by weight of Y203 and Al203 as sintering aids, respectively, was filled into a normal molding machine and compressed at a pressure of 400 kg/d. A large number of three types of molded bodies were produced. Next, the obtained molded bodies were divided into three groups, and SiN sintered bodies, Al203 sintered bodies, and Al
It was placed in a firing container (pod) made of 34N sintered body, heated in an electric furnace, held at a temperature of 1550°C for 30 minutes, then reheated to a temperature of 1800°C, fired for 4 hours, and then allowed to cool naturally. 200mm long, 200mm wide, 30+nm thick
A large silicon nitride sintered body was manufactured. Then, the sintered density of each of the obtained sintered bodies was measured, and the results shown in Table 1 were obtained.

比較例7〜9 一方第1表に示すように保持工程を設けずに実施例4と
同様な条件で或形焼成したものを比較例7、焼結助剤を
多量に添加し保持工程を設けずに成形焼成したものを比
較例8、保持工程の温度を1700℃に設定し実施例6
と同様に威形焼成したものを比較例9としてそれぞれ大
型の窒化けい素焼結体を製造した。そして同様に焼結密
度を測定し第1表に示す結果を得た。
Comparative Examples 7 to 9 On the other hand, as shown in Table 1, the samples were fired in a certain shape under the same conditions as Example 4 without the holding process, and Comparative Example 7 was prepared by adding a large amount of sintering aid and carrying out the holding process. Comparative Example 8 was prepared by molding and firing without heating, and Example 6 was prepared by setting the temperature in the holding step at 1700°C.
A large silicon nitride sintered body was produced as Comparative Example 9, which was sintered in the same manner as above. Then, the sintered density was measured in the same manner, and the results shown in Table 1 were obtained.

C以下余白〕 第1表に示す結果から明らかなように保持工程を設けた
実施例4〜6においては、いずれも高い焼結密度を有し
、強度が優れた大型の窒化けい素焼結体が得られる。一
方比較例7に示すように保持工程を設けないものについ
ては焼結密度が低下したり、比較例8に示すように焼結
助剤を比較的に多目に添加しても焼結密度の改善効果は
少ない。
Margin below C] As is clear from the results shown in Table 1, in Examples 4 to 6 in which a holding process was provided, large silicon nitride sintered bodies with high sintered density and excellent strength were obtained. can get. On the other hand, as shown in Comparative Example 7, the sintered density decreases when the holding step is not provided, and as shown in Comparative Example 8, even if a relatively large amount of sintering aid is added, the sintered density decreases. The improvement effect is small.

また比較例9に示すように保持工程の温度を、液相が生
成する下限温度より高く設定したものは、焼結体の内部
の密度が上がらず焼結体全体として密度が低下してしま
うことがわかる。
Furthermore, as shown in Comparative Example 9, if the temperature of the holding step is set higher than the lower limit temperature at which a liquid phase is generated, the density inside the sintered body does not increase and the density of the sintered body as a whole decreases. I understand.

なお本実施例4〜6においては調製した多数の試料或形
体を、Si3N4焼結体で形成した焼或用容器(サヤ)
に分けて収容して製造したS13N4焼結体の表面は極
めて滑かであり、色むら等を生じることもなかった。一
方、Al203製およびAN製の焼成用容器に収容して
製造したSt3N4焼結体は表面の粗さが大きく、また
部分的に色むらを生じたものが多かった。
In Examples 4 to 6, a large number of prepared samples or shapes were placed in a sintering container (pod) made of Si3N4 sintered body.
The surface of the S13N4 sintered body produced by separately housing the sample was extremely smooth, and no uneven coloring occurred. On the other hand, the St3N4 sintered bodies manufactured by being housed in firing containers made of Al203 and AN had large surface roughness, and many had partial color unevenness.

したがって窒化けい素成形体を常圧焼結によって焼或す
る場合には、同一材料である窒化けい素の焼結体で形威
した焼或用容器を使用することにより、焼結表面が滑ら
かで色むらの少ない焼結体を得ることが可能である。そ
の結果焼結後の仕上げ研摩量が減少し、仕上加工工程が
短縮され、Si3N4焼結体製品の製造原価を大幅に低
減できることも判明した。
Therefore, when sintering a silicon nitride molded body by pressureless sintering, the sintering surface can be made smooth by using a sintering container made of a sintered body of silicon nitride, which is the same material. It is possible to obtain a sintered body with little color unevenness. As a result, it was found that the amount of finish polishing after sintering was reduced, the finishing process was shortened, and the manufacturing cost of Si3N4 sintered products could be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り本発明に係る窒化けい素焼結体の製造方
法によれば、窒化けい素の成形体を所定の焼結温度まで
昇熱せしめる過程において、↓400℃以上1650℃
以下の温度条件で成形体を所定時間保持する保持工程を
設けているため、成形体内にガラス層の液相が形成され
る前に、成形体の表層部および内奥部に残存していた遊
離シリカが効率的に成形体外部に放散される。
As explained above, according to the method for manufacturing a silicon nitride sintered body according to the present invention, in the process of heating a silicon nitride molded body to a predetermined sintering temperature,
Because we have a holding process in which the molded body is held for a predetermined period of time under the following temperature conditions, free particles remaining on the surface and deep inside of the molded body are released before the liquid phase of the glass layer is formed inside the molded body. Silica is efficiently diffused to the outside of the molded body.

その結果、成形体の内外部において軟化温度の差異を生
じることが少なくなり、内外部における人熱量が均一化
される結果、全体的に均質で高密度の焼結体を形或する
ことができる。
As a result, there is less difference in softening temperature between the inside and outside of the molded body, and the amount of human heat is made uniform between the inside and outside, making it possible to form a sintered body that is homogeneous as a whole and has a high density. .

したがって遊離シリカの含有量が異なる多種類の窒化け
い素原料を使用した場合においても、遊離シリカの含有
量の多少に関係なく、焼結密度が大きい大容積の窒化け
い素焼結体を製造することができる。
Therefore, even when using many types of silicon nitride raw materials with different contents of free silica, it is possible to produce a large volume silicon nitride sintered body with a high sintered density, regardless of the amount of free silica. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を使用して成形体を加熱焼成する場
合における処理時間と加熱温度との関係を従来方法によ
る場合と比較して示すグラフである。 第1図
FIG. 1 is a graph showing the relationship between processing time and heating temperature in the case of heating and firing a molded body using the method of the present invention in comparison with the case of a conventional method. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  焼結助剤の含有量が10重量%以下となるように窒化
けい素原料と焼結助剤とを混合して成形体を形成し、こ
の成形体を所定の焼結温度まで昇熱せしめる過程で、1
400℃以上1650℃以下の温度条件で成形体を所定
時間保持する保持工程を設け、保持工程完了後に成形体
を所定の焼結温度まで加熱し焼成することを特徴とする
窒化けい素焼結体の製造方法。
A process of mixing a silicon nitride raw material and a sintering aid to form a compact so that the content of the sintering aid is 10% by weight or less, and heating the compact to a predetermined sintering temperature. So, 1
A silicon nitride sintered body characterized in that a holding step is provided in which the compact is held for a predetermined time under a temperature condition of 400° C. or more and 1650° C. or less, and after the holding step is completed, the compact is heated to a predetermined sintering temperature and fired. Production method.
JP1233000A 1989-09-11 1989-09-11 Production of silicon nitride sintered body Pending JPH0397673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233000A JPH0397673A (en) 1989-09-11 1989-09-11 Production of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233000A JPH0397673A (en) 1989-09-11 1989-09-11 Production of silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPH0397673A true JPH0397673A (en) 1991-04-23

Family

ID=16948239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233000A Pending JPH0397673A (en) 1989-09-11 1989-09-11 Production of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0397673A (en)

Similar Documents

Publication Publication Date Title
US4855262A (en) Method of manufacturing silicon nitride composition reinforced with silicon carbide whiskers having silicon oxide coating
JPS6125677B2 (en)
US4919868A (en) Production and sintering of reaction bonded silicon nitride composites containing silicon carbide whiskers or silicon nitride powders
JP2008247716A (en) Reaction sintering silicon nitride-based sintered body and its producing process
US5098623A (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
US5928583A (en) Process for making ceramic bodies having a graded porosity
JPH0397673A (en) Production of silicon nitride sintered body
JPS6042188B2 (en) Manufacturing method of silicon nitride molded body
JPH0224789B2 (en)
RU2795405C1 (en) Method for obtaining reinforced composite material based on silicon carbide
JPS6374978A (en) Ceramic composite body
JPH07291722A (en) Production of ceramics sintered compact
JPH01145380A (en) Production of silicon nitride sintered form
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPH08198664A (en) Alumina-base sintered body and its production
KR920006112B1 (en) Making method for high p carbide si sintering parts
JPH05117032A (en) Production of silicon nitride sintered compact
JPH09255412A (en) Ceramic sintered compact and its production
KR970001065B1 (en) Sintered body of silicon nitride for cutting tools having high hardness and tension and their preparation
JPH1053453A (en) Production of high density ceramics
JPH0674178B2 (en) Porous refractory
JPH06247771A (en) Boron nitride composite material and its production
JP2003073167A (en) METHOD OF MANUFACTURING Si3N4-SiC SINTERED COMPACT
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPS63176365A (en) Manufacture of silicon nitride sintered body