JPH0397274A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPH0397274A
JPH0397274A JP1235187A JP23518789A JPH0397274A JP H0397274 A JPH0397274 A JP H0397274A JP 1235187 A JP1235187 A JP 1235187A JP 23518789 A JP23518789 A JP 23518789A JP H0397274 A JPH0397274 A JP H0397274A
Authority
JP
Japan
Prior art keywords
gas
temperature
substrate
thin film
deposited layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1235187A
Other languages
Japanese (ja)
Inventor
Takayuki Minamimori
南森 孝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1235187A priority Critical patent/JPH0397274A/en
Publication of JPH0397274A publication Critical patent/JPH0397274A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive the improvement of the factor of a curve through a low-cost single process by a method wherein silver paste electrodes are formed by a print baking method at a temperature lower than a prescribed temperature and a reflection preventive film consisting of a silicon nitride film is formed on a silicon thin film deposited layer using silane gas, ammonia gas or the like as raw gas. CONSTITUTION:A polycrystalline silicon substrate 1 is prepared, subsequently a rear electrode 2 and a P<+> high-concentration layer 3 are formed on the rear of the substrate 1 by firing Al paste. Then, an N<+> silicon thin film deposited layer 4 having a conductivity type opposite to that of the substrate 1 is formed by an RF plasma CVD method. The formation conditions of this layer 4 are conditioned such that the temperature of the substrate 1 is 500 deg.C, PH3 gas, SiH4 gas or H2 gas is used as raw gas and an RF power is 50W. Then, a silver paste material for low-temperature firing gas is used, the silver paste material is fired at a temperature of 450 deg.C and photodetecting surface electrodes 5 are formed. Lastly, a silicon nitride film 6 is formed by an RF plasma CVD method. The formation conditions of the film 6 are conditioned such that SiH4 use, NH3 gas or H2 gas (or N2 gas) is used, the temperature of the substrate is 350 deg.C and RF discharge is performed for 3 minutes under a pressure of 0.7Torr.

Description

【発明の詳細な説明】 く産業上の利用分野〉 この発明は、太陽II/I1!の製造方法に関し、より
詳しくは、受光面側に基板と反対の導電型を示すシリコ
ン薄膜堆積層を持つ太陽電池の受光面電極と反射防止膜
の形成に特徴を有する太陽電池の製造方法に関するもの
である。
[Detailed Description of the Invention] Industrial Application Fields This invention is directed to Taiyo II/I1! More specifically, it relates to a method for manufacturing a solar cell characterized by the formation of a light-receiving surface electrode and an anti-reflection film on the light-receiving surface side of the solar cell, which has a silicon thin film deposited layer exhibiting a conductivity type opposite to that of the substrate. It is.

〈従来の技術〉 従来のシリコン太陽電池のP−N接合形成は、例えば基
板の導電型がP型の場合には、POCQ3を不純物源と
する熱拡散法によって行われている。
<Prior Art> Formation of a P-N junction in a conventional silicon solar cell is performed by a thermal diffusion method using POCQ3 as an impurity source, for example, when the conductivity type of the substrate is P type.

この熱拡散法は、900℃程度の高温を必要とするため
、基板の半導体的特性、例えばライフタイムの値が低下
し、太陽電池の特性が損なわれる。
Since this thermal diffusion method requires a high temperature of about 900° C., the semiconductor properties of the substrate, such as the lifetime value, decrease, and the properties of the solar cell are impaired.

この点を解決する目的で、CVD(化学的気相成長)法
等により、基板と反対の導電型を示すシリコン薄膜堆積
層を基板上に堆積してPN接合を形成する方法や、この
薄膜堆積層内で発生した少数キャリアの収集効率をより
高めるため、シリコン基板上に、先ず、基板と同じ導電
型の低不純物濃度のシリコン薄膜堆積層を形成した後、
その上に導電型の異なる高不純物濃度の薄膜堆積層を形
成する方法が提案されている。
In order to solve this problem, a method has been proposed in which a PN junction is formed by depositing a silicon thin film deposited layer having a conductivity type opposite to that of the substrate using CVD (chemical vapor deposition), etc. In order to further improve the collection efficiency of minority carriers generated within the layer, a silicon thin film deposited layer with a low impurity concentration of the same conductivity type as the substrate is first formed on the silicon substrate, and then
A method has been proposed in which a thin film deposited layer having a different conductivity type and having a high impurity concentration is formed thereon.

これらの方法によると、基板温度400〜600°C程
度の低温でのP−N接合形成が可能となるため、基板自
体のライフタイムを損なうことがない」二、薄膜堆積層
内の不純物分布の制御が容易となり、従来の熱拡散法で
は困難であった不純物分布の最適化や、太陽電池の特性
に大きな影響を持つ表面不純物濃度の最適化が容易とな
るため、太陽電池特性の大幅な改善が期待できる。
According to these methods, it is possible to form a P-N junction at a low substrate temperature of about 400 to 600°C, so the lifetime of the substrate itself is not impaired.''2. This makes it easier to control, optimizing impurity distribution, which was difficult with conventional thermal diffusion methods, and optimizing surface impurity concentration, which has a large effect on solar cell characteristics, resulting in significant improvements in solar cell characteristics. can be expected.

しかし、これらの太陽電池では、少なくともシリコン薄
膜堆積層の堆積温度以下で後続の工程、例えば受光面電
極、反射防止膜形戚を行わないと、シリコン薄膜堆積層
の特性が変化し、太陽電池の特性の低下、安定性が問題
となる。そこで、受光面電極及び反射防止膜の形成方法
の一つとして蒸着法が用いられているが、この方法は処
理能力も小さく、材料コストも高くなるという欠点があ
る。
However, in these solar cells, if subsequent steps such as light-receiving surface electrodes and anti-reflection coatings are not performed at least below the deposition temperature of the silicon thin film deposited layer, the characteristics of the silicon thin film deposited layer will change and the solar cell will deteriorate. Problems include deterioration of characteristics and stability. Therefore, a vapor deposition method is used as one of the methods for forming the light-receiving surface electrode and the antireflection film, but this method has the drawbacks of low processing capacity and high material cost.

く発明か解決しようとする課題〉 上記の処理能力が小さく、材料コストが高くなるという
欠点を解決するため、本発明者は印刷法による銀ペース
トの焼成電極を適用する方法を試みた。銀ペーストの焼
成温度をシリコン薄膜堆積層の生成温度以上に上げると
、シリコン薄膜堆積層の特性が劣化し、さらに焼成温度
を上げると、リーク電流が増大ずる。逆に、銀ペースト
電極の焼成温度をシリコン薄膜堆積層の生成温度よりも
下げると、曲線因子が低下し、高効率の太陽電池を得る
ことが困難であった。
Problems to be Solved by the Invention> In order to solve the above-mentioned drawbacks of low processing capacity and high material cost, the present inventor tried a method of applying a fired electrode of silver paste using a printing method. If the firing temperature of the silver paste is raised above the formation temperature of the silicon thin film deposited layer, the characteristics of the silicon thin film deposited layer will deteriorate, and if the firing temperature is further raised, the leakage current will increase. Conversely, when the firing temperature of the silver paste electrode is lower than the formation temperature of the silicon thin film deposited layer, the fill factor decreases, making it difficult to obtain a highly efficient solar cell.

そこで、この発明の目的は、銀ペースト電極を印刷焼成
法によって形成することによって、簡単かつ安価に製造
できる上に、上記銀ペースト電極の焼成温度をシリコン
薄膜堆積層の生成温度よりも低下させて、シリコン薄膜
堆積層の特性の劣化を防止しても、曲線因子の低下しな
い太陽電池の製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to form a silver paste electrode by a printing and firing method so that it can be easily and inexpensively manufactured, and the firing temperature of the silver paste electrode is lower than the temperature at which a silicon thin film deposited layer is formed. Another object of the present invention is to provide a method for manufacturing a solar cell in which the fill factor does not decrease even if the deterioration of the characteristics of the silicon thin film deposited layer is prevented.

〈課題を解決するための手段〉 上記目的を達成するため、この発明の太陽電池の製造方
法は、シリコン基板を準備する工程と、上記シリコン基
板と異なる導電型のシリコン薄膜堆積層を上記シリコン
基板上に所定の温度で形威する工程と、上記シリコン薄
膜堆積層上に導電性銀ペースト電極を上記所定の温度以
下の温度の印刷焼成法で形成する工程と、上記シリコン
薄膜堆積層上にシラン(SiH*),アンモニア(NH
3),水素(Hz)、またはシラン(SiH.),アン
モニア(NH3).窒素(N,)を原料ガスとして、シ
リコン窒化膜からなる反射防止膜をRF’プラズマ放電
法で形成する工程を含むことを特徴としている。
<Means for Solving the Problems> In order to achieve the above object, the method for manufacturing a solar cell of the present invention includes a step of preparing a silicon substrate, and applying a silicon thin film deposited layer of a conductivity type different from that of the silicon substrate to the silicon substrate. a step of forming a conductive silver paste electrode on the silicon thin film deposited layer at a predetermined temperature, a step of forming a conductive silver paste electrode on the silicon thin film deposited layer by a printing and baking method at a temperature below the predetermined temperature, and a step of forming a silane paste electrode on the silicon thin film deposited layer. (SiH*), ammonia (NH
3), hydrogen (Hz), or silane (SiH.), ammonia (NH3). The method is characterized in that it includes a step of forming an antireflection film made of a silicon nitride film by an RF' plasma discharge method using nitrogen (N,) as a raw material gas.

く作用〉 上記方法によると、銀ペースト電極は、シリコン薄膜堆
積層を形成する際の温度以下の温度で焼成される。した
がって、上記シリコン薄膜堆積層の特性が熱により悪化
することがない。しかも銀ペースト電極をこのように低
温で焼成しても、上記シリコン薄膜堆積層上にシリコン
窒化膜をSiH 4, N H 3, H x、または
S i H 4 , N H s , N *を原料ガ
スとしてRF’(高周波)プラズマ放電法で形成するの
で、第2図に示すように、曲線因子の低下が防止され、
したがって、変換効率の高い太陽電池が得られる。
Effects> According to the above method, the silver paste electrode is fired at a temperature lower than the temperature at which the silicon thin film deposited layer is formed. Therefore, the characteristics of the silicon thin film deposited layer are not deteriorated by heat. Moreover, even if the silver paste electrode is fired at such a low temperature, the silicon nitride film cannot be formed on the silicon thin film deposited layer using SiH 4 , NH 3 , H x or Si H 4 , NH s , N * as the raw material. Since it is formed as a gas using the RF' (radio frequency) plasma discharge method, as shown in Figure 2, a decrease in fill factor is prevented,
Therefore, a solar cell with high conversion efficiency can be obtained.

く実施例〉 以下、この発明の一実施例を図で説明する。Example Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第l図A−Eは、この発明の一実施例の工程を断面図で
示したものである。
FIGS. 1A to 1E are cross-sectional views showing the steps of an embodiment of the present invention.

第l図Aに示すP型でlΩ・cmの比抵抗値を有するl
00IIIII10のシリコン多結晶基板lを準備する
。続いて、第l図Bに示すように、裏面にAI2ペース
トの焼成により、背面電極2と高濃度P+層3を形成し
た。次に、第1図Cに示すように、基板lとは反対の導
電型を示すN+シリコン薄膜堆積層4をRPプラズマC
VD法で形成した。このシリコン薄膜堆積層4の形成条
件は、基板温度500℃、原料ガスとし’T− P H
 3 , S j H 4, H tを用い、RFパヮ
ーを50Wとした。次に、第l図Dに示すように、低温
焼成用銀ペースト材料を用いて、450℃の温度で焼威
し、受光面電極5を形成した。最後に、第l図Eに示す
ように、RFプラズマCVD法によりシリコン窒化膜6
を形成した。膜形成条件は、S i H a , N 
H s . H t (又はN2)を用い、基板温度3
50℃、圧力0.7Torrで3分間RP放電を行った
A P type shown in Figure A with a specific resistance value of 1 Ω cm.
A silicon polycrystalline substrate l of 00III10 is prepared. Subsequently, as shown in FIG. 1B, a back electrode 2 and a high concentration P+ layer 3 were formed on the back surface by baking an AI2 paste. Next, as shown in FIG.
It was formed by the VD method. The conditions for forming this silicon thin film deposition layer 4 are as follows: substrate temperature is 500°C, source gas is 'T-PH
3, S j H 4, H t was used, and the RF power was set to 50 W. Next, as shown in FIG. 1D, the light-receiving surface electrode 5 was formed by baking at a temperature of 450° C. using a silver paste material for low-temperature baking. Finally, as shown in FIG.
was formed. The film formation conditions were S i H a , N
Hs. Using H t (or N2), substrate temperature 3
RP discharge was performed for 3 minutes at 50°C and a pressure of 0.7 Torr.

第2図中の曲線Aは、上述のようにして作製された太陽
電池の電圧一電流特性を表わすものである。曲線Bで示
す特性は、比較のため、第1図Dの太陽電池に対して蒸
着法によってTie,膜を反射防止膜として形成した場
合のものである。第2図から明らかなように、曲線Aで
示される本発明の素子の曲線因子は0.75であり、曲
線Bで示される素子の0.51と比較して大幅に改善さ
れている。また、短絡電流密度についても1.6mA/
cx’の向上があった。この結果、曲線Bで示される素
子の変換効率9.7%に対し、曲線Aで示される本発明
の素子では、変換効率l4.9%の値が得られた。
Curve A in FIG. 2 represents the voltage-current characteristics of the solar cell produced as described above. For comparison, the characteristics shown by curve B are obtained when a tie film is formed as an antireflection film by vapor deposition on the solar cell shown in FIG. 1D. As is clear from FIG. 2, the fill factor of the device of the invention shown by curve A is 0.75, which is a significant improvement compared to 0.51 of the device shown by curve B. In addition, the short circuit current density is also 1.6mA/
There was an improvement in cx'. As a result, while the conversion efficiency of the device shown by curve B was 9.7%, the conversion efficiency of the device of the present invention shown by curve A was 14.9%.

〈発明の効果〉 この発明によれば、低コストの簡単なプロセスで曲線因
子の改善が図れ、変換効率の高い太陽電池を得ることが
できる。
<Effects of the Invention> According to the present invention, the fill factor can be improved through a simple process at low cost, and a solar cell with high conversion efficiency can be obtained.

さらに、他の効果として次のことが挙げられる。Furthermore, other effects include the following.

a.大面積太陽電池に対しても十分な処理能力がある。a. It has sufficient processing capacity even for large-area solar cells.

b.プロセスの低温化が可能となり、省エネルギー化が
図れる。
b. It is possible to lower the process temperature and save energy.

C.受光面電極をシリコン窒化膜で被覆するため、バッ
シベーション効果により、信頼性の高い太陽電池が得ら
れる。
C. Since the light-receiving surface electrode is covered with a silicon nitride film, a highly reliable solar cell can be obtained due to the passivation effect.

【図面の簡単な説明】[Brief explanation of drawings]

第I図はこの発明の一実施例の各工程を示す工程図、第
2図はこの発明と従来法で作製した太陽電池の特性比較
図である。 l・・・P型多結晶基板、2・・・背面電極、3・・・
P4高濃度層、4・・・シリコン薄膜堆積層、5・・・
受光面電極、6・・・シリコン窒化膜。 特 許 出 願 人  シャープ株式会社代 理 人 
弁理士  青山 葆 はかl名ぐ ■ 0 O ー
FIG. I is a process diagram showing each step of an embodiment of the present invention, and FIG. 2 is a comparison diagram of characteristics of solar cells produced by the present invention and a conventional method. l...P-type polycrystalline substrate, 2...back electrode, 3...
P4 high concentration layer, 4... silicon thin film deposition layer, 5...
Light-receiving surface electrode, 6... silicon nitride film. Patent applicant: Sharp Corporation Agent
Patent Attorney Aoyama Aoyama Name ■ 0 O -

Claims (1)

【特許請求の範囲】[Claims] (1)シリコン基板を準備する工程と、 上記シリコン基板と異なる導電型のシリコン薄膜堆積層
を上記シリコン基板上に所定の温度で形成する工程と、 上記シリコン薄膜堆積層上に導電性銀ペースト電極を上
記所定の温度以下の温度の印刷焼成法で形成する工程と
、 上記シリコン薄膜堆積層上にシラン(SiH_4)、ア
ンモニア(NH_3)、水素(H_2)、またはシラン
(SiH_4)、アンモニア(NH_3)、窒素(N_
2)を原料ガスとして、シリコン窒化膜からなる反射防
止膜をRFプラズマ放電法で形成する工程を含むことを
特徴とする太陽電池の製造方法。
(1) A step of preparing a silicon substrate, a step of forming a silicon thin film deposited layer of a conductivity type different from that of the silicon substrate on the silicon substrate at a predetermined temperature, and a conductive silver paste electrode on the silicon thin film deposited layer. silane (SiH_4), ammonia (NH_3), hydrogen (H_2), or silane (SiH_4), ammonia (NH_3) on the silicon thin film deposited layer by a printing and baking method at a temperature below the predetermined temperature. , nitrogen (N_
A method for manufacturing a solar cell, comprising the step of forming an antireflection film made of a silicon nitride film by an RF plasma discharge method using 2) as a raw material gas.
JP1235187A 1989-09-11 1989-09-11 Manufacture of solar cell Pending JPH0397274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235187A JPH0397274A (en) 1989-09-11 1989-09-11 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235187A JPH0397274A (en) 1989-09-11 1989-09-11 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPH0397274A true JPH0397274A (en) 1991-04-23

Family

ID=16982363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235187A Pending JPH0397274A (en) 1989-09-11 1989-09-11 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPH0397274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397400A (en) * 1992-07-22 1995-03-14 Mitsubishi Denki Kabushiki Kaisha Thin-film solar cell
CN109243969A (en) * 2018-08-31 2019-01-18 常州亿晶光电科技有限公司 Tubular type PECVD silicon nitride gradual change membrane process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397400A (en) * 1992-07-22 1995-03-14 Mitsubishi Denki Kabushiki Kaisha Thin-film solar cell
US5472885A (en) * 1992-07-22 1995-12-05 Mitsubishi Denki Kabushiki Kaisha Method of producing solar cell
US5963790A (en) * 1992-07-22 1999-10-05 Mitsubshiki Denki Kabushiki Kaisha Method of producing thin film solar cell
CN109243969A (en) * 2018-08-31 2019-01-18 常州亿晶光电科技有限公司 Tubular type PECVD silicon nitride gradual change membrane process

Similar Documents

Publication Publication Date Title
US9608131B2 (en) Solar cell having doped semiconductor heterojunction contacts
US20070137699A1 (en) Solar cell and method for fabricating solar cell
US6815788B2 (en) Crystalline silicon thin film semiconductor device, crystalline silicon thin film photovoltaic device, and process for producing crystalline silicon thin film semiconductor device
US20100210060A1 (en) Double anneal process for an improved rapid thermal oxide passivated solar cell
CN116666493A (en) Solar cell manufacturing method and solar cell
CN206040667U (en) IBC battery of passivation contact and subassembly and system thereof
Slaoui et al. Passivation and etching of fine-grained polycrystalline silicon films by hydrogen treatment
CN114744050A (en) Solar cell and photovoltaic module
JP2023155914A (en) Photovoltaic cell, production method thereof, and photovoltaic module
JPH0864851A (en) Photovoltaic element and fabrication thereof
JPH0397274A (en) Manufacture of solar cell
US7629236B2 (en) Method for passivating crystal silicon surfaces
JPH0754854B2 (en) Solar cell element and manufacturing method thereof
CN111477696B (en) Solar cell based on passivation contact and preparation method thereof
US5242504A (en) Photovoltaic device and manufacturing method therefor
CN111952375B (en) Induction junction solar cell and preparation method thereof
CN114284374B (en) Application of zinc titanate in crystalline silicon solar cell
WO2022174421A1 (en) Method of preparing passivating contacts and method of producing photovoltaic device with n-type polycrystalline silicon passivating contact
JP3158028B2 (en) Solar cell and method of manufacturing the same
JP3459949B2 (en) Crystalline silicon solar cell and method of manufacturing the same
Burte et al. Inversion layer solar cells on chemically vapor‐deposited polycrystalline silicon thin films
CN111477696A (en) Solar cell based on passivation contact and preparation method thereof
JPH0444276A (en) Photoelectric conversion device
CN114156371A (en) Silicon-based FeSi2Thin film quantum well solar cell and preparation method thereof
JPH08111537A (en) Solar battery