JPH0396984A - Refraction experimentation device for optical path by gas layer having density gradient - Google Patents

Refraction experimentation device for optical path by gas layer having density gradient

Info

Publication number
JPH0396984A
JPH0396984A JP23401689A JP23401689A JPH0396984A JP H0396984 A JPH0396984 A JP H0396984A JP 23401689 A JP23401689 A JP 23401689A JP 23401689 A JP23401689 A JP 23401689A JP H0396984 A JPH0396984 A JP H0396984A
Authority
JP
Japan
Prior art keywords
tube body
light
tube
refraction
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23401689A
Other languages
Japanese (ja)
Other versions
JP2652250B2 (en
Inventor
Yasutsugu Kitatsuji
北辻 安次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23401689A priority Critical patent/JP2652250B2/en
Publication of JPH0396984A publication Critical patent/JPH0396984A/en
Application granted granted Critical
Publication of JP2652250B2 publication Critical patent/JP2652250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instructional Devices (AREA)

Abstract

PURPOSE:To enable visnal inspection for the bending of an optical path due to a temperature difference in air by providing a heating tube body at the upper part of a tube body provided with a light guide-out window and also providing a cooling tube body opposite at the lower part of the tube body, and providing a light source which emits light into the tube body. CONSTITUTION:The heating tube body A is provided at the upper part of the tube body C which is provided with a light guide-in window D where light is made incident at one end and the light guide-out window W where light is guided out at the other end, and the cooling tube body B is provided at the lower part of the tube body. Then the light source K which emits light into the tube body C is provided from outside the tube body C. For example, high-temperature steam C is sent in the heating tube body A provided at the upper side of the tube body C and cooling water W is run through the cooling tube body B provided opposite on the lower side of the tube body C to form a high-temperature side and a low- temperature side in the vertical direction of gas H in the tube C, thereby generating the density gradient in the vertical direction of the gas H. When the light source K emits the light through the light guide-in window D in this state, the high-temperature side and low- temperature side differ in refractive index, so the emitted light is refracted and emitted from the light guide-out window E. This emitted light is projected on a screen, etc., to measure the extent of refraction quantitatively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本装置は、高等学校、工業高等専門学校並びに大学にお
ける物理教育に利用される密度勾配のある気体層による
光路の屈折実験装置に係るものである。
[Detailed Description of the Invention] [Field of Industrial Application] This device relates to an experimental device for refraction of an optical path by a gas layer with a density gradient, which is used for physics education in high schools, technical colleges, and universities. be.

〔従米の技術及び発明が解決しようとする課題〕[Problems that Jubei's technology and inventions aim to solve]

従来、光路が屈折を受けて曲がることを確認できると共
に、屈折の法凹を定量的に説明できる教育用実験装置は
提案されていなかった。
Until now, no educational experimental device has been proposed that can confirm that an optical path is bent due to refraction and can quantitatively explain the concavity of refraction.

本発明は、温度差により気体に上下方向の密度勾配を形
威することにより光の屈折を定量的に実験・説明するこ
とが可能な密度勾配のある気体層による光路の屈折実験
装置を提供するものである。
The present invention provides an optical path refraction experimental device using a gas layer with a density gradient, which makes it possible to quantitatively experiment and explain the refraction of light by creating a vertical density gradient in the gas due to a temperature difference. It is something.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を実施の一例を示す図面と対比し易いように図面
の符号を付して説明すると次の通りである。
The present invention will be described below with reference numerals used in the drawings for easy comparison with the drawings showing an example of implementation.

一端に光を導入する光導入窓Dを設け、他端に光を導出
する光導出窓Eを設けた管体Cの上側に加熱用管体八を
設け、管体Cの下側に冷却用管体Bを対設し、この管体
C外より外管体C内に光を照射する光源Kを設けたこと
を特徴とする密度勾配のある気体層による光路の屈折実
験装置に係るものである。
A heating tube 8 is provided on the upper side of the tube C, which has a light introduction window D for introducing light at one end and a light emitting window E for guiding light at the other end, and a cooling tube 8 is provided for the lower side of the tube C. This relates to an optical path refraction experimental device using a gas layer with a density gradient, characterized in that a body B is disposed opposite to the outer tube body C, and a light source K is provided for irradiating light into the outer tube C from outside the tube C. .

管体C内の気体I−■を他の気体に置換ずる導入コック
G及び導出コックFを設けたことを特徴とする請求項第
1項記載の密度勾配のある気体層による光路の屈折実験
装置に係るものである。
2. The optical path refraction experimental device using a gas layer with a density gradient as claimed in claim 1, characterized in that an inlet cock G and an outlet cock F are provided for replacing the gas I-■ in the tube body C with another gas. This is related to.

〔作 用〕[For production]

管体Cの上側に設けた加熱用管体Aに例えば高温の蒸気
Sを通じ、管体Cの下側に対設した冷却用管体Bに冷水
Wを通じ、管体C内の気体■4の上下方向に高温側と低
温側を生じせしめて気体I−{の上下方向に密度勾配を
生じせしめる。
For example, high-temperature steam S is passed through the heating tube A provided above the tube C, and cold water W is passed through the cooling tube B provided opposite to the bottom of the tube C, thereby reducing the gas in the tube C 4. A high temperature side and a low temperature side are created in the vertical direction, and a density gradient is created in the vertical direction of the gas I-{.

この状態で光導入窓D .1り光源Kから光を照射する
と、加熱用管体A側の高温側即ち密度の低い側の屈折率
と冷却用管体B側の低温側即ち密度の高い側の屈折率が
異なるため、照射された光は直進せずに屈折を受けて光
導出窓Eより放出される。
In this state, light introduction window D. 1) When light is irradiated from the light source K, the refractive index on the high temperature side, that is, the side with low density on the side of the heating tube A is different from the refractive index on the side of the cooling tube B, that is, the low temperature side, that is, the side with high density. The emitted light does not travel straight, but is refracted and emitted from the light guide window E.

この放出光を例えばスクリーンIにとらえることに上り
屈折の度合を定量的に測定できる。
By capturing this emitted light on a screen I, for example, the degree of refraction can be quantitatively measured.

また、管体C内の気体■1を別の気体に置換して比較実
験などを行う場合には導出コノクFより気体1{を導出
し、導入コックGより別の気体を導入して置換する。
In addition, when performing a comparative experiment by replacing gas 1 in tube C with another gas, derive gas 1 from derivation cock F, and introduce another gas from introduction cock G to replace it. .

〔実施例〕〔Example〕

本発明の実施例を第1図に示す。本装置は加熱用金属パ
イプAをガラスまたはアクリル製の太い管体Cの内部の
上側に設け、冷却用金属パイプBをこの管体Cの内部の
下側に対設し、この管体Cの一端(図面では左端)に光
導入窓Dを他端(図面では右端)に光導出窓Eを設け夫
々の窓D−Eをガラス板で閉塞した装置である。
An embodiment of the invention is shown in FIG. In this device, a heating metal pipe A is installed on the upper side inside a thick tube body C made of glass or acrylic, and a cooling metal pipe B is installed oppositely on the lower side inside this tube body C. This is a device in which a light introduction window D is provided at one end (the left end in the drawing) and a light exit window E is provided at the other end (the right end in the drawing), and each window DE is closed with a glass plate.

加熱用金属パイプAには蒸気発生器より高温の蒸気Sを
通じ、もしくは、内部に装置した線状ヒーターに電流を
通じて加熱し、冷却用金属パイプBには冷水Wを通じて
冷却し、管体C内の空気層の」二下に温度差ΔTをっく
り出ずことにより、」二下の空気層に密度差Δdを安定
的につくり出す。
The heating metal pipe A is heated by passing high-temperature steam S from a steam generator or an electric current is passed through a linear heater installed inside, and the cooling metal pipe B is cooled by passing cold water W. By not allowing the temperature difference ΔT to appear below the air layer, a density difference Δd is stably created in the air layer below the air layer.

また、空気以外の気体、または空気との混合気体による
光の屈折を実験する場合などには導入コックG及び導出
コックFを開いて気体Hの置換を行う。尚、図面では導
出コックF及び導入コックGはわかりやすく下方に図示
したが、管体Cの側方3 4− に設けても同じである。
Further, when experimenting with the refraction of light due to a gas other than air or a gas mixture with air, the introduction cock G and the output cock F are opened to replace the gas H. In the drawing, the outlet cock F and the inlet cock G are shown in the lower part for easy understanding, but the same effect can be obtained even if they are provided on the side 34- of the tube body C.

一端の光導入窓Dから光源Kより照射されたレーザー光
が、内部の空気(または導入された気体)Hの密度勾配
により屈折されて、他端の光導出窓Eから放出される。
A laser beam irradiated from a light source K through a light introduction window D at one end is refracted by the density gradient of internal air (or introduced gas) H, and is emitted from a light exit window E at the other end.

屈折した角△θは第2図に示すように本装置から数m離
して置かれたスクリーン■上の光点(スボッl−)Jの
移動量△Xjこり測定される。
As shown in FIG. 2, the refracted angle Δθ is measured by the amount of movement ΔXj of a light spot J on a screen placed several meters away from the apparatus.

尚、第1,2図においては光路の中心軸Oに対ずる傾角
(入射角)φや、光路の曲りの角度Δθなどは誇張して
描いてある。また、第2図の装置全体は、両端の光の導
出導入の窓D−Eのガラス板を省略した開放型の場合の
例を示した。この装置でも空気による光路の曲りは測定
可能である。
In FIGS. 1 and 2, the inclination angle (incident angle) φ with respect to the central axis O of the optical path, the bending angle Δθ of the optical path, etc. are exaggerated. Further, the entire apparatus shown in FIG. 2 is an example of an open type in which the glass plates of the windows DE at both ends for leading out and introducing light are omitted. This device can also measure the bending of the optical path due to air.

(第1図は密閉型の例である。) 〔本装置利用実験における屈折の定量的説明〕高温側の
温度をT,、屈折率をn 低温側の温度をT2、屈折率をn2としたとき、光路の
水平軸(中心軸0)からの傾角(入射角)φが小さいと
き、第3図のように入射角をθ,、屈折角を02とした
ら、屈折の法則より、屈折率の比は となり、φ、Δθの実測値から屈折率n,、n1の比、
またはn,、hの差、ひいては上下の空気層の温度差Δ
Tが評価される。
(Figure 1 is an example of a closed type.) [Quantitative explanation of refraction in experiments using this device] The temperature on the high temperature side is T, and the refractive index is n. The temperature on the low temperature side is T2, and the refractive index is n2. When the inclination angle (incident angle) φ from the horizontal axis (center axis 0) of the optical path is small, if the incident angle is θ and the refraction angle is 02 as shown in Figure 3, then according to the law of refraction, the refractive index is The ratio is as follows, and from the measured values of φ and Δθ, the ratio of the refractive index n,, n1,
Or the difference in n, h, and the temperature difference Δ between the upper and lower air layers
T is evaluated.

高温側を蒸気Sで加熱し、低温側を通常の水道水Wで冷
却したときの測定データの例を次に示す。
Examples of measurement data when the high temperature side is heated with steam S and the low temperature side is cooled with normal tap water W are shown below.

第2図において、 ・装置の中心からスクリーンIまでの距離、L  = 
3.66m ・装置の管体Cの長さ、 ]=90cm ・管体Cの直径(内径)、 35mmφ ・スクリーンI上でのレーザースポットの移動量   
     Δx=7.8mm ・レーザー光の波長、 λ = 632.8nm ・光導入部菅上部温度、 t,=51.8℃ T   = 324.8K ・光導入部管下部温度、 t,= 27.4°C T ,= 300.4K ・光路の水平軸(中心軸O)からの傾角、φ= I.I
2X 10−’rad ・光路の屈折角 (光軸からの[111り角)、Δ0 
= 2 08X 10−’radこのときの屈折率の比 n7n+=1+φ ・ Δθ +(Δθ)2/225X
lO−’ または、屈折率の差、 np   11,= n,/r++   l= 2.5
X 10−5一方温度差から求めた屈折率の比は、 ただし、空気の場合、k= 7.96X 10−’ (
 Kとなり、定量的な説明ができる。
In Figure 2, Distance from the center of the device to screen I, L =
3.66m ・Length of tube C of the device, ]=90cm ・Diameter (inner diameter) of tube C, 35mmφ ・Amount of movement of laser spot on screen I
Δx=7.8mm ・Wavelength of laser light, λ = 632.8nm ・Temperature of upper part of light introduction part tube, t,=51.8℃ T=324.8K ・Temperature of lower part of light introduction part tube, t,=27.4 °C T , = 300.4K - Inclination angle of the optical path from the horizontal axis (central axis O), φ = I. I
2X 10-'rad ・Refraction angle of optical path ([111 angle from optical axis), Δ0
= 2 08
lO-' or difference in refractive index, np 11,= n,/r++ l= 2.5
X 10-5 On the other hand, the ratio of the refractive index determined from the temperature difference is, however, in the case of air, k = 7.96X 10-' (
K, and a quantitative explanation can be given.

つぎに、空気と他の気体(たとえば炭酸ガス)〕 のそれぞれについて光路の曲り角、Δθ9とΔθ。Next, air and other gases (e.g. carbon dioxide)] The bending angle of the optical path, Δθ9 and Δθ, respectively.

を測定ずることにより、2つの気体の屈折率の差が評価
できる。
By measuring , the difference in refractive index between two gases can be evaluated.

空気の屈折率、nA−I十kA/T 炭酸ガスの屈折率、nc”’ I + kc/ Tとあ
らわせるから (ただし、r=八〇。/ΔθA)の関係式より、曲りの
角の比、Δθ。/Δθ3から屈折率の差が評価できる。
Since the refractive index of air, nA-I0kA/T and the refractive index of carbon dioxide gas, nc"' I + kc/T (where r = 80./ΔθA), the angle of the bend is The difference in refractive index can be evaluated from the ratio Δθ./Δθ3.

逆に、屈折率のちがいがスポットの移動量ΔXのちがい
として、本装置により目で見える形で演示ずることかで
きる。
Conversely, the difference in refractive index can be visually displayed by this device as a difference in the amount of movement ΔX of the spot.

〔発明の効果〕〔Effect of the invention〕

本装置を教育実験に使用することにより、大気による天
文学的屈折、アスファルト路面における地鏡現象や脣気
楼的現象などの空気中での温度差による光路の曲がりの
現象を実験室で簡単かつ短時間に目で見えるように演示
ずることか可能となる。
By using this device in educational experiments, it is possible to easily and quickly simulate phenomena in the laboratory where optical paths are bent due to temperature differences in the air, such as astronomical refraction caused by the atmosphere, geomirror phenomena on asphalt road surfaces, and parasitic phenomena. It becomes possible to visually display the time.

8 また、その説明を屈折の法則から定量的に説明すること
が可能となる。
8 In addition, it becomes possible to quantitatively explain the explanation from the law of refraction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による密度勾配のある空気層に
よる光路の屈折実験装置を示す。第2図は本装置を用い
て光路の屈折を測定する全体の配置図である。第3図は
、通常の屈折の法則の入射角θ1、屈折角θ,とφ、Δ
θの関係を示す説明図である。 平威1年9月8日
FIG. 1 shows an experimental apparatus for refraction of an optical path by an air layer having a density gradient according to an embodiment of the present invention. FIG. 2 is an overall layout diagram for measuring refraction of an optical path using this device. Figure 3 shows the incident angle θ1, refraction angle θ, and φ, Δ according to the normal law of refraction.
FIG. 3 is an explanatory diagram showing the relationship between θ. September 8, 1st year of Heii

Claims (1)

【特許請求の範囲】 1 一端に光を導入する光導入窓を設け、他端に光を導
出する光導出窓を設けた管体の上側に加熱用管体を設け
、管体の下側に冷却用管体を対設し、この管体外より管
体内に光を照射する光源を設けたことを特徴とする密度
勾配のある気体層による光路の屈折実験装置。 2 管体内の気体を他の気体に置換する導入コック及び
導出コックを設けたことを特徴とする請求項第1項記載
の密度勾配のある気体層による光路の屈折実験装置。
[Scope of Claims] 1. A heating tube is provided on the upper side of a tube which has a light introduction window for introducing light at one end and a light output window for guiding light at the other end, and a cooling tube is provided at the lower side of the tube. What is claimed is: 1. An optical path refraction experimental device using a gas layer with a density gradient, characterized in that a light source is provided to irradiate light into the tube from outside the tube. 2. The optical path refraction experimental device using a gas layer with a density gradient according to claim 1, further comprising an inlet cock and an outlet cock for replacing the gas in the tube with another gas.
JP23401689A 1989-09-08 1989-09-08 Experimental device for refraction of optical path by gas layer with density gradient Expired - Fee Related JP2652250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23401689A JP2652250B2 (en) 1989-09-08 1989-09-08 Experimental device for refraction of optical path by gas layer with density gradient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23401689A JP2652250B2 (en) 1989-09-08 1989-09-08 Experimental device for refraction of optical path by gas layer with density gradient

Publications (2)

Publication Number Publication Date
JPH0396984A true JPH0396984A (en) 1991-04-22
JP2652250B2 JP2652250B2 (en) 1997-09-10

Family

ID=16964237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23401689A Expired - Fee Related JP2652250B2 (en) 1989-09-08 1989-09-08 Experimental device for refraction of optical path by gas layer with density gradient

Country Status (1)

Country Link
JP (1) JP2652250B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933932A (en) * 2015-06-25 2015-09-23 陕西师范大学 Demonstration device for bending direction of light ray in positive gradient temperature field and experimental method
CN104933931A (en) * 2015-06-25 2015-09-23 陕西师范大学 Experimental device for heat flow beam splitting effect in liquid and experimental method
CN104933930A (en) * 2015-06-25 2015-09-23 陕西师范大学 Demonstration device for bending direction of light ray in negative gradient temperature field and experimental method
CN104992600A (en) * 2015-06-25 2015-10-21 陕西师范大学 Experiment apparatus for establishing gradient temperature field in water
CN105023490A (en) * 2015-06-25 2015-11-04 陕西师范大学 Test device of cold flow optical concentrating effect in liquid, and test method
CN105047054A (en) * 2015-06-25 2015-11-11 陕西师范大学 Experiment device and method for the relation between light bending and temperature gradient direction
CN106057036A (en) * 2016-07-30 2016-10-26 陕西师范大学 Heat balance process visualization experimental device and experimental method
CN106057038A (en) * 2016-07-30 2016-10-26 陕西师范大学 Heat transfer process and direction synchronous real-time optical demonstration device and experiment method
CN106057035A (en) * 2016-07-30 2016-10-26 陕西师范大学 Hot body near-surface gradient temperature field real-time visual experiment device and experiment method
CN106057037A (en) * 2016-07-30 2016-10-26 陕西师范大学 Real-time visual experiment device of influence of temperature difference on heat transfer speed and demonstration method
CN107481602A (en) * 2017-07-05 2017-12-15 陕西师范大学 Light-transfer characteristic experimental provision and experimental method in non-uniform dielectric
CN112525860A (en) * 2020-11-16 2021-03-19 合肥工业大学 Method for measuring solution refractive index based on laser path

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105023490B (en) * 2015-06-25 2017-07-11 陕西师范大学 Cold flow spotlight effect experimental provision and experimental method in liquid
CN105047054B (en) * 2015-06-25 2017-10-20 陕西师范大学 Bending of light degree and thermograde direction relationses experimental provision and experimental method
CN104933930A (en) * 2015-06-25 2015-09-23 陕西师范大学 Demonstration device for bending direction of light ray in negative gradient temperature field and experimental method
CN104992600A (en) * 2015-06-25 2015-10-21 陕西师范大学 Experiment apparatus for establishing gradient temperature field in water
CN105023490A (en) * 2015-06-25 2015-11-04 陕西师范大学 Test device of cold flow optical concentrating effect in liquid, and test method
CN105047054A (en) * 2015-06-25 2015-11-11 陕西师范大学 Experiment device and method for the relation between light bending and temperature gradient direction
CN104933931A (en) * 2015-06-25 2015-09-23 陕西师范大学 Experimental device for heat flow beam splitting effect in liquid and experimental method
CN104933932A (en) * 2015-06-25 2015-09-23 陕西师范大学 Demonstration device for bending direction of light ray in positive gradient temperature field and experimental method
CN104933930B (en) * 2015-06-25 2017-07-11 陕西师范大学 Bending of light direction apparatus for demonstrating and experimental method in negative gradient temperature field
CN104992600B (en) * 2015-06-25 2017-07-11 陕西师范大学 The experimental provision of gradient temperature is set up in water
CN106057038A (en) * 2016-07-30 2016-10-26 陕西师范大学 Heat transfer process and direction synchronous real-time optical demonstration device and experiment method
CN106057036B (en) * 2016-07-30 2018-12-04 陕西师范大学 Thermal balance process visualization experimental provision and experimental method
CN106057036A (en) * 2016-07-30 2016-10-26 陕西师范大学 Heat balance process visualization experimental device and experimental method
CN106057037B (en) * 2016-07-30 2018-12-04 陕西师范大学 The real-time visual experimental provision and demenstration method that the temperature difference influences heat transfer speed
CN106057035B (en) * 2016-07-30 2018-12-04 陕西师范大学 Hot body near surface gradient temperature field real-time visual experimental provision and experimental method
CN106057037A (en) * 2016-07-30 2016-10-26 陕西师范大学 Real-time visual experiment device of influence of temperature difference on heat transfer speed and demonstration method
CN106057038B (en) * 2016-07-30 2018-12-07 陕西师范大学 Heat transfer process real-time optical apparatus for demonstrating synchronous with direction and experimental method
CN106057035A (en) * 2016-07-30 2016-10-26 陕西师范大学 Hot body near-surface gradient temperature field real-time visual experiment device and experiment method
CN107481602A (en) * 2017-07-05 2017-12-15 陕西师范大学 Light-transfer characteristic experimental provision and experimental method in non-uniform dielectric
CN112525860A (en) * 2020-11-16 2021-03-19 合肥工业大学 Method for measuring solution refractive index based on laser path

Also Published As

Publication number Publication date
JP2652250B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
Modest et al. Radiative heat transfer
Howell et al. Thermal radiation heat transfer
JPH0396984A (en) Refraction experimentation device for optical path by gas layer having density gradient
Trainoff et al. Physical optics treatment of the shadowgraph
Hauf et al. Optical methods in heat transfer
van Hinsberg et al. Density measurements using near-field background-oriented schlieren
Balaji Essentials of radiation heat transfer
Ohno et al. Reconstruction method of axisymmetric refractive index fields with background-oriented schlieren
Kelman et al. Quantitative technique for imaging mixture fraction, temperature, and the hydroxyl radical in turbulent diffusion flames
Lopes et al. Directional spectral emittance of a packed bed: correlation between theoretical prediction and experimental data
Jiang Theoretical study of light scattering by an elliptical cylinder
Vedyashkina et al. Experimental and computer 3D-visualization’s dynamics of optical caustics in inhomogeneous mediums
Zhai et al. Studies on gas concentration reconstruction methods for simultaneous temperature and H2O concentration tomographic imaging in a flame based on tunable diode laser absorption spectroscopy
Tuntomo Transport phenomena in a small particle with internal radiant absorption
Lacona et al. Holographic interferometry applied to coupled free convection and radiative transfer in a cavity containing a vertical plate between 290 and 650 K
US20240027659A1 (en) Forming acousto-optic lenses using spherical acoustic waves in fluids
Bonnell Temperature dependent behavior of optical loss from hydrogen species in optical fibers at high temperature
Ngo et al. Interference patterns produced by an evaporating droplet on a horizontal surface
Zysk et al. Framework for computing the spatial coherence effects of polycapillary x-ray optics
Weinberg Geometric-optical techniques in combustion research
Kolomiets Analisys of the international Master’s degree program “Mathematical modeling and information technologies in photonics”
Brown et al. Thermometry in pressurized sooting flames using laser-induced gratings
Zayouna Characterization of Silicon Waveguides For Non-Dispersive Infrared Gas Sensors
Dowd Temperature distribution in an impinging gas jet from inter-ferometric measurements.
Tashtoush Experimental investigation on flame spread over liquids using holographic interferometry

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees