JPH0396281A - Manufacture of conductivity-modulation mosfet - Google Patents

Manufacture of conductivity-modulation mosfet

Info

Publication number
JPH0396281A
JPH0396281A JP23362489A JP23362489A JPH0396281A JP H0396281 A JPH0396281 A JP H0396281A JP 23362489 A JP23362489 A JP 23362489A JP 23362489 A JP23362489 A JP 23362489A JP H0396281 A JPH0396281 A JP H0396281A
Authority
JP
Japan
Prior art keywords
region
conductivity type
conductivity
lifetime
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23362489A
Other languages
Japanese (ja)
Other versions
JP2890519B2 (en
Inventor
Kenya Sakurai
建弥 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1233624A priority Critical patent/JP2890519B2/en
Publication of JPH0396281A publication Critical patent/JPH0396281A/en
Application granted granted Critical
Publication of JP2890519B2 publication Critical patent/JP2890519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce an irregularity in a characteristic caused by a crystal defect density and to eliminate instability of an electric characteristic after a lifetime has been controlled by a method wherein impurities are introduced into a semiconductor substrate of a first conductivity type and a first region of the first conductivity type and a second region of a second conductivity type are formed. CONSTITUTION:An n-type silicon substrate which has been cut from a single crystal manufactured by a floating zone method is used, boron is diffused from the rear to form a P<+> layer to be used as a collector region 1. A remaining part of the substrate is used as an n<-> drift region 2. When a heavy metal is diffused and an electron beam is then irradiated, an expected lifetime is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力用スイッチング素子として用いられる伝
導度変調型MO S F ETの製造方法に関する. (従来の技術〕 近年、電力用スイッチング素子として伝導度変調型MO
SFETが提案され、市場に出始めている.伝導度変調
型MOSFETは、絶縁ゲート型バイポーラトランジス
タとも呼ばれるので、以下r GBTと略記する.第2
図はr GBTの構造を示し、コレクタ領域となるp”
碁板1の上に高抵抗のn− ドリフト領域2が積層され
ている.ドリフト領域2の表面層には複数のp形チャネ
ル拡散領域(ベース領域)3が形成され、その中央には
低抵抗のp3ウエル4が設けられている.ベース領域3
の表面層には一対のn9エミフタ領域5が間隔を開けて
形成されている.チャネル拡散領域3のドリフト領域2
と工aツタ領域5にはさまれた表面層31にnチャネル
を形成するために、ゲート酸化!I6を介してゲート端
子Gに接続されるゲート電極7が備えられている.ゲー
ト電極7と絶縁層8を介してp0ウエル4およびエミフ
タ領域5に接触するエミッタ電極9が設けられている.
工aツタ電極9には、エミッタ端子Eとの接続のための
導線1lが、例えばM線のボンディングにより固着され
ている.また、コレクタ領域lにはコレクタ端子Cに接
続されるコレクタ電極10が接触している.この構造は
、通常の縦型DMOSといわれる電力用MO S F 
ETのコレクタ接触層としてのn′″領域をp0層lに
おきかえたものということができる.この素子の動作は
次のようである.工漬ツタ電極9を接地し、ゲート電極
7およびコレクタ電8i10に正の電圧を印加する,M
OSFETと同じ原理で電極下のp層3の表面が反転し
て電子のチャネルができる.従ってn”ベース領域がア
ース電位に接続された形となり、ドレイン電極10から
正孔電流が注入される.この正孔電流が、n− ドリフ
ト領域2中の電子濃度をひきあげ、この領域の抵抗を低
減する、いわゆる伝導度変調効果によって、オン抵抗が
十分低い値をもつことになる.第3図に示すように、工
aツタ電流IEはチャネルを遣る!鱒@3とn− ドレ
イン領域2からpベース領域3に流れ込む正孔電流■あ
の和である.pベース領域3+  n− ドリフト領域
2およびp0コレクタ領域1によって形成されるPNP
バイポーラ・トランジスタの電流増幅率をαFIIPと
1−αPIIIP ? ら、 ■、一!エ。3  となる.従っ(1−α■,〉 て、αP1の値によってIb(正孔電流)が変化し、つ
まり、IGETの電流が変化する.第4図はターンオフ
時の代表的なスイッチング波形であり、第一のフェイズ
41と第二のフェイズ42がある?とがわかる.第一の
期間41では、チャネルが消え電子電流が0になるため
に、その分だけ瞬時に電流が減少する.次の第二の期間
42では、n一層2中に残留したキャリアによってPN
Pバイポーラ・トランジスタの作用で流れる電流がキャ
リアの寿命τで減少するものである.従って、このスイ
ッチング特性も■1正孔電流の注入レベルによって、つ
まり電流増幅率αp■によって大きく左右されることが
わかる. 〔発明が解決しようとする課題〕 従来のI GETの製造に当たってはチックラルスキー
法(CZ法)で作威されたシリコン結晶より得た第二導
電形の基板上にエビタキシャル法により第一導電形の低
抵抗層を介してドリフl− IN域となる第一導電形の
高抵抗層を積層する.ところが、X&Iトポグラフによ
れば、半導体基板とその上の第一導電形の低抵抗層の間
の接合部、あるいは第一導電形の低抵抗層と高抵抗層の
間の接合部に竃スフィット転位が見られ、高密度の結晶
欠陥が存在していることがわかった.このような欠陥に
より、IGBT内のバイポーラ・トランジスタの注入効
率が大きく影響を受ける.従って、IGBTの特性を左
右するバイポーラ・トランジスタの電流増幅率が前記結
晶欠陥密度によって大きく影響されることになる.この
結晶欠陥密度は後の工程で減少するものではなく、特に
I GBTのスイッチング速度および順電圧降下が大き
くばらつき、性能の低下.歩留まり低下をもたらす.エ
ビタキシャル或長層の接合面に生ずる結晶欠陥は、基板
中に存在する酸素析出物に起因する.従って基板中の酸
素濃度によりI GBTの特性が変化する.第5図はp
“基板中の酸素濃度とI GBTのターンオフ時間との
関係を示す. 一方、I GBTを高速化するために、電子線照射ある
いは重金属拡散によるライフタイム制御が行われている
.しかし、これらには次の問題がある.電子線照射を行
った結晶では、200〜300℃の比較的低温で結晶の
ア二一リング効果が進み、その電気特性が変動する.こ
の不安定性は、パワーデバイスにおける過大な電気スト
レス時におけるチップ内電力損失が不均一におこる場合
に重要な問題を引きおこすことになる.つまり・長時間
使用中に局部的に電気的特性の変動の可能性が存在する
.さらに電子線照射によるライフタイム制御は、電子線
照射直後は、酸化膜中に発生した正孔.電子のキャリア
の捕獲によってそのしきい値電庄が低下しており、これ
を定常状態にもどすためにア二一リングが必要になる.
この酸化腹中および界面を正常にもどすためのア二一リ
ングは、当然s+結晶中の電子線照射による欠陥をも回
復させることになる.そのほか、スイッチング速度を早
めるために照射量を増加させると、高抵抗層部の抵抗が
低下するのが認められる.すなわち、IGBTのスイッ
チング速度を早めることに限界が存在することになる. 重金属拡散によるライフタイム制御の場合は、上記結晶
欠陥に重金属がゲンタリソグされ、本来必要な高抵抗層
への均一な分布が得られないという問題がある.また重
金属ライフタイム制御法には低温における不安定性は存
在しないが、多量な不純物を導入すると、例えばn一高
抵抗層では深い準位へのドナーの捕獲によって自由電子
キャリア密度が低減し、高抵抗化現象が発生する.これ
はI GBTの順方向電圧降下を増大させる.本発明の
目的は、結晶欠陥密度により生ずる特性のばらつきを低
減したI GBTを提供することにある.また、ライフ
タイム制御後の電気特性の不安定性のないI GBTを
提供することにある.(!II!Iを解決するための手
段〕 上記の目的を達或するために、本発明は、第一導電形.
第一領域の一面側に第二導電形の第二領域が隣接し、第
一領域の他面側の表面部に第二導電形の第三領域が、さ
らに第三N域の表面部に第一導電形の第四領域が形成さ
れてなる半導体素体の第三領域の第一領域および第四領
域にはさまれた領域の上に絶縁膜を介してゲートを備え
た伝導度変嘴型MO S F ETの製造方法において
、第一導電形の半導体基板に不純物を拡散することによ
り第一,第二両領域を形成するものとする.また上記の
製造方法において、半導体素体に先ず重合属を導入し、
ついで電子線照射することにより半導体素体の所期のラ
イフタイムを得るものとする.〔作用〕 第一導電形の半導体基板に不純物を導入することによっ
て第一導電形の第一領域と第二導電形の第二領域を形戒
する場合には、基板中に存在した結晶欠陥の密度が大幅
に減少するので、基板中に存在した結晶欠陥に基づ<I
GBTの特性のばらつきが生じない.一方、半導体素体
の所期のライフタイムを、高抵抗層の抵抗値が大幅に増
大する以前の不純物密度にとどまるように重金属の導入
を行い、さらにライフタイム低減の不足分を電子線照射
によることによって、電子線照射量を少なくすることが
でき、低温アニールによる電気的特性の変動量が大幅に
低減する. 〔実施例〕 第1図は本発明の一実施例の工程中間段階を示し、右側
は半導体素体の断面図.左側は不純物濃度分布図である
.このような半導体素体は、フローティングゾーン法(
FZ法)で作威された単結晶から切り出された不純物濃
度IXIO”/一以下のn形のシリコン基板を用い、裏
面よりほう素を拡散して第2図に示したコレクタM域1
となる,・層を形成する.残った基板部分がれ− ドリ
フトSJ域2となる.以後の工程は従来と同様で、不純
物拡散により第2図に示したpベース領域3.p゜ウエ
ル4およびn′″エミッタ領域5が形成される.第6図
に第1図と同様に示した実施例では、二種類の不純物の
同時拡散により、n − 9i域2とp・領域間に介在
するバッフ7頭域としての低抵抗のn層11が形成され
ている.これらの構造では、従来のp9基板上にエビタ
キシャル戒長させた半導体素体とくらべて大幅に結晶欠
陥密度が低減する.低い結晶欠陥密度は、FZ法による
結晶を用いた場合に限定されず、中性子照射FZ法結晶
.磁場中引上法(MCZ法)による結晶あるいはcz法
による結晶を用いた場合にも得ることができる.なお、
不純物導入にはイオン注入法も適用できることはいうま
でもない. 本発明によるライフタイム制御法では、二段ライフタイ
ムIIImを行う.第7図は重金属拡散温度によるライ
フタイムおよびコレクタ・エミンタ飽和電圧(V Cl
 tgal1 )の変化を示す.最初に行う重金属拡散
では、V C! 1111%) 、すなわち順方向電圧
降下が急激に増大する以前にとどまるように拡散温度を
低くし、導入不純物密度量を抑え、そのあと早いスイッ
チング速度を得るためには不足のライフタイム低減に対
して必要な電子線照射を行う.例えば、860℃におけ
る重金属拡散のあとに、2 MaV. 5 Mradの
電子線照射で、順方向電圧降下を坩大させずに0.5μ
secのターンオフタイムを達成できた*5Mrad以
下の比較的少ない電子線照射量では、低温アニールによ
る電気的特性の変動量が大幅に低減できる.第8図は重
金属ライフタイム制御を行った素子(線81)と本発明
に基づき二段ライフタイム制御を行った素子(線82)
における順電圧降下とターンオフ時間の関係を示し、二
段ライフタイム制御法によってスイッチング速度と順電
圧降下のトレードオフが改善されることが分かる.これ
は、重金属と電子線ライフタイム制御の併用による重金
属ライフタイム制御の際の高抵抗化現象の抑制によるも
のと考えられる.また、電子線照射のみの場合よりも早
いスイッチング速度が達或できる. 第9図は、従来のIGBT (図a)と本発明によりF
Z法シリコン基板への拡散によるp″頭域,nバッファ
領域およびn”81域の形成ならびに二段ライフタイム
制御法を実施して製造された■GBT  (図b)との
ターンオフ時間のばらつきをヒストグラムに示す.本発
明により特性のばらつきが低減したことが分かる.同様
に順電圧降下などの電気特性のばらつきも低減できるこ
とが実証された. さらに、コレクタ碩域を拡散法により形戒することによ
り、コレクタ領域の拡散プロフィルを容易に変更できる
ことから、第10図に示すようにターンオフ時間を大幅
に低減できる.第10図+alは従来法によるI GB
Tであり、第10図〜》は本発明により製造されたI 
GBTである. 〔発明の効果〕 本発明によれば、I GBTのコレクタ領域およびドリ
フト領域を半導体基板への不純物拡散で形戒する。とヶ
より、従来のエビタキシャル或長テ形成した場合のよう
に領域間接合部での結晶欠陥の発生がなくなり、結晶欠
陥の影響による特性のばらつきを阻止することができた
.また、ライフタイム制御を重金属導入と電子線照射の
二段で行うことにより、重金属ライフタイム制御の際の
スイッチング速度と順方向電圧降下とのトレードオフを
改善することができ、I GBTの高速化が容易にった
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a conductivity modulated MOSFET used as a power switching element. (Prior art) In recent years, conductivity modulated MO has been used as a power switching element.
SFETs have been proposed and are beginning to appear on the market. Since the conductivity modulation type MOSFET is also called an insulated gate type bipolar transistor, it will be abbreviated as rGBT below. Second
The figure shows the structure of rGBT, and p'' which is the collector region.
A high-resistance n-drift region 2 is layered on top of a Go board 1. A plurality of p-type channel diffusion regions (base regions) 3 are formed in the surface layer of the drift region 2, and a low-resistance p3 well 4 is provided in the center thereof. base area 3
A pair of N9 emifter regions 5 are formed with an interval between them on the surface layer. Drift region 2 of channel diffusion region 3
In order to form an n-channel in the surface layer 31 sandwiched between the ivy region 5 and the ivy region 5, gate oxidation is performed! A gate electrode 7 is provided which is connected to the gate terminal G via I6. An emitter electrode 9 is provided which contacts the p0 well 4 and the emitter region 5 via the gate electrode 7 and the insulating layer 8.
A conductive wire 1l for connection to the emitter terminal E is fixed to the vine electrode 9 by, for example, M wire bonding. Further, a collector electrode 10 connected to a collector terminal C is in contact with the collector region l. This structure is a power MOSFET called normal vertical DMOS.
It can be said that the n''' region as the collector contact layer of ET is replaced with the p0 layer l. The operation of this device is as follows. Apply positive voltage to 8i10, M
Using the same principle as an OSFET, the surface of the p-layer 3 under the electrode is inverted to create an electron channel. Therefore, the n'' base region is connected to the ground potential, and a hole current is injected from the drain electrode 10. This hole current increases the electron concentration in the n- drift region 2 and increases the resistance of this region. Due to the so-called conductivity modulation effect, the on-resistance has a sufficiently low value.As shown in Fig. 3, the ivy current IE flows through the channel!Trout@3 and the n- drain region 2. The hole current flowing into p base region 3 is the sum of p base region 3 + n- PNP formed by drift region 2 and p0 collector region 1
What is the current amplification factor of bipolar transistor αFIIP and 1-αPIIIP? Ra, ■, one! workman. It becomes 3. Therefore, Ib (hole current) changes depending on the value of αP1, that is, the current of IGET changes. Figure 4 shows a typical switching waveform at turn-off, and the first It can be seen that there is a phase 41 and a second phase 42. In the first period 41, the channel disappears and the electron current becomes 0, so the current instantly decreases by that amount. In period 42, the carriers remaining in the n layer 2 cause PN
The current that flows due to the action of the P bipolar transistor decreases with the lifetime τ of the carriers. Therefore, it can be seen that this switching characteristic is also greatly influenced by the injection level of the 1-hole current, that is, by the current amplification factor αp. [Problem to be solved by the invention] In manufacturing conventional IGETs, a first conductivity type is formed by an epitaxial method on a substrate of a second conductivity type obtained from a silicon crystal produced by the Chickralski method (CZ method). A high-resistance layer of the first conductivity type, which becomes the drift l-IN region, is laminated via a low-resistance layer of the first conductivity type. However, according to the Dislocations were observed, indicating the presence of a high density of crystal defects. Such defects greatly affect the injection efficiency of bipolar transistors in IGBTs. Therefore, the current amplification factor of the bipolar transistor, which influences the characteristics of the IGBT, is greatly influenced by the crystal defect density. This crystal defect density does not decrease in subsequent processes, and in particular, the switching speed and forward voltage drop of IGBTs vary greatly, resulting in performance deterioration. This results in a decrease in yield. Crystal defects that occur at the joint surface of an ebitaxial long layer are caused by oxygen precipitates present in the substrate. Therefore, the characteristics of the IGBT change depending on the oxygen concentration in the substrate. Figure 5 is p
“This shows the relationship between the oxygen concentration in the substrate and the turn-off time of IGBT.On the other hand, in order to speed up IGBT, lifetime control is performed by electron beam irradiation or heavy metal diffusion.However, these There is the following problem. In a crystal subjected to electron beam irradiation, the crystal anneal effect progresses at a relatively low temperature of 200 to 300 degrees Celsius, and its electrical properties fluctuate. This instability is caused by excessive Significant problems arise when the power loss within the chip occurs unevenly during electrical stress, i.e., there is a possibility of local variations in electrical characteristics during long-term use. Lifetime control by irradiation is possible because immediately after electron beam irradiation, the threshold voltage decreases due to the capture of hole and electron carriers generated in the oxide film. One ring is required.
The anneal ring, which restores the oxidation center and interface to normal conditions, naturally also restores defects caused by electron beam irradiation in the s+ crystal. In addition, when the irradiation dose is increased to speed up the switching speed, it is observed that the resistance of the high-resistance layer decreases. In other words, there is a limit to increasing the switching speed of IGBTs. In the case of lifetime control using heavy metal diffusion, there is a problem in that the heavy metals are gen- terisolated to the above-mentioned crystal defects, making it impossible to obtain the originally required uniform distribution in the high-resistance layer. In addition, although there is no instability at low temperatures in the heavy metal lifetime control method, when a large amount of impurities is introduced, for example, in an n-high resistance layer, the free electron carrier density is reduced due to the capture of donors in deep levels, resulting in a high resistance phenomenon occurs. This increases the forward voltage drop of the IGBT. An object of the present invention is to provide an IGBT in which variations in characteristics caused by crystal defect density are reduced. Another object of the present invention is to provide an IGBT with no instability in electrical characteristics after lifetime control. (Means for solving !II!I) In order to achieve the above object, the present invention provides a first conductivity type.
A second region of the second conductivity type is adjacent to one surface of the first region, a third region of the second conductivity type is adjacent to the surface of the other surface of the first region, and a third region of the second conductivity type is adjacent to the surface of the third N region. A conductivity-variable beak type having a gate via an insulating film on a region sandwiched between the first region and the fourth region of the third region of a semiconductor body in which a fourth region of one conductivity type is formed. In the method for manufacturing a MOSFET, both the first and second regions are formed by diffusing impurities into a semiconductor substrate of a first conductivity type. In addition, in the above manufacturing method, a polymeric element is first introduced into the semiconductor element,
Next, the desired lifetime of the semiconductor element is obtained by irradiating it with an electron beam. [Operation] When forming the first region of the first conductivity type and the second region of the second conductivity type by introducing impurities into the semiconductor substrate of the first conductivity type, crystal defects existing in the substrate are Since the density is significantly reduced, <I
No variations in GBT characteristics occur. On the other hand, heavy metals are introduced so that the intended lifetime of the semiconductor element remains at the impurity density before the resistance value of the high-resistance layer increases significantly, and the shortfall in lifetime reduction is further compensated for by electron beam irradiation. By doing so, the amount of electron beam irradiation can be reduced, and the amount of variation in electrical characteristics due to low-temperature annealing can be significantly reduced. [Embodiment] Figure 1 shows an intermediate stage of the process of an embodiment of the present invention, and the right side is a cross-sectional view of a semiconductor element. The left side is an impurity concentration distribution map. Such semiconductor bodies can be manufactured using the floating zone method (
Using an n-type silicon substrate with an impurity concentration of IXIO''/1 or less cut out from a single crystal produced by FZ method), boron is diffused from the back surface to form the collector M region 1 shown in Fig. 2.
・Form a layer. The remaining board part becomes the drift SJ area 2. The subsequent steps are the same as the conventional ones, and the p base region 3. shown in FIG. 2 is formed by impurity diffusion. A p well 4 and an n'' emitter region 5 are formed. In the embodiment shown in FIG. 6, which is similar to FIG. A low-resistance n-layer 11 is formed as a seven-head buffer region interposed between the layers.In these structures, the crystal defect density is significantly lower than that of a semiconductor element formed by epitaxial growth on a conventional p9 substrate. The low crystal defect density is not limited to the case where a crystal produced by the FZ method is used, but also when a crystal produced by the neutron irradiation FZ method, a crystal produced by the magnetic field pulling method (MCZ method), or a crystal produced by the cz method is used. can also be obtained.In addition,
Needless to say, ion implantation can also be applied to introduce impurities. In the lifetime control method according to the present invention, a two-stage lifetime IIIm is performed. Figure 7 shows the lifetime and collector-emitter saturation voltage (V Cl
tgal1). In the first heavy metal diffusion, V C! 1111%), that is, to lower the diffusion temperature so that the forward voltage drop remains before it increases rapidly, to suppress the amount of introduced impurity density, and then to obtain a fast switching speed, the lifetime reduction is insufficient. Perform the necessary electron beam irradiation. For example, after heavy metal diffusion at 860°C, 2 MaV. 5 Mrad electron beam irradiation reduces the forward voltage drop by 0.5 μ without increasing the forward voltage drop.
With a relatively small electron beam irradiation dose of less than *5 Mrad, which achieved a turn-off time of 1.2 sec, the amount of variation in electrical characteristics due to low-temperature annealing can be significantly reduced. Figure 8 shows an element subjected to heavy metal lifetime control (line 81) and an element subjected to two-stage lifetime control based on the present invention (line 82).
The relationship between forward voltage drop and turn-off time is shown, and it can be seen that the two-stage lifetime control method improves the trade-off between switching speed and forward voltage drop. This is thought to be due to the suppression of the high resistance phenomenon during heavy metal lifetime control by combining heavy metal and electron beam lifetime control. Furthermore, faster switching speeds can be achieved than with electron beam irradiation alone. Figure 9 shows the conventional IGBT (Figure a) and the F
The variation in turn-off time with the GBT (Figure b) manufactured by forming the p″ head area, n buffer area, and n″81 area by Z method diffusion into the silicon substrate and implementing the two-step lifetime control method was investigated. This is shown in the histogram. It can be seen that the present invention reduces the variation in characteristics. It was also demonstrated that variations in electrical characteristics such as forward voltage drop can be reduced as well. Furthermore, by modifying the shape of the collector region using the diffusion method, the diffusion profile of the collector region can be easily changed, so the turn-off time can be significantly reduced as shown in FIG. Figure 10+al is IGB by conventional method
T, and FIGS.
It is GBT. [Effects of the Invention] According to the present invention, the collector region and drift region of an IGBT are shaped by impurity diffusion into a semiconductor substrate. This eliminates the occurrence of crystal defects at the junctions between regions, which is the case with conventional epitaxial long-teeth formation, and prevents variations in properties due to the effects of crystal defects. In addition, by performing lifetime control in two stages: heavy metal introduction and electron beam irradiation, it is possible to improve the trade-off between switching speed and forward voltage drop during heavy metal lifetime control, increasing the speed of IGBT. became easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の工程中間段階における半導
体素体の断面図および不純物濃度分布図、第2図はI 
GBTの基本的構造を示す断面図、第3図はI GBT
内の電流或分と等価回路を示す断面図、第4図はI G
BTのターンオフ時のコレクタ電流波形図、第5図はp
0シリコン基板中の酸素濃度とI GBTのターンオフ
時間との関係線図、第6図は本発明の別の実施例の工程
中間段階における半導体素体の断面図および不純物濃度
分布図、第7図はライフタイム制御のための重金属拡散
温度とターンオフ時間および順電圧降下との関係線図、
第8図は従来法によるI GBTおよび本発明の実施例
によるI GBTにおける順電圧降下とターンオフ時間
との関係線図、第9図は(al.(blにより従来法お
よび本発明の実施例によるI GBTのターンオフ時間
の分布をそれぞれ示すヒストグラム、第10図は(al
.(blにより従来法および本発明の実施例によるI 
GBTのターンオフをそれぞれ示す波形図である. 1!p0コレクタ領域、2:n− ドリフト領域、3!
pベース領域、5:n0工ξソタ領域、6:C 第3図 第4図 p1基板中の醗常傭度 (OLd  ASTM Scale) 第7図 第8図 (a) 第9図 (b)
FIG. 1 is a cross-sectional view and impurity concentration distribution diagram of a semiconductor element at an intermediate stage of the process according to an embodiment of the present invention, and FIG. 2 is an I
A cross-sectional view showing the basic structure of a GBT, Figure 3 is an IGBT.
Figure 4 is a cross-sectional view showing a certain amount of current in IG and an equivalent circuit.
Collector current waveform diagram at turn-off of BT, Figure 5 is p
FIG. 6 is a diagram showing the relationship between the oxygen concentration in the silicon substrate and the turn-off time of the IGBT. FIG. is a relationship diagram between heavy metal diffusion temperature, turn-off time and forward voltage drop for lifetime control,
FIG. 8 is a diagram showing the relationship between forward voltage drop and turn-off time in the IGBT according to the conventional method and the IGBT according to the embodiment of the present invention, and FIG. A histogram showing the distribution of turn-off times of IGBTs, FIG.
.. (I according to the conventional method and the embodiment of the present invention according to bl.
FIG. 3 is a waveform diagram showing the turn-off of GBT. 1! p0 collector region, 2: n- drift region, 3!
p base region, 5: n0 engineering ξ sota region, 6: C Fig. 3 Fig. 4 p1 Regular scale in the substrate (OLd ASTM Scale) Fig. 7 Fig. 8 (a) Fig. 9 (b)

Claims (1)

【特許請求の範囲】 1)第一導電形の第一領域の一面側に第二導電形の第二
領域が隣接し、第一領域の他面側の表面部に第二導電形
の第三領域が、さらに第三領域の表面部に第一導電形の
第四領域が形成されてなる半導体素体の第三領域の第一
領域および第四領域にはさまれた領域の上に絶縁膜を介
してゲートを備えた伝導度変調型MOSFETの製造方
法において、第一導電形の半導体基板に不純物を導入す
ることにより第一、第二両領域を形成することを特徴と
する伝導度変調型MOSFETの製造方法。 2)第一導電形の第一領域の一面側に第二導電形の第二
領域が隣接し、第一領域の他面側の表面部に第二導電形
の第三領域が、さらに第三領域の表面部に第一導電形の
第四領域が形成されてなる半導体素体の第三領域の第一
領域および第四領域にはさまれた領域の上に絶縁膜を介
してゲートを備えた伝導度変調型MOSFETの製造方
法において、半導体素体に先ず重金属を導入し、ついで
電子線を照射することにより半導体素体の所期のライフ
タイムを得ることを特徴とする伝導度変調型MOSFE
Tの製造方法。
[Claims] 1) A second region of the second conductivity type is adjacent to one surface side of the first region of the first conductivity type, and a third region of the second conductivity type is adjacent to the surface portion of the other surface side of the first region. An insulating film is formed on a region sandwiched between the first region and the fourth region of the semiconductor body, in which the region further includes a fourth region of the first conductivity type formed on the surface of the third region. A method for manufacturing a conductivity modulated MOSFET having a gate via a conductivity modulated MOSFET, characterized in that both the first and second regions are formed by introducing impurities into a semiconductor substrate of a first conductivity type. Method of manufacturing MOSFET. 2) A second region of the second conductivity type is adjacent to one side of the first region of the first conductivity type, a third region of the second conductivity type is adjacent to the surface portion of the other side of the first region, and a third region of the second conductivity type is adjacent to one side of the first region of the first conductivity type. A gate is provided on a region sandwiched between the first region and the fourth region of the third region of the semiconductor body in which the fourth region of the first conductivity type is formed on the surface of the region, with an insulating film interposed therebetween. In the method for manufacturing a conductivity modulated MOSFET, the semiconductor element is first introduced with a heavy metal and then irradiated with an electron beam to obtain the desired lifetime of the semiconductor element.
Method for manufacturing T.
JP1233624A 1989-09-08 1989-09-08 Manufacturing method of conductivity modulation type MOSFET Expired - Lifetime JP2890519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233624A JP2890519B2 (en) 1989-09-08 1989-09-08 Manufacturing method of conductivity modulation type MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233624A JP2890519B2 (en) 1989-09-08 1989-09-08 Manufacturing method of conductivity modulation type MOSFET

Publications (2)

Publication Number Publication Date
JPH0396281A true JPH0396281A (en) 1991-04-22
JP2890519B2 JP2890519B2 (en) 1999-05-17

Family

ID=16957965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233624A Expired - Lifetime JP2890519B2 (en) 1989-09-08 1989-09-08 Manufacturing method of conductivity modulation type MOSFET

Country Status (1)

Country Link
JP (1) JP2890519B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031800A1 (en) * 1998-11-26 2000-06-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and fabrication method therefor
US6559023B2 (en) 2001-02-09 2003-05-06 Fuji Electric Co., Ltd. Method of fabricating a semiconductor device with phosphorous and boron ion implantation, and by annealing to control impurity concentration thereof
US6610572B1 (en) 1999-11-26 2003-08-26 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same
JP2008177296A (en) * 2007-01-17 2008-07-31 Toyota Central R&D Labs Inc Semiconductor device, pn diode, igbt and these manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176120A (en) * 1986-01-29 1987-08-01 日立コンデンサ株式会社 Manufacture of molded capacitor
JPH027569A (en) * 1988-02-24 1990-01-11 Siemens Ag Field effect controllable bipolar transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176120A (en) * 1986-01-29 1987-08-01 日立コンデンサ株式会社 Manufacture of molded capacitor
JPH027569A (en) * 1988-02-24 1990-01-11 Siemens Ag Field effect controllable bipolar transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031800A1 (en) * 1998-11-26 2000-06-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and fabrication method therefor
US6610572B1 (en) 1999-11-26 2003-08-26 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same
US6759301B2 (en) 1999-11-26 2004-07-06 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same
US6762097B2 (en) 1999-11-26 2004-07-13 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the same
US6559023B2 (en) 2001-02-09 2003-05-06 Fuji Electric Co., Ltd. Method of fabricating a semiconductor device with phosphorous and boron ion implantation, and by annealing to control impurity concentration thereof
JP2008177296A (en) * 2007-01-17 2008-07-31 Toyota Central R&D Labs Inc Semiconductor device, pn diode, igbt and these manufacturing method

Also Published As

Publication number Publication date
JP2890519B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP5033335B2 (en) Semiconductor device and inverter device using the same
US9748102B2 (en) Semiconductor chip arrangement and method thereof
JP5365009B2 (en) Semiconductor device and manufacturing method thereof
JP4967200B2 (en) Bidirectional IGBT with reverse blocking IGBTs connected in antiparallel
JPH01199469A (en) Semiconductor device
CN103534811A (en) Semiconductor device and method for manufacturing semiconductor device
CN105185826B (en) A kind of transverse direction RC-IGBT device
US5025293A (en) Conductivity modulation type MOSFET
CN112038401A (en) Insulated gate bipolar transistor structure and preparation method thereof
JPH0548111A (en) Semiconductor device and its manufacture
CN110473913A (en) A kind of reverse-conducting field cut-off type IGBT and preparation method thereof
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JP3519173B2 (en) Lateral semiconductor device and manufacturing method thereof
JP2004247593A (en) Semiconductor device, and manufacturing method thereof
KR20040071722A (en) Semiconductor devices with localized reduced lifetime regions and their manufacture
JPH0396281A (en) Manufacture of conductivity-modulation mosfet
US20020109183A1 (en) Field-effect semiconductor device
JPWO2019049251A1 (en) Semiconductor device
JP3895147B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JP2003264288A (en) Semiconductor device
CN114639599B (en) Local service life control method for semiconductor device
JPH07226511A (en) Semiconductor device
JP5446158B2 (en) Semiconductor device and manufacturing method thereof
JPH0982955A (en) Manufacture of semiconductor device
CN109087945B (en) IGBT manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11