JPH0395965A - Complementary type thin-film transistor - Google Patents

Complementary type thin-film transistor

Info

Publication number
JPH0395965A
JPH0395965A JP1232043A JP23204389A JPH0395965A JP H0395965 A JPH0395965 A JP H0395965A JP 1232043 A JP1232043 A JP 1232043A JP 23204389 A JP23204389 A JP 23204389A JP H0395965 A JPH0395965 A JP H0395965A
Authority
JP
Japan
Prior art keywords
source
drain regions
type
transistor
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232043A
Other languages
Japanese (ja)
Inventor
Fuminao Matsumoto
松本 文直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1232043A priority Critical patent/JPH0395965A/en
Publication of JPH0395965A publication Critical patent/JPH0395965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce a photolithography process once, enable an impurities diffusion layer to be of low resistance, and reduce variation of resistance by providing a gate insulation film on source and drain regions of only either of a P-channel type and an N-channel type thin-film transistors which are equipped with the source and drain regions. CONSTITUTION:A P-type impurities region is covered with photolithography and phosphor is implanted into an N-type impurity region by ion implantation. After eliminating an oxide film 3 on source and drain regions of an N-channel transistor with a resistor 5 and a gate electrode 4 as a mask upon ion- implantation, the resist 5 on the entire surface is eliminated and boron ions are implanted at 40keV by ion implantation. When borons are laminated at this energy, boron ions penetrate a silicon layer at the source and drain regions of the N-channel transistor, so that an N-type transistor is formed in spite of implantation of boron.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、相補型トランジスタに関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to complementary transistors.

〔従来技術〕[Prior art]

Pチャンネル型トランジスタとNチャンネル型トランジ
スタからなる相補型トランジスタを製造する方法として
は従来よりフォトリソグラフィーと不純物拡散を用い,
P型半導体領域、N型半導体領域を形成する方法が用い
られている.この方法を用いると、P型、N型領域を形
成するために2回以上のフォトリソグラフィーが必要と
なる。第1図に従ってこの方法を説明する。フォトリソ
グラフィーによりP型半導体領域をレジスト等がカバー
し、リン等のN型不純物をイオン注入等によって行う。
Traditionally, photolithography and impurity diffusion have been used to manufacture complementary transistors consisting of a P-channel transistor and an N-channel transistor.
A method of forming a P-type semiconductor region and an N-type semiconductor region is used. If this method is used, photolithography is required two or more times to form the P-type and N-type regions. This method will be explained according to FIG. The P-type semiconductor region is covered with a resist or the like by photolithography, and an N-type impurity such as phosphorus is implanted by ion implantation or the like.

レジスト等のカバーを除去したのち、同様な手法を用い
て、N型半導体領域をカバーし、P型半導体領域を形成
する。
After removing the cover such as resist, the N-type semiconductor region is covered using a similar method to form a P-type semiconductor region.

フォトリソグラフィーの回数を減らす方法としては、コ
ンペンセイトを用いた方法がある。
One way to reduce the number of photolithography operations is to use compensate.

これは第2図に示すように一方の不純物を他の一方の不
純物より多く導入することによって,P型、N型の半導
体領域を形成する。しかし、この方法は不純物拡散をコ
ントロールすることが難しく、特に薄膜トランジスタの
場合は非常に難しい。
As shown in FIG. 2, P-type and N-type semiconductor regions are formed by introducing one impurity in a larger amount than the other impurity. However, this method is difficult to control impurity diffusion, especially in the case of thin film transistors.

〔目  的〕〔the purpose〕

本発明は、簡単な構造と製法により、従来のコンペンセ
イト法で得られたトランジスタより、低抵抗かつ抵抗の
バラツキの小さい不純物拡散層をもつトランジスタを提
供することを目的とするものである。
An object of the present invention is to provide a transistor having an impurity diffusion layer with a lower resistance and smaller variation in resistance than a transistor obtained by a conventional compensate method, using a simple structure and manufacturing method.

〔構  或〕[structure]

本発明の相補型薄膜トランジスタは、P型半導体薄膜か
らなるソース、ドレイン領域を備えたPチャンネル型薄
膜トランジスタ、N型半導体薄膜からなるソース、ドレ
イン領域を備えたNチャンネル型薄膜トランジスタのう
ち,どちらか一方のトランジスタのソース、ドレイン領
域上にのみゲート絶縁膜を有することを特徴とするもの
である。
The complementary thin film transistor of the present invention is either a P-channel thin film transistor having a source and drain region made of a P-type semiconductor thin film, or an N-channel thin film transistor having a source and drain region made of an N-type semiconductor thin film. It is characterized by having a gate insulating film only on the source and drain regions of the transistor.

〔実施例〕〔Example〕

相補型薄膜トランジスタを1回のフォトリソグラフィー
で、かつ、制御性よく不純物拡散を行う場合のトランジ
スタの構或およびその製造方法について第3図、第4図
を用いて説明する。
The structure and manufacturing method of a complementary thin film transistor in which impurity diffusion is performed in one photolithography process with good controllability will be described with reference to FIGS. 3 and 4. FIG.

MA#C基板1上にアモルファスシリコン1000人を
化学的気相戊長法にて堆積し、フオトリソグラフイー゛
、エッチングを用いて島状に素子半導体層2の分離を行
った。熱酸化によりアモルファスシリコンの表面に10
00人の酸化膜(ゲート絶縁膜3)を形成した。ゲート
電極材としてリンドープポリコン3000入を化学気相
成長法で堆積したのちフォトリソグラフィー、エッチン
グを用いてゲート電極4を形成した(第3図a)。
1,000 layers of amorphous silicon were deposited on the MA#C substrate 1 by chemical vapor deposition, and the element semiconductor layer 2 was separated into islands using photolithography and etching. 10 on the surface of amorphous silicon by thermal oxidation.
An oxide film (gate insulating film 3) was formed. After depositing 3,000 ml of phosphorous-doped polycone as a gate electrode material by chemical vapor deposition, a gate electrode 4 was formed using photolithography and etching (FIG. 3a).

フォトリソグラフィーによってP型不純物領域をカバー
し、イオン注入でN型不純物領域にリンを注入した(第
3図b)。イオン注入時のレジスト5とゲート電極4を
マスクとしてNチャンネルトランジスタのソース、ドレ
イン領域上の酸化膜3を除去したのち,全面のレジスト
5を除去し、イオン注入でボロンイオンを40KeVで
注入した(第3図C)。このエネルギーでボロンを注入
すると,Nチャンネルトランジスタのソース、ドレイン
領域ではボロンイオンがシリコン層をつき抜けるためボ
ロン注入を行ったにもかかわらず、N型半導体となる(
第4図).その後活性化、層間絶縁膜の堆積後、コンタ
クトホールを開孔してアルミニウムによる電極配線を行
う。ここでは、Nチャンネルトランジスタのソース、ド
レイン領域上の酸化膜を除去する方法について述べたが
,Pチャンネルトランジスタのソース、ドレイン領域上
の酸化膜を除去する方法も同様である。この場合にはリ
ンイオンが、Pチャンネルトランジスタのソース、ドレ
イン領域のシリコン層をつき抜けるため、P型半導体と
なる。
The P-type impurity region was covered by photolithography, and phosphorous was implanted into the N-type impurity region by ion implantation (FIG. 3b). After removing the oxide film 3 on the source and drain regions of the N-channel transistor using the resist 5 and gate electrode 4 as masks during ion implantation, the resist 5 was removed from the entire surface, and boron ions were implanted at 40 KeV ( Figure 3C). When boron is implanted with this energy, boron ions penetrate through the silicon layer in the source and drain regions of an N-channel transistor, so it becomes an N-type semiconductor despite boron implantation (
Figure 4). Thereafter, after activation and deposition of an interlayer insulating film, contact holes are opened and electrode wiring made of aluminum is performed. Although the method for removing the oxide film on the source and drain regions of an N-channel transistor has been described here, the method for removing the oxide film on the source and drain regions of a P-channel transistor is also similar. In this case, phosphorus ions penetrate through the silicon layer of the source and drain regions of the P-channel transistor, resulting in a P-type semiconductor.

〔効  果〕〔effect〕

本発明によりフォトリソグラフィー工程を一回減少させ
ることができ,かつ本発明のトランジスタは従来のコン
ペンセイトプロセスで得られたものよりその不純物拡散
層は低抵抗かつ抵抗のばらつきが小さい。
The present invention can reduce the number of photolithography steps by one step, and the transistor of the present invention has an impurity diffusion layer with lower resistance and smaller variation in resistance than that obtained by the conventional compensate process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は、2回のホトリソグラフィー工
程を必要とするタイプの従来のトランジスタ製造工程を
示し、第2図は、従来型コンペンセイト法によるトラン
ジスタの不純物拡散の状態を示すモデルである。 第3図(a)〜(c)は,本発明のトランジスタの製造
工程例を示す。第4図は第3図に示す方法により得られ
た本発明トランジスタの不純物拡散の状態を示すモデル
である。 1・・・絶縁性基板  2・・・半導体層3・・・ゲー
ト絶縁膜 4・・・ゲート電極5・・・レジスト   
6・・・レジスト第 図 1 ; } 第2 図 Iへ一 Pch Nch 第 3 図 第4図 Pch Nch
Figures 1 (a) to (c) show a conventional transistor manufacturing process of a type that requires two photolithography steps, and Figure 2 shows the state of impurity diffusion in a transistor by the conventional compensate method. It's a model. FIGS. 3(a) to 3(c) show examples of manufacturing steps for the transistor of the present invention. FIG. 4 is a model showing the state of impurity diffusion in the transistor of the present invention obtained by the method shown in FIG. 1... Insulating substrate 2... Semiconductor layer 3... Gate insulating film 4... Gate electrode 5... Resist
6...Resist Figure 1; } Figure 2 To Figure I - Pch Nch Figure 3 Figure 4 Pch Nch

Claims (1)

【特許請求の範囲】[Claims] 1、P型半導体薄膜からなるソース、ドレイン領域を備
えたPチャンネル型薄膜トランジスタ、N型半導体薄膜
からなるソース、ドレイン領域を備えたNチャンネル型
薄膜トランジスタのうち、どちらか一方のトランジスタ
のソース、ドレイン領域上のみゲート絶縁膜を有するこ
とを特徴とする相補型薄膜トランジスタ。
1. The source and drain regions of one of the following: a P-channel thin film transistor with a source and drain region made of a P-type semiconductor thin film, and an N-channel thin film transistor with a source and drain region made of an N-type semiconductor thin film. A complementary thin film transistor characterized by having a gate insulating film only on the top.
JP1232043A 1989-09-07 1989-09-07 Complementary type thin-film transistor Pending JPH0395965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232043A JPH0395965A (en) 1989-09-07 1989-09-07 Complementary type thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232043A JPH0395965A (en) 1989-09-07 1989-09-07 Complementary type thin-film transistor

Publications (1)

Publication Number Publication Date
JPH0395965A true JPH0395965A (en) 1991-04-22

Family

ID=16933070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232043A Pending JPH0395965A (en) 1989-09-07 1989-09-07 Complementary type thin-film transistor

Country Status (1)

Country Link
JP (1) JPH0395965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904509A (en) * 1994-01-08 1999-05-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using anodic oxidation
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
US5904509A (en) * 1994-01-08 1999-05-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using anodic oxidation
US6391694B1 (en) 1994-01-08 2002-05-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
JPS61501948A (en) CMOS integrated circuit techniques
JPH0564456B2 (en)
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
JPH0324727A (en) Manufacture of semiconductor device
JPH0395965A (en) Complementary type thin-film transistor
JPS6360549B2 (en)
JPH0240947A (en) Manufacture of semiconductor device
JPH0467671A (en) Manufacture of semiconductor device
JPH0536911A (en) Three-dimensional circuit element and manufacture thereof
JPH023270A (en) Manufacture of hct semiconductor device
JPS589587B2 (en) Manufacturing method of semiconductor device
JPH01220438A (en) Manufacture of semiconductor device
JP2759153B2 (en) Thin film E @ 2 PROM and method of manufacturing the same
JPH0225072A (en) Manufacture of semiconductor device
JP2517380B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0263154A (en) Manufacture of semiconductor device
JPH04260331A (en) Manufacture of semiconductor device
JPS5974673A (en) Manufacture of semiconductor device
JPS63143841A (en) Semiconductor integrated circuit device and manufacture thereof
JPS5935464A (en) Complementary metal-oxide semiconductor device and manufacture thereof
JPH0750306A (en) Manufacture of bipolar transistor
JPH0666331B2 (en) Method for manufacturing semiconductor device
JPS6031276A (en) Semiconductor device and manufacture thereof
JPS63133573A (en) Manufacture of semiconductor device
JPH05144932A (en) Manufacture of semiconductor device