JPH0395870A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH0395870A
JPH0395870A JP1232234A JP23223489A JPH0395870A JP H0395870 A JPH0395870 A JP H0395870A JP 1232234 A JP1232234 A JP 1232234A JP 23223489 A JP23223489 A JP 23223489A JP H0395870 A JPH0395870 A JP H0395870A
Authority
JP
Japan
Prior art keywords
fuel
oxygen
solid electrolyte
fuel cell
single cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1232234A
Other languages
Japanese (ja)
Inventor
Masateru Shimozu
下津 正輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HAKUYO KIKI KAIHATSU KYOKAI, Mitsui Engineering and Shipbuilding Co Ltd filed Critical NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Priority to JP1232234A priority Critical patent/JPH0395870A/en
Publication of JPH0395870A publication Critical patent/JPH0395870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance the energy efficiency of a solid electrolyte fuel cell to enhance its output density by making the structure of an oxygen electrode as thick as possible to maintain the strength of each unit cell and also to reduce electric resistance on the side of the oxygen electrode. CONSTITUTION:Flat single cells 7a...7h are each formed by connection of its component pieces in square so as to form a stack of cells. A predetermined fuel gas passage and a predetermined air passage are provided between single cells and the output density is determined by the thickness of each single cells. Each single cell comprises a solid electrolyte layer and a fuel electrode layer sequentially formed on an oxygen electrode, and the oxygen electrode is formed thick enough to maintain the strength of each single cell without using another reinforcing material, and in addition, electric resistance is reduced on the side of the oxygen electrode due to the thick structure. Thus each single cell does not require reinforcing material and so the structure is thinned after all.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体電解質型燃料電池に係り、特に発電出力
密度が高い固体電解賞型燃料電池に関するものである. 〔従来の技術〕 最近、低公害のエネルギー源として注目を集めている燃
料電池は、起電反応の源となる、活物質としての燃料と
酸化剤とを外部から連続的に供給して電気エネルギーと
して取出すとともに、反応生戒物を連続的に排出するこ
とができる電池である。燃料電池の中で、電解質の漏洩
の恐れがなく、反応速度が大きいとして注目されている
のが固体電解質型燃料電池であり、単セルを多数積層し
て出力を増加させる工夫がなされている.これに関連す
る出願として、例えば本発明者等が提案した特願平1−
114793号等があげられる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid oxide fuel cell, and particularly to a solid oxide fuel cell having a high power generation output density. [Prior Art] Fuel cells, which have recently attracted attention as a low-pollution energy source, generate electrical energy by continuously supplying fuel as an active material and oxidizing agent from the outside, which are the sources of electromotive reactions. This battery is capable of continuously discharging reactive substances. Among fuel cells, solid oxide fuel cells are attracting attention as they have no fear of electrolyte leakage and have a high reaction rate, and are designed to increase output by stacking many single cells. As an application related to this, for example, the patent application No. 1-1 proposed by the present inventors
No. 114793 etc. can be mentioned.

第4図は、上記先願に係る固体電解賞型燃料電池の単セ
ル単位の斜視図である。この単セル単位は板状のもので
あり、基体板21と、該基体板21の表面に積層された
酸素極膜(以下、酸素側電極ともいう)23、固体電解
質膜(以下、単に固体電解質ともいう)22および燃料
極WX(以下、燃料側電極ともいう)24と、前記基体
板2lの両端に配置された集電材28とから主として構
或されている。なお、25は単セル単位の電池部を示す
FIG. 4 is a perspective view of a single cell unit of the solid electrolyte fuel cell according to the prior application. This single cell unit is plate-shaped, and includes a base plate 21, an oxygen electrode membrane (hereinafter also referred to as an oxygen side electrode) 23 laminated on the surface of the base plate 21, and a solid electrolyte membrane (hereinafter simply referred to as a solid electrolyte). ) 22, a fuel electrode WX (hereinafter also referred to as fuel-side electrode) 24, and current collectors 28 disposed at both ends of the base plate 2l. Note that 25 indicates a battery unit in unit of a single cell.

第5図は、第4図の単セル単位26を並列に連結した、
大きさが段階的に異なる四角形の単セル27(a−f)
をさらに並列に積層したセルスタック単位を示す斜視図
である。各単セルの電池部25は隣接する単セルの電池
部25と、また基体板21は隣接する単セルの基体板2
1とそれぞれ対面するように構威されている。このセル
スタック単位を中間連結用導電体30を介して直列に連
結して燃料電池スタックが形威され、該燃料電池スタッ
クを基板上に多数配列して固体電解質型燃料電池が形威
される. このようにして構威された固体電解質型燃料電池の燃料
側電極24に面した燃料流路には例えば水素ガスが、基
体板21に面した空気流路には空気がそれぞれ導入され
て各電極間において電極反応が起こり、発生した電気エ
ネルギーは集電されて外部に取り出される. 〔発明が解決しようとする課題〕 上記先願に係る固体電解賞型燃料電池には、単セル単位
の強度メンバーとして基体板が使用されており、その分
だけ単セル単位が厚くなり、単セルを積層する際の平面
における積層拡大ピッチが大きくなり、燃料電池スタッ
ク全体としての発電出力密度を向上させる上で妨げとな
っている。また、このような固体電解質型燃料電池にお
いては酸素側電極の電気抵抗が大きく、エネルギー効率
を向上させにくいという問題があった。
FIG. 5 shows a structure in which the single cell units 26 of FIG. 4 are connected in parallel.
Rectangular single cells 27 (a-f) with stepwise different sizes
FIG. 2 is a perspective view showing a cell stack unit in which cell stacks are further stacked in parallel. The battery part 25 of each single cell is connected to the battery part 25 of the adjacent single cell, and the base plate 21 is connected to the base plate 2 of the adjacent single cell.
1 and are arranged to face each other. A fuel cell stack is formed by connecting these cell stack units in series via an intermediate connecting conductor 30, and a solid oxide fuel cell is formed by arranging a large number of fuel cell stacks on a substrate. For example, hydrogen gas is introduced into the fuel flow path facing the fuel-side electrode 24 of the solid oxide fuel cell constructed in this manner, and air is introduced into the air flow path facing the base plate 21, so that each electrode An electrode reaction occurs between the electrodes, and the generated electrical energy is collected and extracted to the outside. [Problem to be solved by the invention] In the solid electrolyte fuel cell according to the above-mentioned prior application, a base plate is used as a strength member of the single cell unit, and the single cell unit becomes thicker accordingly. The stacking expansion pitch in the plane when stacking becomes large, which is an obstacle to improving the power generation output density of the fuel cell stack as a whole. Further, in such a solid oxide fuel cell, there is a problem that the oxygen side electrode has a large electrical resistance, making it difficult to improve energy efficiency.

本発明の目的は、上記先願技術の課題を解決し、エネル
ギー効率がよく、出力密度がより向上する固体電解質型
燃料電池を提供することにある。
An object of the present invention is to solve the problems of the prior art described above and to provide a solid oxide fuel cell that has good energy efficiency and further improves output density.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達戒するため本発明者らは、出力密度を向上
させるためには単セル単位をできるだけ薄くして単位面
積当たりの単セル単位(または単セル)の積層数を増加
させることが、また酸素側電極の電気抵抗を低減させる
ためには酸素側電極をなるべく厚くすることが有効であ
ることに着目し、酸素側電極を所定量だけ厚くして強度
をもたせれば基体板をなくして単セルを薄くすることが
できるうえ、酸素側電極の電気抵抗を減少させることが
できることを見出し本発明に到達した。
In order to achieve the above object, the present inventors have found that in order to improve the output density, it is necessary to make the single cell unit as thin as possible and increase the number of stacked single cell units (or single cells) per unit area. In addition, we focused on the fact that it is effective to make the oxygen side electrode as thick as possible in order to reduce the electrical resistance of the oxygen side electrode, and if we made the oxygen side electrode thicker by a certain amount to give it strength, we could eliminate the base plate. The present invention was achieved by discovering that not only can a single cell be made thinner, but also the electrical resistance of the oxygen side electrode can be reduced.

すなわち本発明は、平板状の単セル単位を並列に連結し
た多角形の単セルを多数配列した固体電解質型燃料電池
であって、前記単セル単位が電子導電体または混合導電
体からなる酸素極膜と、該酸素極膜上に順次積層された
酸素イオン導電性の固体電解質膜および電子導電体から
なる燃料極膜とからなることを特徴とする。
That is, the present invention provides a solid oxide fuel cell having a large number of polygonal single cells arranged in parallel with each other, each of which has an oxygen electrode made of an electron conductor or a mixed conductor. It is characterized by comprising a membrane, and a fuel electrode membrane consisting of an oxygen ion conductive solid electrolyte membrane and an electron conductor, which are sequentially laminated on the oxygen electrode membrane.

〔作用〕[Effect]

酸素側電極と、これに積層した、固体電解質および燃料
側電極とから単セル単位を構成することにより、前記酸
素側電極を所定量だけ厚くすれば酸素側電極の電気抵抗
が低下し、エネルギー損失が減少するとともに、基体板
を用いなくても単セル単位の強度を充分に保持すること
ができる。
By constructing a single cell unit from an oxygen-side electrode and a solid electrolyte and a fuel-side electrode laminated thereon, if the oxygen-side electrode is made thicker by a predetermined amount, the electrical resistance of the oxygen-side electrode decreases, reducing energy loss. is reduced, and the strength of the single cell unit can be sufficiently maintained without using a base plate.

また基体板を用いないことにより、単セル単位全体とし
ての厚さが従来のものに較べて薄くなり、単位平面あた
りの単セルの積層数を増大させることができるので、固
体電解賞型燃料電池の発電出力密度が向上する。
In addition, by not using a substrate plate, the thickness of the single cell unit as a whole becomes thinner than that of conventional ones, and the number of stacked single cells per unit plane can be increased, making it possible to make solid electrolyte award-type fuel cells power generation output density will be improved.

本発明において単セル単位とは、固体電解賞型燃料電池
を構或する電池としての最小単位をいい、この単セル単
位は、平板状の酸素側電極と、該酸素側電極に積層され
た固体電解質および燃料側電極とで構威される。
In the present invention, a single cell unit refers to the smallest unit of a battery constituting a solid electrolyte fuel cell, and this single cell unit consists of a flat oxygen side electrode and a solid layered on the oxygen side electrode. It consists of an electrolyte and a fuel side electrode.

酸素側電極の成形材料としては、例えば、La+−x 
S rx MnO3、Lal−x S rx COO3
、Ca.XCe.Mn03等のべロブスカイトが使用さ
れ、このベロブス力イトは、適当な粒度、例えば、0.
1μm−0.5μm以下に粉砕された後、溶媒、例えば
ポリヴイニルアルコール(PVA)やディブチルフタレ
ート(DBP)、その他発泡剤と混合されてスラリーと
なり、整形、乾燥された後、例えば,1400゜Cで焼
或されて平板状の酸素側電極となる。このようにして成
形される酸素側電極の厚さは任意に調整できるが、典型
的には1mm厚前後に戊形される。
As a molding material for the oxygen side electrode, for example, La+-x
S rx MnO3, Lal-x S rx COO3
, Ca. XCe. A berovskite such as Mn03 is used, which has a suitable particle size, e.g.
After being pulverized to 1 μm to 0.5 μm or less, it is mixed with a solvent such as polyvinyl alcohol (PVA), dibutyl phthalate (DBP), and other blowing agents to form a slurry, and after being shaped and dried, it is It is fired at °C to form a flat oxygen side electrode. Although the thickness of the oxygen-side electrode formed in this manner can be adjusted as desired, it is typically formed to a thickness of about 1 mm.

本発明において酸素側電極に積層される固体電解質とし
ては、例えばZrOt系の固体電解質が、また燃料側電
極材としては、例えばニッケル系のNi○−YSZが用
いられる。
In the present invention, as the solid electrolyte laminated on the oxygen side electrode, for example, a ZrOt-based solid electrolyte is used, and as the fuel side electrode material, for example, nickel-based Ni○-YSZ is used.

酸素側電極の表面に固体電解質および燃料側電極を積層
させる方法としては、公知のCVD(chemical
 vapor deposition )法、p V 
D (physical vapor depostt
ion )法、熱分解焼結法、スラリー焼結法等が用い
られる。
As a method for laminating a solid electrolyte and a fuel side electrode on the surface of an oxygen side electrode, a known CVD (chemical
vapor deposition) method, p V
D (physical vapor deposit)
ion) method, pyrolysis sintering method, slurry sintering method, etc. are used.

本発明において単セルとは、前記単セル単位を並列に組
み合わせて多角形とした単セル単位群をいう。
In the present invention, a single cell refers to a group of single cell units formed into a polygon by combining the above-mentioned single cell units in parallel.

本発明においては、大きさを段階的に変化させた単セル
が多数形威され、これらの単セルはその対角線が同一直
線上に重なるように同心状に積層されてセルスタック単
位となる。この場合、最も外側の単セルの酸素側電極は
多角形の外側を、次いで各単セルの酸素側電極が順次交
互に多角形の内側または外側を向くように配置される。
In the present invention, a large number of single cells whose sizes are changed stepwise are formed, and these single cells are stacked concentrically so that their diagonals overlap on the same straight line to form a cell stack unit. In this case, the oxygen-side electrode of the outermost single cell is arranged so as to face the outside of the polygon, and then the oxygen-side electrodes of each single cell are arranged so as to alternately face inside or outside the polygon.

次に、このセルスタック単位はさらに中間連結用導電体
を介して直列に連結されて燃料電池スタックとなり、さ
らにこの燃料電池スタンクが基板上に多数配列されて固
体電解質型燃料電池となる。
Next, this cell stack unit is further connected in series via an intermediate connecting conductor to form a fuel cell stack, and a large number of these fuel cell stacks are further arranged on a substrate to form a solid oxide fuel cell.

本発明において、複数の単セル単位で構或される単セル
の多角形としては、正三角形、三角形、正方形、四角形
、五角形等があげられるが、特に限定されない。また、
通常単セル単位1個が多角形の一辺として用いられるが
、2個以上の単セル単位を並列に連結して多角形の一辺
としてもよい.セルスタック単位相互または燃料電池ス
タック相互の連結は、中間連結用導電体を介して行われ
るが、この中間連結用導電体は、各燃料電池スタック毎
に独立のものであってもよく、また隣接する燃料電池ス
タックの2個または3個以上に共通のものであってもよ
い。
In the present invention, the polygon of a single cell composed of a plurality of single cell units includes an equilateral triangle, a triangle, a square, a quadrangle, a pentagon, etc., but is not particularly limited. Also,
Normally, one single cell unit is used as one side of a polygon, but two or more single cell units may be connected in parallel to form one side of a polygon. The cell stack units or fuel cell stacks are connected to each other via an intermediate connecting conductor, but this intermediate connecting conductor may be independent for each fuel cell stack, or may be connected to adjacent It may be common to two or more fuel cell stacks.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

第1図は、本発明の一実施例である固体電解質型燃料電
池の燃料電池スタックを構或する単セル単位の斜視図で
ある。この単セル単位は、酸素側電極3と、該酸素側電
極3の片面に順次積層された固体電解質2および燃料側
電極4と、これら酸素側電極3、固体電解質2および燃
料側電極4で構戒される電池部5の上下端にそれぞれ配
置された耐熱金属からなる集電材1とから主として構或
されている。
FIG. 1 is a perspective view of a single cell unit constituting a fuel cell stack of a solid oxide fuel cell according to an embodiment of the present invention. This single cell unit is composed of an oxygen-side electrode 3, a solid electrolyte 2 and a fuel-side electrode 4 that are laminated in sequence on one side of the oxygen-side electrode 3, and the oxygen-side electrode 3, solid electrolyte 2, and fuel-side electrode 4. It mainly consists of current collectors 1 made of heat-resistant metal placed at the upper and lower ends of a battery section 5 to be protected.

第2図は、第1図の単セル単位6を並列に連結して構威
した四角形の単セル7をさらに中間連結用導電体10上
に並列に積層したセルスタック単位の斜視図である。図
において、同一長さの単セル単位4個から構或される、
大きさが段階的に異なる四角形の単セル8個(7a、7
b,7c,7d、7e、7f、7gおよび7h)がそれ
ぞれ対角線が同一直線上になるように、中間連結用導電
体10上に同心状に配置されている。単セル7a、7c
,7eおよび7gは、四角形の内側がそれぞれ燃料側電
極4となり外側が酸素側電極3となる。
FIG. 2 is a perspective view of a cell stack unit in which rectangular single cells 7 formed by connecting the single cell units 6 of FIG. 1 in parallel are further stacked in parallel on an intermediate connecting conductor 10. In the figure, it is composed of four single cell units of the same length.
8 rectangular single cells (7a, 7
b, 7c, 7d, 7e, 7f, 7g and 7h) are arranged concentrically on the intermediate connecting conductor 10 so that their diagonal lines are on the same straight line. Single cell 7a, 7c
, 7e and 7g, the inside of the rectangle becomes the fuel-side electrode 4, and the outside becomes the oxygen-side electrode 3.

また単セル7b,7d、7rおよび7hは、四角形の外
側がそれぞれ燃料側電極4となり、内側がそれぞれ酸素
側電極3となっている。各単セル単位の連結部は、ガス
シール性の接合剤によりシールされている。単セル7a
と7bとの間隙、7Cと7dとの間隙、7eと7fとの
間隙および7gと7hとの間隙は、それぞれ燃料側電極
4に面しており燃料流路となる。一方、単セルフbと7
0との間隙、7dと7eとの間隙、7rと7gとの間隙
および7hの内側は、それぞれ酸素側電極3に面してお
り空気流路となる。
Further, in the single cells 7b, 7d, 7r, and 7h, the outer side of the rectangle is the fuel side electrode 4, and the inside side is the oxygen side electrode 3. The connecting portion of each single cell unit is sealed with a gas-sealing bonding agent. Single cell 7a
The gap between and 7b, the gap between 7C and 7d, the gap between 7e and 7f, and the gap between 7g and 7h each face the fuel side electrode 4 and serve as a fuel flow path. On the other hand, single self b and 7
The gap with 0, the gap between 7d and 7e, the gap between 7r and 7g, and the inside of 7h each face the oxygen side electrode 3 and serve as an air flow path.

第3図は、本発明の一実施例である固体電解譬型燃料電
池を構或する燃料電池スタックの配置例を示す説明図で
ある。図において、第2図のセルスタック単位8が中間
連結用導電体10を介して直列に連結された燃料電池ス
タック9が示されており、この燃料電池スタック9は、
2個の燃料電池スタックに共通の中間連結用導電体10
で相互に支持され、かつ基板17上に規則正し《配置さ
れている。基板l7には各燃料電池スタック9の最外殻
の酸素側電極3に酸素を供給する空気通過孔11が設け
られている。また基板17の下方には各燃料側電極4へ
燃料を供給する燃料供給管12および余剰の燃料を排出
する燃料排出管l3が配置されている。
FIG. 3 is an explanatory diagram showing an example of the arrangement of a fuel cell stack constituting a solid electrolyte fuel cell according to an embodiment of the present invention. The figure shows a fuel cell stack 9 in which the cell stack units 8 of FIG. 2 are connected in series via an intermediate connecting conductor 10, and this fuel cell stack 9 includes
Intermediate connection conductor 10 common to two fuel cell stacks
and are regularly arranged on the substrate 17. The substrate 17 is provided with an air passage hole 11 for supplying oxygen to the outermost oxygen-side electrode 3 of each fuel cell stack 9. Further, below the substrate 17, a fuel supply pipe 12 for supplying fuel to each fuel-side electrode 4 and a fuel discharge pipe 13 for discharging excess fuel are arranged.

このような構成において、燃料供給管工2から供給され
た燃料としての、例えば水素Fは、下部端子14から燃
料電池スタック9へ入り、燃料側電極4に面した燃料流
路を上昇し、上部端子15の上部に設けられたフランジ
(図示省略)から放出され、同様に空気流路を経由して
放出された空気と燃焼反応をするか、または同フランジ
に設けられた燃料連絡流路を通り、空気流路を隔てて隣
接する他の燃料流路を下降した後さらに別の燃料流路を
上昇し、以下同様にして全ての燃料側電極4と接触した
後、燃料排出管13を経て系外に排出される。一方、酸
素源である空気Aは、図示省略された空気導入管から基
体17の下方空間に充填され、該基体17に設けられた
、燃料電池スタック9の空気流路と連通ずる空気通過孔
を経て下部端子14から燃料電池スタック9に入り、酸
素側電極3に面した空気流路を上昇した後、上部端子1
5の上部に設けられた、フランジから(図示省略)放出
され、同様に燃料流路を経由して放出された燃料として
の水素Fと燃焼反応をするか、または同フランジに設け
られた空気連結流路を経て、燃料流路を隔てて隣接する
別の空気流路を下降した後、さらに別の空気流路を上昇
し、以下同様にして全ての酸素側電極3と接触した後、
空気通過孔l1を通って基板17から流出され、各燃料
電池スタックの最も外側に配置された酸素側電極3と接
触する。
In such a configuration, for example, hydrogen F as a fuel supplied from the fuel supply pipework 2 enters the fuel cell stack 9 from the lower terminal 14, ascends the fuel flow path facing the fuel side electrode 4, and flows to the upper part. The fuel is emitted from a flange (not shown) provided at the top of the terminal 15 and undergoes a combustion reaction with the air similarly emitted via the air flow path, or passes through the fuel communication flow path provided in the same flange. , descends through another fuel flow path adjacent to the air flow path, then ascends through another fuel flow path, contacts all the fuel-side electrodes 4 in the same manner, and then passes through the fuel discharge pipe 13 to the system. It is discharged outside. On the other hand, air A, which is an oxygen source, is filled into the space below the base 17 from an air introduction pipe (not shown), and passes through air passage holes provided in the base 17 that communicate with the air flow path of the fuel cell stack 9. The fuel cell stack 9 enters the fuel cell stack 9 from the lower terminal 14, and after rising through the air flow path facing the oxygen side electrode 3, the upper terminal 1
5, which is released from the flange (not shown) and which undergoes a combustion reaction with hydrogen F as fuel, which is also released via the fuel flow path, or an air connection provided on the flange. After passing through the flow path, descending through another adjacent air flow path across the fuel flow path, and rising through yet another air flow path, and thereafter in the same manner, after contacting all the oxygen side electrodes 3,
The air flows out from the substrate 17 through the air passage hole l1 and comes into contact with the oxygen side electrode 3 disposed at the outermost side of each fuel cell stack.

このようにして燃料Fと空気Aとが供給された、燃料電
池スタック9の各単セルの電極間では電極反応が生じる
。すなわち、空気流路を流れる空気中の酸素は酸素側電
極に入り、ここで外部回路からの電子を受け取って酸素
イオンとなり、次に固体電解質2に入って荷電単位とな
る。一方、燃料流路を流れる、例えば水素Fは燃料側電
極4へ流入し、ここで前記固体電解質2中の酸素イオン
と反応して水を生威し、電子を外部へ放出する。他の燃
料電池スタック9においても同様の電極反応が起こり、
電気エネルギーが発生する。発生した電気エネルギーは
上部端子および下部端子を介して集電されてより強力な
電気エネルギーとして外部に取り出される。
An electrode reaction occurs between the electrodes of each single cell of the fuel cell stack 9 to which the fuel F and air A are supplied in this manner. That is, oxygen in the air flowing through the air flow path enters the oxygen side electrode, where it receives electrons from an external circuit to become oxygen ions, and then enters the solid electrolyte 2 to become a charged unit. On the other hand, hydrogen F flowing through the fuel flow path, for example, flows into the fuel-side electrode 4, where it reacts with oxygen ions in the solid electrolyte 2 to generate water and emit electrons to the outside. Similar electrode reactions occur in other fuel cell stacks 9,
Electrical energy is generated. The generated electrical energy is collected through the upper and lower terminals and taken out as more powerful electrical energy.

本実施例によれば、燃料電池スタックを構或する最小電
池単位である単セル単位を、基板を用いることなく、酸
素側電極、固体電解譬および燃料側電極とで構威したこ
とにより、単セル単位が薄くなり各単セルが占有する基
板面積および単セルの積層拡大ピッチが狭くなるので、
単位基板面積当たりの単セルの配列数を増大させること
ができ、出力密度の高い固体電解賞型燃料電池が得られ
る。
According to this embodiment, a single cell unit, which is the smallest cell unit constituting a fuel cell stack, is made up of an oxygen side electrode, a solid electrolyte, and a fuel side electrode without using a substrate. As the cell unit becomes thinner, the substrate area occupied by each single cell and the stacking pitch of the single cells become narrower.
The number of single cells arranged per unit substrate area can be increased, and a solid electrolyte fuel cell with high output density can be obtained.

また、酸素側電極を所定量だけ厚くして電気抵抗を低下
させることができるので、エネルギー効率が向上する。
Furthermore, since the oxygen side electrode can be made thicker by a predetermined amount to lower the electrical resistance, energy efficiency is improved.

さらに積層膜数の減少による製造工程の減少、所要材料
種数の減少等により製造効率および経済性が向上する。
Furthermore, manufacturing efficiency and economy are improved due to a reduction in the number of manufacturing steps due to a reduction in the number of laminated films, a reduction in the number of required materials, and the like.

また電池特性の面においても、基体板をガスが通過する
ことによる分極分が減少し、発電特性が向上する。
Furthermore, in terms of battery characteristics, the polarization caused by gas passing through the base plate is reduced, and power generation characteristics are improved.

〔発明の効果] 本発明によれば、基板を用いないで単セル単位を構戒し
たことにより、単セル単位が薄くなり各単セルが占有す
る基板面積および単セルの積層拡大ピッチが狭くなるの
で、単位基板面積当たりの単セルの配列数を増大させる
ことができ、出力密度のより高い固体電解質型燃料電池
が得られる。
[Effects of the Invention] According to the present invention, since the single cell unit is constructed without using a substrate, the single cell unit becomes thinner, and the substrate area occupied by each single cell and the stacking expansion pitch of the single cells become narrower. Therefore, the number of single cells arranged per unit substrate area can be increased, and a solid oxide fuel cell with higher output density can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例である固体電解譬型燃料電
池における単セル単位の斜視図、第2図は、第1図の単
セル単位を連結した単セルをさらに積層したセルスタッ
ク単位の斜視図、第3図は、本発明の一実施例である固
体電解質型燃料電池における燃料電池スタックの配置例
を示す図、第4図は、先願に係る単セル単位の斜視図、
第5図は、先順に係るセルスタック単位の斜視図である
。 2・・・固体電解質、3・・・酸素側電極、4・・・燃
料側電極、5・・・電池部、6・・・単セル単位、7(
a〜h)・・・単セル、8・・・セルスタック単位、9
・・・燃料電池スタック。
FIG. 1 is a perspective view of a single cell unit in a solid electrolyte fuel cell that is an embodiment of the present invention, and FIG. 2 is a cell stack in which the single cells in FIG. 1 are further stacked. FIG. 3 is a perspective view of a unit; FIG. 3 is a diagram showing an example of the arrangement of a fuel cell stack in a solid oxide fuel cell according to an embodiment of the present invention; FIG. 4 is a perspective view of a single cell unit according to a prior application;
FIG. 5 is a perspective view of a cell stack unit according to the preceding order. 2...Solid electrolyte, 3...Oxygen side electrode, 4...Fuel side electrode, 5...Battery part, 6...Single cell unit, 7(
a~h)...Single cell, 8...Cell stack unit, 9
...Fuel cell stack.

Claims (1)

【特許請求の範囲】[Claims] (1)平板状の単セル単位を並列に連結した多角形の単
セルを多数配列した固体電解質型燃料電池であって、前
記単セル単位が電子導電体または混合導電体からなる酸
素極膜と、該酸素極膜上に順次積層された酸素イオン導
電性の固体電解質膜および電子導電体からなる燃料極膜
とからなることを特徴とする固体電解質型燃料電池。
(1) A solid oxide fuel cell having a large number of polygonal single cells arranged in parallel with flat plate-like single cell units, wherein the single cell unit has an oxygen electrode membrane made of an electron conductor or a mixed conductor. A solid electrolyte fuel cell comprising: an oxygen ion conductive solid electrolyte membrane and a fuel electrode membrane made of an electron conductor, which are sequentially laminated on the oxygen electrode membrane.
JP1232234A 1989-09-07 1989-09-07 Solid electrolyte fuel cell Pending JPH0395870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232234A JPH0395870A (en) 1989-09-07 1989-09-07 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232234A JPH0395870A (en) 1989-09-07 1989-09-07 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0395870A true JPH0395870A (en) 1991-04-22

Family

ID=16936078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232234A Pending JPH0395870A (en) 1989-09-07 1989-09-07 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0395870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8887703B2 (en) 2011-10-10 2014-11-18 Ford Global Technologies, Llc Integrated positive crankcase ventilation vent
US9518532B2 (en) 2010-12-29 2016-12-13 Ford Global Technologies, Llc Internal combustion engine having structural frame

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518532B2 (en) 2010-12-29 2016-12-13 Ford Global Technologies, Llc Internal combustion engine having structural frame
US9664138B2 (en) 2010-12-29 2017-05-30 Ford Global Technologies, Llc Cylinder block
US8887703B2 (en) 2011-10-10 2014-11-18 Ford Global Technologies, Llc Integrated positive crankcase ventilation vent

Similar Documents

Publication Publication Date Title
KR100464607B1 (en) Solid oxide fuel cell stack and method of manufacturing the same
US4937152A (en) Fuel cell
JP4236298B2 (en) Solid oxide fuel cell with honeycomb integrated structure
JPH10189017A (en) Gas seal structure of honeycomb structure solid electrolyte fuel cell
US20060172167A1 (en) Thin film fuel cell electrolyte and method for making
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JPH08180885A (en) Solid electrolytic fuel cell improved in current collecting efficiency of air electrode
JPH0395870A (en) Solid electrolyte fuel cell
JPH10134829A (en) Solid electrolyte fuel cell, solid electrolyte fuel cell assembly, manufacture of solid electrolyte fuel cell, and manufacture of solid electrolyte fuel cell assembly unit
JP3791702B2 (en) Flat solid electrolyte fuel cell
JPH0355764A (en) Solid electrolytic type fuel cell
JPH0227670A (en) Fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JPH046753A (en) Flat plate laminated solid electrolyte type fuel cell
JPH01267964A (en) Fuel battery with solid electrolyte
JPH0722058A (en) Flat solid electrolyte fuel cell
JPH0845516A (en) Plate type solid electrolyte fuel cell using mesh with different wire diameters
JPH0722032A (en) Fuel electrode plate for flat plate type solid electrolyte fuel cell
JPH0562694A (en) Solid electrolyte type fuel cell
JPH0395865A (en) Solid electrolyte fuel cell
JPH09147884A (en) Flat solid electrolyte fuel cell
JPH02295067A (en) Solid electrolyte fuel cell
JP2009245625A (en) Solid electrolyte, power generation cell and flat-type solid-oxide fuel cell
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JP2024515124A (en) Separator plate assembly for fuel cells with variable flow path patterning - Patents.com