JPH0395416A - Detecting device of position - Google Patents

Detecting device of position

Info

Publication number
JPH0395416A
JPH0395416A JP23434789A JP23434789A JPH0395416A JP H0395416 A JPH0395416 A JP H0395416A JP 23434789 A JP23434789 A JP 23434789A JP 23434789 A JP23434789 A JP 23434789A JP H0395416 A JPH0395416 A JP H0395416A
Authority
JP
Japan
Prior art keywords
magnetic
coil
detection coil
mutually opposing
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23434789A
Other languages
Japanese (ja)
Inventor
Daisuke Yoshida
大輔 吉田
Shinji Maeda
前田 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP23434789A priority Critical patent/JPH0395416A/en
Publication of JPH0395416A publication Critical patent/JPH0395416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To make it easy to attain excellent precision in machining and to enable attainment of an arbitrary detecting characteristic by detecting a change in the electromotive force of a detecting coil due to the position of insertion of a magnetic shield plate so provided that it can be inserted between magnetic poles. CONSTITUTION:An alternating magnetic flux is formed in a magnetic core 2 by an alternating current which is made to flow through an exciting coil 1, and an alternating magnetic field being parallel substantially is formed in a gap 2a between magnetic poles. In a detecting coil 3, an electromotive force being proportional to the value of a magnetic flux of the alternating magnetic field interlinking thereto is generated. When a magnetic shield plate 4 is inserted, the alternating magnetic flux in a sphere covered with the magnetic shield plate 4, out of the alternating magnetic flux generated in the gap 2a, does not cause the electromagnetic force in the detecting coil 3. By detecting and measuring the electromotive force in the detecting coil 3, accordingly, a distance of insertion of the magnetic shield plate 4 can be known. It is easy to machine a magnetic substance forming a magnetic path with excellent precision, and by narrowing the gap 2a, a large and uniform magnetic flux density can be obtained by fewer ampere turns and a leakage flux can be lessened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は産業分野で活用される位置検出装置に係わり、
特には良好な加工精度を得ることが容易であって、かつ
任意の検出特性を得ることができる位置検出装置に関す
る9 [従来の技術] 周知のように、産業分野で活用される従来の磁気誘導型
の位置検出手段としては、可変インダクタンスか差動ト
ランスが一般に用いられている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a position detection device utilized in the industrial field.
In particular, it relates to a position detection device that can easily obtain good processing accuracy and can obtain arbitrary detection characteristics.9 [Prior Art] As is well known, conventional magnetic induction used in the industrial field A variable inductance or a differential transformer is generally used as the type position detection means.

差動トランスは第3図に示すような構造をなしている。The differential transformer has a structure as shown in FIG.

すなわち、図において、31は空芯円筒状に戒型された
励磁コイルであって供給される交流信号によって該コイ
ルの内部空間部に交番磁束を発生している。32a、3
2bはそれぞれ前記励磁コイル31と同一の内部形状に
なるように空芯円筒状に成型された二個一対のコイルで
ある検出コイルであって、鎖交する前記交番磁束によっ
てそれぞれ交流起電力を発生する。33は磁性体によっ
て或型され励磁コイルと二個一対の検出コイルが形成す
る空間部を移動するごとく形成された磁芯である。
That is, in the figure, reference numeral 31 denotes an excitation coil having an air-core cylindrical shape, and generates an alternating magnetic flux in the internal space of the coil in response to an AC signal supplied thereto. 32a, 3
2b is a pair of detection coils each formed into an air-core cylindrical shape so as to have the same internal shape as the excitation coil 31, and each generates an alternating current electromotive force by the interlinking alternating magnetic flux. do. Reference numeral 33 denotes a magnetic core formed of a magnetic material so as to move in a space formed by an excitation coil and a pair of detection coils.

したがって、励磁コイルと二個一対の検出コイルが形或
する空間部における磁芯の位置関係によって、前記、励
磁コイル31が発生ずる交番磁束と検出コイルである二
個のコイル32aおよび32bとの結合状態が変化する
ため、個一対の検出コイル32a、33bそれぞれに発
生する起電力の大きさが異なった大きさとなる。したが
って、コイル3 2.aとコイル331)に発生する起
電力を相互に減算するようGこ接続し、該減算値を見る
ことによって、前記励磁コイルと磁芯との相対位置関係
を検知することができる。
Therefore, due to the positional relationship of the magnetic cores in the space formed by the excitation coil and the pair of detection coils, the coupling between the alternating magnetic flux generated by the excitation coil 31 and the two detection coils 32a and 32b is reduced. Since the state changes, the magnitude of the electromotive force generated in each pair of detection coils 32a and 33b becomes different. Therefore, coil 3 2. The relative positional relationship between the excitation coil and the magnetic core can be detected by connecting the coil 331) so that the electromotive force generated in the coil 331) is subtracted from each other, and by looking at the subtracted value.

また、差動トランスの変形として第4図に示す可変イン
ダクタンス型位置検出器も用いられている。
Further, as a modification of the differential transformer, a variable inductance type position detector shown in FIG. 4 is also used.

第4図において、41は励磁コイルであって42は検出
コイルであり、43は遮蔽棒である。
In FIG. 4, 41 is an excitation coil, 42 is a detection coil, and 43 is a shielding rod.

遮蔽棒が挿入されていない間は、励磁コイル71からの
大半の磁束は検出コイル42に鎖交しているが、遮蔽棒
43を挿入してゆくと、励磁コイル41と検出コイル4
2との結合度が変化して、励磁コイル41に対する一定
値の励磁電流に対して検出コイル42の検出信号の値が
変化してくる。従って、検出コイル42に発生ずる交流
信号の値を検知することによって、前記遮蔽棒とコイル
との相対位置関隼を検知することができる。
While the shield rod is not inserted, most of the magnetic flux from the excitation coil 71 is linked to the detection coil 42, but as the shield rod 43 is inserted, the excitation coil 41 and the detection coil 4
2 changes, and the value of the detection signal of the detection coil 42 changes with respect to a constant value of excitation current to the excitation coil 41. Therefore, by detecting the value of the alternating current signal generated in the detection coil 42, the relative positional relationship between the shielding rod and the coil can be detected.

[発明が解決しようとする課題] 上述したような差動トランスにおいては、磁芯を含む立
体的構造を形戊する全休磁路の均一性を保つためにコイ
ル、磁芯ともに機械的構造を精密に仕上げることが必要
である。
[Problem to be solved by the invention] In the differential transformer as described above, the mechanical structure of both the coil and the magnetic core must be precisely designed to maintain the uniformity of the fully idle magnetic path that forms the three-dimensional structure including the magnetic core. It is necessary to complete the process.

また、磁芯空間の形状からエアギャップが大きく、励磁
コイルによる起磁力に対し、検出コイル対に鎖交する磁
束量が十分多いとは言えないため、励磁コイルと、検出
コイルの二個一対のコイルはともに数百から数千という
多くの巻数を巻く必要がある。従って、このような多く
の巻数を均一に巻かないと、二個一対の検出コイルから
の検出電圧が対称的に変化しない。また、励磁コイルの
抵抗値が大きくなるために温度によって電流値が大きく
影響される、検出コイルの抵抗値も大きくなるために二
個一対のそれぞれの検出コイルの抵抗値やりアクタンス
のアンバランスと負荷抵抗のアンバランスのために出力
検出値のレベルや位相が影響される、磁芯が移動すると
励磁コイルのインダクタンスが変化して電流値に影響を
与える。また、磁芯に吸引力が働くので軽量の構造物の
計測には向かない、検出すべき長さに対して3〜5倍の
寸法が必要である、等の多く問題がある。
In addition, the air gap is large due to the shape of the magnetic core space, and the amount of magnetic flux linking the pair of detection coils is not large enough to counter the magnetomotive force of the excitation coil. Each coil must have many turns, from hundreds to thousands. Therefore, unless such a large number of turns are uniformly wound, the detection voltages from the two detection coils will not change symmetrically. In addition, as the resistance value of the excitation coil increases, the current value is greatly affected by temperature, and the resistance value of the detection coil also increases, resulting in unbalance of resistance and actance of each pair of detection coils, and load. The level and phase of the output detection value are affected due to resistance imbalance, and when the magnetic core moves, the inductance of the excitation coil changes, which affects the current value. Furthermore, since an attractive force acts on the magnetic core, it is not suitable for measuring lightweight structures, and there are many problems, such as the need for a length that is 3 to 5 times the length to be detected.

また、単純な可変インダクタンス方式では精度の良い計
測が出来ないという問題があった95 6 本発明は、上記従来の問題を解決して良好な加工精度を
得ることが容易であって、かつ任意の検出特性を得るこ
とができる位置検出装置を提供することを目的としてい
る9 [課題を解決するための手段] 上記目的を達戒するために、木発明に基づく位置検出装
置においては、第1の発明では、少なくとも一個所以上
の互に対向する磁極を構戒した磁性体による磁路と、該
磁性体に嵌合し前記互に対向する磁極間に交番磁束を発
生させる励磁手段と、前記互に対向する磁極間に発生ず
る交番磁束に鎖交する面積を有した少なくとも一個以上
の検出コイルと、前記互に対向する磁極間に対して挿入
自在に設けられた少なくとも一個以上の電気導体によっ
て戒型された磁気遮蔽板とよりなることを特徴とし、第
2の発明では、磁気遮蔽板と前述した交番磁束を発生し
ている磁性体の互に対向する磁極部分または検出コイル
との位置関係と、検出コイルに発生している起電力値と
の関係が、前記互に対向する磁極部分または検出コイル
と磁気遮蔽板の相互位置の変化に対し、所定の関数関係
になるような互いに対向する磁極部分の対向面の形状を
有することを特徴とし、第3の発明では、磁気遮蔽板と
前述した交番磁束を発生している磁性体の互に対向する
磁極部分または検出コイルとの位置関係と、検出コイル
に発生している起電力値との関係が、前記互に対向する
磁極部分または検出コイルと磁気遮蔽板の相互位置の変
化に対し、所定の関数関係になるような検出コイルの形
状を有することを特徴とし、第4の発明では、磁気遮蔽
板と前述した交番磁束を発生している磁性体の互に対向
する磁極部分または検出コイルとの位置関係と、檜出コ
イルに発生している起電力値との関係が、前記互に対向
する磁極部分または検出コイルと磁気遮蔽板の相互位置
の変化に対し、所定の関数関係になるような磁気遮蔽板
の形状を有することを特徴とし、第5の発明では、前述
した検出コイルは、1ターン以上のコイル状に形成した
導体を、磁性体にはりつけたことを↑寺徴とすることを
特徴としている。
In addition, there was a problem in that a simple variable inductance method could not perform accurate measurements. [Means for Solving the Problems] In order to achieve the above object, in the position detection device based on the tree invention, the first The invention includes: a magnetic path made of a magnetic body having at least one or more mutually opposing magnetic poles; an excitation means that fits into the magnetic body and generates an alternating magnetic flux between the mutually opposing magnetic poles; At least one or more detection coils having an area interlinked with the alternating magnetic flux generated between the opposing magnetic poles, and at least one or more electric conductor that can be freely inserted between the mutually opposing magnetic poles. The second invention is characterized by a shaped magnetic shielding plate, and the second invention is characterized by a positional relationship between the magnetic shielding plate and the mutually opposing magnetic pole portions of the magnetic body generating the above-mentioned alternating magnetic flux or the detection coil. , mutually opposing magnetic poles such that the relationship with the electromotive force value generated in the detection coil is a predetermined functional relationship with respect to the mutually opposing magnetic pole portions or changes in the mutual positions of the detection coil and the magnetic shielding plate. In the third invention, the positional relationship between the magnetic shielding plate and the mutually opposing magnetic pole portions of the magnetic body generating the above-mentioned alternating magnetic flux or the detection coil; The shape of the detection coil is such that the relationship with the electromotive force value generated in the detection coil is a predetermined functional relationship with respect to the mutually opposing magnetic pole portions or changes in the mutual positions of the detection coil and the magnetic shielding plate. The fourth invention is characterized by the positional relationship between the magnetic shielding plate and the mutually opposing magnetic pole portions of the magnetic body generating the above-mentioned alternating magnetic flux or the detection coil, and the magnetic flux generated in the Hibide coil. The magnetic shielding plate has a shape such that the relationship with the electromotive force value is a predetermined functional relationship with respect to changes in the mutual positions of the mutually opposing magnetic pole portions or the detection coil and the magnetic shielding plate. In the fifth invention, the above-mentioned detection coil is characterized in that a conductor formed in a coil shape of one turn or more is attached to a magnetic material.

[作用] 上記構成によれば、互に対向する磁極を構成した磁性体
による磁路と該磁性体に嵌合した励磁手段と前記磁極を
構戒した磁性体によって該磁極間に発生する交番磁束に
鎖交するように設けられた検出コイルに対して、前記互
に対向する磁極間に挿入自在に設けられた磁気遮蔽板の
挿入位置による前記検出コイルの起電カ変化を検知する
ようにしたので、検出コイルの貫通磁束量と、磁性体の
磁極部分または検出コイルと磁気遮蔽板との位置関係が
、検出コイルの鎖交面積、すなわち、磁気遮蔽板の挿入
位置に対応する。また、磁路を形成する磁性体をすぐれ
た精度で加工することは容易であり、磁極間間隙を狭く
することで小さなアンペアターンで大きく均一な磁束密
度が得られ、漏洩磁束を小さ〈することができる。また
、励磁手段として励磁コイルを用いた場合における励磁
コイルの巻線精度は必要なく、該励磁コイルの抵抗値は
小さく、検出コイルの変位によるインダクタンスの影響
が無い、検出コイルの変位方向を磁束方向に直角とすれ
ば磁気吸引力が無い というすぐれた効果を得ることが
できる。
[Function] According to the above configuration, an alternating magnetic flux is generated between the magnetic poles by a magnetic path formed by magnetic bodies forming mutually opposing magnetic poles, an excitation means fitted to the magnetic bodies, and a magnetic body disturbing the magnetic poles. A change in the electromotive force of the detection coil is detected depending on the insertion position of a magnetic shielding plate that is insertably provided between the mutually opposing magnetic poles with respect to the detection coil that is interlinked with the detection coil. Therefore, the amount of penetrating magnetic flux of the detection coil and the positional relationship between the magnetic pole portion of the magnetic body or the detection coil and the magnetic shield plate correspond to the interlinkage area of the detection coil, that is, the insertion position of the magnetic shield plate. In addition, it is easy to process the magnetic material that forms the magnetic path with excellent precision, and by narrowing the gap between the magnetic poles, a large and uniform magnetic flux density can be obtained with a small ampere turn, and leakage magnetic flux can be reduced. I can do it. In addition, when an excitation coil is used as an excitation means, the winding precision of the excitation coil is not required, the resistance value of the excitation coil is small, and there is no influence of inductance due to displacement of the detection coil. If it is perpendicular to the angle, the excellent effect of having no magnetic attraction force can be obtained.

[実施例] 以下本発明に係る位置検出装置の実施例について第1図
、第2図を参照して詳細に説明する。
[Example] Hereinafter, an example of the position detection device according to the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図において、]は図に示されていない交流電源から
供給される交流電流によって励磁される励磁手段として
の励磁コイル(以下励磁コイルと記す)であって、該励
磁コイルLによってつくられた交番磁束の磁気通路をな
す磁芯2Gこ嵌合されている。磁芯2には互いに対向す
る磁極による間隙2aが設けられていて該磁極間間隙に
生している交番磁束を検出するように検出コイルが設け
られている。4は前記磁極間間隙2aに生じている交番
磁束を遮断するように挿入自在に設けられた磁気遮蔽板
である。
In FIG. 1, ] is an excitation coil (hereinafter referred to as excitation coil) as excitation means that is excited by an alternating current supplied from an alternating current power supply (not shown in the figure), and the excitation coil L A magnetic core 2G forming a magnetic path for alternating magnetic flux is fitted. A gap 2a between mutually opposing magnetic poles is provided in the magnetic core 2, and a detection coil is provided to detect the alternating magnetic flux generated in the gap between the magnetic poles. Reference numeral 4 denotes a magnetic shielding plate that is insertably provided so as to block the alternating magnetic flux generated in the gap 2a between the magnetic poles.

第2図は前述した磁性休2の磁極間間隙2aをイの方向
から見た図であって、検出コイルの9 ] O 内部空間即ち検出コイル3の内部面積dX.0は磁芯の
磁極間間隙部における断面形状にほぼ一致している。磁
気遮蔽板4は磁極間間隙2aに対して横方向から挿入移
動される9図においては、長さ美−dyだけ検出コイル
3にかさなっている状況を示している。
FIG. 2 is a view of the inter-pole gap 2a of the above-mentioned magnetic hole 2 viewed from the direction A, and shows the internal space of the detection coil 9, that is, the internal area of the detection coil 3, dX. 0 approximately corresponds to the cross-sectional shape of the magnetic core at the gap between the magnetic poles. In FIG. 9, the magnetic shielding plate 4 is inserted and moved laterally into the inter-pole gap 2a, and the magnetic shielding plate 4 is shown overlapping the detection coil 3 by a length of -dy.

図においては、励磁コイル1、磁芯2、検出コイル3、
磁気遮蔽板4の寸法関係を理解し易く示しているので、
正しくは図に示した寸法関係や形状は目的に合わせて設
計された寸法関係や形状となり、該寸法関係や形状及び
磁性体端部の磁束密度特性によって検出コイル3の検出
起電力値と磁性体2または検出コイル3との位置関係の
検知条件が定められる。
In the figure, an excitation coil 1, a magnetic core 2, a detection coil 3,
Since the dimensional relationship of the magnetic shielding plate 4 is shown in an easy-to-understand manner,
Correctly, the dimensional relationship and shape shown in the figure are the dimensional relationship and shape designed according to the purpose, and the detected electromotive force value of the detection coil 3 and the magnetic body are determined by the dimensional relationship and shape and the magnetic flux density characteristics of the end of the magnetic body. 2 or the detection condition of the positional relationship with the detection coil 3 is determined.

上述において磁性体2または検出コイル3との位置関係
と記したのは、磁性体2と検出コイル3とは相互に固定
されているので一つの物体と見なし得るからであって、
正しくは、磁性休2または検出コイル3の予め定められ
た特定の場所、例えば、磁性体2の磁気遮蔽板4の挿入
?端部近傍所定の位置からの距離を示すことになる。
In the above description, the positional relationship with the magnetic body 2 or the detection coil 3 is described because the magnetic body 2 and the detection coil 3 are fixed to each other and can be considered as one object.
Correctly, the magnetic shielding plate 4 of the magnetic material 2 is inserted at a predetermined specific location of the magnetic shield 2 or the detection coil 3? This indicates the distance from a predetermined position near the end.

次に図によ■って本発明の動作を詳細に説明する。Next, the operation of the present invention will be explained in detail with reference to the drawings.

次に前述した構戒における働きについて説明する。第1
図、第2図において、図には省略した交流電源によって
励磁コイル1に交流電流を流すと、該交流電流によって
交番磁束が磁芯2に形戊される。磁芯2には互いに対向
する磁極による間隙2aが設けられていて、該磁極間間
隙2aGこは略平行な交番磁界が形成されている。
Next, I will explain the function of the precepts mentioned above. 1st
2, when an alternating current is passed through the excitation coil 1 by an alternating current power source (not shown), an alternating magnetic flux is formed in the magnetic core 2 by the alternating current. A gap 2a formed by mutually opposing magnetic poles is provided in the magnetic core 2, and a substantially parallel alternating magnetic field is formed in the gap 2aG between the magnetic poles.

従って、検出コイル3には前記交番磁界が鎖交している
ので該検出コイルには鎖交する前記交番磁界の磁束の値
に比例した起電力を発生している。
Therefore, since the alternating magnetic field interlinks with the detection coil 3, an electromotive force proportional to the value of the magnetic flux of the interlinking alternating magnetic field is generated in the detection coil.

第2図において検出コイル3が磁芯2に対して図に示す
ような位置にあると、検出コイル3は磁芯2の磁極間間
隙2aに於ける均一な交番磁束の中に位置しているので
該交番磁束に比例した起電力を生している。従って、検
出コイル3の出力値を計測すると、該計測値は検出コイ
ルが鎖交する交番磁束の値に比例している。
In FIG. 2, when the detection coil 3 is in the position shown in the figure with respect to the magnetic core 2, the detection coil 3 is located in a uniform alternating magnetic flux in the magnetic pole gap 2a of the magnetic core 2. Therefore, an electromotive force proportional to the alternating magnetic flux is generated. Therefore, when the output value of the detection coil 3 is measured, the measured value is proportional to the value of the alternating magnetic flux interlinked with the detection coil.

第2図において、磁気遮蔽板4を上から挿入して図の位
置、即ち、検出コイル3の内部に対して.0−dyの位
置にあると、該磁気遮蔽板4は検出コイル3の内部全面
積.OXd’xに対して(.0−dy)Xdxの面積だ
け覆っていることになる。
In FIG. 2, the magnetic shielding plate 4 is inserted from above to the position shown in the figure, that is, inside the detection coil 3. When in the 0-dy position, the magnetic shielding plate 4 covers the entire internal area of the detection coil 3. This means that OXd'x is covered by an area of (.0-dy)Xdx.

該磁気遮蔽板4は導体によって成型されているので該導
体板は貫通しようとする交番磁束によって渦電流を生し
、該渦電流は貫通しようとするもとの交番磁束を打ち消
す方向と大きさで磁束を生しる。従って、検出コイル1
を流れる交流電流によって磁性体2の空隙2aに生じて
いる交番磁束のうち、磁気遮蔽板4によって覆われてい
る範囲の交番磁束は磁気遮蔽板4によって遮られる為に
検出コイル3には起電力を発生しない 従って、前述した、検出コイル3がコイルの内部に含む
面積J)Xdxに鎖交する交番磁束のうち(..O−d
y)Xdxの面積分だけ減少した磁束、即ち、面積d 
x X d. y分の交番磁束だけが検出コイル3を鎖
交して、起電力を発生している。上述の説明でdxは共
通であるがら、検出コイル3が鎖交する交番磁束によっ
て発生ずる起電力は、磁気遮蔽板4に覆われないで残っ
た距Ndyに比例している。
Since the magnetic shielding plate 4 is made of a conductor, the conductor plate generates an eddy current due to the alternating magnetic flux that attempts to penetrate, and the eddy current has a direction and a magnitude that cancels out the original alternating magnetic flux that attempts to penetrate. Generates magnetic flux. Therefore, detection coil 1
Among the alternating magnetic flux generated in the air gap 2a of the magnetic body 2 by the alternating current flowing through the magnetic body 2, the alternating magnetic flux in the range covered by the magnetic shielding plate 4 is blocked by the magnetic shielding plate 4, so that an electromotive force is generated in the detection coil 3. Therefore, among the alternating magnetic flux that intersects with the area J)Xdx that the detection coil 3 includes inside the coil,
y) Magnetic flux decreased by the area of Xdx, that is, the area d
x x d. Only the alternating magnetic flux for y interlinks the detection coil 3 and generates an electromotive force. Although dx is common in the above explanation, the electromotive force generated by the alternating magnetic flux interlinking the detection coil 3 is proportional to the distance Ndy remaining not covered by the magnetic shielding plate 4.

従って、検出コイル3の起電力を計測することによって
、磁気遮蔽板の押入距l2IIF.O−(」yを知るこ
とができる。
Therefore, by measuring the electromotive force of the detection coil 3, the pushing distance of the magnetic shielding plate 12IIF. O-(''y can be known.

上述の説明に於けるffl、d’x等の寸法は磁性体2
または検出コイル3の形状、及び磁性休2端部の磁束密
度特性によって定まる値である。
The dimensions of ffl, d'x, etc. in the above explanation are for magnetic material 2.
Alternatively, it is a value determined by the shape of the detection coil 3 and the magnetic flux density characteristics of the end portion of the magnetic flux 2.

又、上述の説明では磁性体の磁極間間隙2a部に於ける
形状、検出コイル3、磁気遮蔽板4の形状を全て矩形で
あるようGこ説明したが、磁性体の磁極間間隙28部に
於ける形状、検出コイル3、磁気遮蔽板4の形状の内の
任意の一つまたは、磁性体の磁極間間隙2a部に於ける
形状、検出コイル3、磁気遮蔽板4の形状のいず1 3 1 4 れかを複合してそれぞれの形状を任意に定めることによ
って磁気遮蔽板の移動に伴って検出コイル3に発生する
起電力の変化特性を所定の関数値にすることが出来る。
In addition, in the above explanation, the shape of the magnetic body in the magnetic pole gap 2a part, the shape of the detection coil 3, and the magnetic shielding plate 4 are all rectangular. any one of the shapes of the detection coil 3 and the magnetic shielding plate 4; 3 1 4 By combining these and arbitrarily determining the shape of each, it is possible to make the change characteristic of the electromotive force generated in the detection coil 3 as the magnetic shielding plate moves to a predetermined function value.

上述の説明において、第1図、第2図に示した検出コイ
ル3は、通常の銅線を巻いたものであっても、複数ター
ンの固定銅線を戒型したものであっても良いし、また、
基板に埋め込んでも最初から基板とコイルを同時に成型
しても良いし、接着によって形成させても良い。
In the above description, the detection coil 3 shown in FIGS. 1 and 2 may be a coil of ordinary copper wire, or may be a coil of fixed copper wire with multiple turns. ,Also,
It may be embedded in the substrate, the substrate and the coil may be molded simultaneously from the beginning, or they may be formed by adhesion.

また、基板は絶縁材料によって成型された薄い板やフレ
キシブルプリント基盤等のフイルム状のものであっても
良いし、薄い磁性体を張り合わせても良い また、絶縁基板に印刷によってコイルを戒型させても良
いし、成型したコイルを絶縁材料で固めて板状に戒型さ
せても良い 絶縁基板に印刷によってコイルを成型させる場合は多層
のプリント基板を用い層間をスルーホールで接続するこ
とによって容易に複数ターンのコイルを得ることができ
る。
Further, the substrate may be a thin plate molded from an insulating material, a film-like material such as a flexible printed circuit board, a thin magnetic material may be laminated together, or a coil may be shaped by printing on an insulating substrate. Alternatively, you can solidify the molded coil with an insulating material and form it into a plate shape.When molding the coil by printing on an insulating board, it is easy to use a multilayer printed circuit board and connect the layers with through holes. You can get a coil with multiple turns.

なお、上述の実施例に於ける説明では互いに対向する磁
極部分を一箇所として説明したが、計測すべき対象の条
件や目的にあわせて対向する磁極部分を複数箇所にもう
けることができ、コイルや磁気遮蔽板の数及び磁性体の
形状もまた計測すべき対象の条件や目的にあわせて自由
に設定することができる。
In addition, in the above embodiment, the magnetic pole parts facing each other were explained in one place, but the magnetic pole parts facing each other can be provided in multiple places depending on the conditions and purpose of the object to be measured. The number of magnetic shielding plates and the shape of the magnetic material can also be freely set according to the conditions and purpose of the object to be measured.

[発明の効果] 以上説明したように本発明によれば、互に対向する磁極
を構戒した磁性体による磁路と該磁性体に嵌合した励磁
コイルと前記磁極を槽戒した磁性体により該磁極間に発
生する交番磁束に鎖交するように設けられた検出コイル
に対して、前記互に対向する磁極間隙に挿入自在に設け
られた磁気遮蔽板の挿入位置による前記検出コイルの起
電力変化を検知するようにしたので、検出コイルの貫通
磁束量と磁性体の磁極間隙部または検出コイルと磁気遮
蔽板との位置関係が検出コイルの鎖交面積、すなわち、
磁気遮蔽板の挿入位置に対応し、また、磁路を形成する
磁性体をすぐれた精度で加工することは容易であり、ま
た、磁極間間隙を狭くすることで小さなアンペアターン
で大きく均一な磁束密度が得られ、漏洩磁束を小さくす
ることができる。これにより検出可能変位量に対し検出
部位の寸法を小さく出来る。また、励磁コイルの巻線精
度は必要なく、また、励磁コイルの抵抗値は小さく、検
出コイルの変位によるインダクタンスの影響が無いとい
うすぐれた効果を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, a magnetic path is formed by a magnetic body with magnetic poles facing each other, an excitation coil fitted to the magnetic body, and a magnetic body with the magnetic poles aligned. The electromotive force of the detection coil is determined by the insertion position of the magnetic shielding plate, which is insertably provided in the gap between the mutually opposing magnetic poles, with respect to the detection coil, which is provided so as to be interlinked with the alternating magnetic flux generated between the magnetic poles. Since the change is detected, the amount of penetrating magnetic flux of the detection coil and the positional relationship between the magnetic pole gap of the magnetic body or the detection coil and the magnetic shielding plate is the interlinkage area of the detection coil, that is,
It is easy to process the magnetic material that corresponds to the insertion position of the magnetic shield plate and forms the magnetic path with excellent precision, and by narrowing the gap between the magnetic poles, a large and uniform magnetic flux can be achieved with a small ampere turn. Density can be obtained and leakage magnetic flux can be reduced. This makes it possible to reduce the size of the detection portion relative to the amount of detectable displacement. Moreover, the winding precision of the exciting coil is not required, and the resistance value of the exciting coil is small, so that an excellent effect can be obtained in that there is no influence of inductance due to displacement of the detection coil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である構造図。 第2図は木発明を一実施例である構造の断面図9 第3図は従来の構造図。 第4図は従来の別の構造図である。 1・・励磁コイル 2・・・磁芯 3・・・検出コイル 4・・・磁気遮蔽板 31・・・励磁コイル 32・・・検出コイル 33・・・磁芯 41・・・励磁コイル 42−・検出コイル 43・・遮蔽棒 FIG. 1 is a structural diagram of an embodiment of the present invention. Figure 2 is a sectional view 9 of a structure that is an embodiment of the wooden invention. Figure 3 is a conventional structural diagram. FIG. 4 is another conventional structural diagram. 1. Excitation coil 2...Magnetic core 3...Detection coil 4...Magnetic shielding plate 31... Excitation coil 32...Detection coil 33...Magnetic core 41... Excitation coil 42-・Detection coil 43...shielding rod

Claims (1)

【特許請求の範囲】 1、少なくとも一個所以上の互に対向する磁極を構成し
た磁性体による磁路と、該磁性体に嵌合し前記互に対向
する磁極間に交番磁束を発生させる励磁手段と、前記互
に対向する磁極間に発生する交番磁束に鎖交する面積を
有した少なくとも一個以上の検出コイルと、前記互に対
向する磁極間に対して挿入自在に設けられた少なくとも
一個以上の電気導体によって成型された磁気遮蔽板とよ
りなることを特徴とする位置検出装置。 2、磁気遮蔽板と前述した交番磁束を発生している磁性
体の互に対向する磁極部分または検出コイルとの位置関
係と、検出コイルに発生している起電力値との関係が、
前記互に対向する磁極部分または検出コイルと磁気遮蔽
板の相互位置の変化に対し、所定の関数関係になるよう
な互いに対向する磁極部分の対向面の形状を有すること
を特徴とする請求項1記載の位置検出装置。 3、磁気遮蔽板と前述した交番磁束を発生している磁性
体の互に対向する磁極部分または検出コイルとの位置関
係と、検出コイルに発生している起電力値との関係が、
前記互に対向する磁極部分または検出コイルと磁気遮蔽
板の相互位置の変化に対し、所定の関数関係になるよう
な検出コイルの形状を有することを特徴とする請求項1
記載の位置検出装置。 4、磁気遮蔽板と前述した交番磁束を発生している磁性
体の互に対向する磁極部分または検出コイルとの位置関
係と、検出コイルに発生している起電力値との関係が、
前記互に対向する磁極部分または検出コイルと磁気遮蔽
板の相互位置の変化に対し、所定の関数関係になるよう
な磁気遮蔽板の形状を有することを特徴とする請求項1
記載の位置検出装置。 5、前述した検出コイルは、1ターン以上のコイル状に
形成した導体を、磁性体にはりつけたことを特徴とする
請求項1記載の位置検出装置。
[Scope of Claims] 1. A magnetic path formed by a magnetic body comprising at least one mutually opposing magnetic poles, and an excitation means that fits into the magnetic body and generates an alternating magnetic flux between the mutually opposing magnetic poles. , at least one or more detection coils having an area interlinked with the alternating magnetic flux generated between the mutually opposing magnetic poles, and at least one or more detection coils provided so as to be freely insertable between the mutually opposing magnetic poles. A position detection device characterized by comprising a magnetic shielding plate formed of an electric conductor. 2. The positional relationship between the magnetic shielding plate and the mutually opposing magnetic pole portions of the magnetic body generating the above-mentioned alternating magnetic flux or the detection coil, and the relationship between the electromotive force value generated in the detection coil,
Claim 1 characterized in that the opposing surfaces of the mutually opposing magnetic pole parts have shapes that form a predetermined functional relationship with respect to changes in the mutual positions of the mutually opposing magnetic pole parts or the detection coil and the magnetic shielding plate. The position detection device described. 3. The positional relationship between the magnetic shielding plate and the mutually opposing magnetic pole portions of the magnetic body generating the above-mentioned alternating magnetic flux or the detection coil, and the relationship between the electromotive force value generated in the detection coil are as follows:
Claim 1 characterized in that the detection coil has a shape such that a predetermined functional relationship is established with respect to changes in mutual positions of the mutually opposing magnetic pole portions or the detection coil and the magnetic shielding plate.
The position detection device described. 4. The positional relationship between the magnetic shielding plate and the mutually opposing magnetic pole parts of the magnetic body generating the above-mentioned alternating magnetic flux or the detection coil, and the relationship between the electromotive force value generated in the detection coil,
Claim 1 characterized in that the magnetic shielding plate has a shape such that a predetermined functional relationship is established with respect to changes in mutual positions of the mutually opposing magnetic pole portions or the detection coil and the magnetic shielding plate.
The position detection device described. 5. The position detecting device according to claim 1, wherein the above-mentioned detecting coil is a conductor formed in a coil shape with one turn or more and attached to a magnetic material.
JP23434789A 1989-09-07 1989-09-07 Detecting device of position Pending JPH0395416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23434789A JPH0395416A (en) 1989-09-07 1989-09-07 Detecting device of position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23434789A JPH0395416A (en) 1989-09-07 1989-09-07 Detecting device of position

Publications (1)

Publication Number Publication Date
JPH0395416A true JPH0395416A (en) 1991-04-19

Family

ID=16969576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23434789A Pending JPH0395416A (en) 1989-09-07 1989-09-07 Detecting device of position

Country Status (1)

Country Link
JP (1) JPH0395416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724242B2 (en) 2015-10-02 2020-07-28 Nisshin Steel Co., Ltd. Metal roofing material and roofing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724242B2 (en) 2015-10-02 2020-07-28 Nisshin Steel Co., Ltd. Metal roofing material and roofing method

Similar Documents

Publication Publication Date Title
US5642041A (en) Alternating current sensor employing parallel plates and having high dynamic range and accuracy
EP2515125B1 (en) Current sensor with a magnetic core
JPH0769130B2 (en) Magnetic displacement sensor
US20100301836A1 (en) Device for measuring the intensity of an electric current and electric appliance including such device
JPH081867B2 (en) An instrument transformer that measures the current flowing through an electrical conductor.
KR0165893B1 (en) Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields
US20040207391A1 (en) Equipment for measuring displacement
US4331919A (en) Apparatus for magnetic testing ferromagnetic sheet or strip material using rectangular coils
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
US7176672B2 (en) DC current sensor
GB2031155A (en) Isotropic magnetising system
JPH0395416A (en) Detecting device of position
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
JP4248324B2 (en) Actuator
JP2001336906A (en) Electromagnetic induction type displacement detecting device
DE50213062D1 (en) Ferraris-sensor
JPH0395415A (en) Angle detectro
JP3618425B2 (en) Magnetic sensor
Guo et al. Calibration of sensing coils of a three-dimensional magnetic property tester
JPH0395413A (en) Detecting device of position
JP3626341B2 (en) Magnetic metal sensor and magnetic metal detection system
Lewis A miniature mutual-inductive proximity transducer
JPH0739922B2 (en) Position detector for hydraulic or pneumatic cylinders
JP2514338B2 (en) Current detector
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body