JPH039528A - Hetero junction bipolar transistor - Google Patents

Hetero junction bipolar transistor

Info

Publication number
JPH039528A
JPH039528A JP14633989A JP14633989A JPH039528A JP H039528 A JPH039528 A JP H039528A JP 14633989 A JP14633989 A JP 14633989A JP 14633989 A JP14633989 A JP 14633989A JP H039528 A JPH039528 A JP H039528A
Authority
JP
Japan
Prior art keywords
emitter
region
group
conductivity type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14633989A
Other languages
Japanese (ja)
Inventor
Fumihiko Sato
文彦 佐藤
Tsutomu Tashiro
勉 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14633989A priority Critical patent/JPH039528A/en
Publication of JPH039528A publication Critical patent/JPH039528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To eliminate emitter resistance component due to the low concentration dope limit, by setting the thickness of a III-V compound layer having forbidden bandwidth larger than semiconductor constituting a base and opposite conductivity type at a specified value, arranging said layer between a base and an emitter, and making the III-V compound semiconductor completely turn to a depletion state. CONSTITUTION:On a semiconductor substrate 1 constituted of group IV single element, the following are formed; a conductivity type collector region constituted of group IV single element, an opposite conductivity type base region 6 formed in the collector region, a conductivity type emitter region formed on the surface of the base region 6, and a group IV single element semiconductor layer which is formed on the emitter region and has impurity concentration larger than that of the emitter region. Said emitter region is constituted of III-V compound whose forbidden bandwidth is larger than that of the group IV single element semiconductor and the thickness is smaller than the width of a depletion layer stretching from the base region 6. By this constitution, the resistance of the emitter part is reduced and characteristics are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヘテロ接合バイポーラ、トランジスタに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heterojunction bipolar transistor.

〔従来の技術〕[Conventional technology]

第2図は従来のへテロ接合バイポーラ・トランジスタの
一例の断面図である。
FIG. 2 is a cross-sectional view of an example of a conventional heterojunction bipolar transistor.

p型シリコン基板1の上に01型層4をイオン注入法で
形成する0局所酸化法(LOCO3法)を用いてフィー
ルド酸化膜5を形成して素子領域を区画し、素子領域内
のn型層4にp型ベース領域6を形成する。表面に酸化
膜7を形成し、その上にリンガスス膜8を堆積し、窓あ
けする。そして、シリコンより広い禁制帯幅を有する■
−V族化合物半導体として例えばInP層9を堆積する
。再び窓あけしてシリコン層にはアルミニウム電極11
を、InP層9にはN i / A u G e電極1
2を形成する。
A field oxide film 5 is formed using a local oxidation method (LOCO3 method) in which a 01 type layer 4 is formed on a p-type silicon substrate 1 by ion implantation to define an element region. A p-type base region 6 is formed in layer 4. An oxide film 7 is formed on the surface, a phosphorus film 8 is deposited thereon, and a window is formed. And it has a wider forbidden band width than silicon■
For example, an InP layer 9 is deposited as a -V group compound semiconductor. Open the window again and place the aluminum electrode 11 on the silicon layer.
, the InP layer 9 has a Ni/AuGe electrode 1
form 2.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のへテロ接合バイポーラ・トランジスタに
おいて、エミッタ材料として使用する111−V族化合
物半導体結晶にドナー型不純物を多量に添加した場合、
ドナー型の置換格子位置を占有すべき不純物が必ずしも
所望の格子位置を占有せずに、逆の格子位置を占める様
になり、シリコンをエミッタ材料として用いるホモ接合
バイポーラ・トランジスタに比べて約2桁程度ドープ限
界濃度が低下し、標準的ドープ限界が1018cm−3
台の低濃度となる。その結果、エミッタ部の抵抗が著し
く高くなり、特性低下を招き、微細縮小化を進める上で
障害となっているという問題がある。
In the conventional heterojunction bipolar transistor described above, when a large amount of donor type impurity is added to the 111-V group compound semiconductor crystal used as the emitter material,
The impurity that should occupy the substituted lattice position of the donor type does not necessarily occupy the desired lattice position, but instead occupies the opposite lattice position, and the impurity is approximately two orders of magnitude smaller than that of a homojunction bipolar transistor using silicon as the emitter material. The degree doping limit concentration decreases, the standard doping limit is 1018 cm-3
The concentration is low. As a result, there is a problem in that the resistance of the emitter portion becomes significantly high, leading to deterioration of characteristics and becoming an obstacle to progressing with miniaturization.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のへテロ接合バイポーラ・トランジスタは、■原
車元素から成る半導体基板上に絶縁分離層でU、すれて
形成されなた島状の■原車元素からなる一導電型コレク
タ(またはエミッタ)領域と、前記コレクタ(またはエ
ミッタ)領域内に形成された逆導電型ベース領域と、前
記ベース領域の表面の一部に形成され前記IV族単元素
半導体よりは禁制帯幅が広いII’[−V族化合物から
成り、かつ前記ベース領域から拡がる空乏層の幅より小
さい寸法の厚さを有する一導電型エミッタ(またはコレ
クタ)領域と、前記エミッタ(またはコレクタ)領域上
に形成され前記エミッタ(またはコレクタ)領域の不純
物濃度の10倍以上の500倍以下の不純物濃度を有す
るIV族単元素半導体層とを含んで構成される。
The heterojunction bipolar transistor of the present invention has an island-shaped collector (or emitter) of one conductivity type made of the parent element, which is formed by rubbing an insulating separation layer on a semiconductor substrate made of the parent element. a base region of opposite conductivity type formed in the collector (or emitter) region, and a base region of an opposite conductivity type formed in the collector (or emitter) region; an emitter (or collector) region of one conductivity type made of a group V compound and having a thickness smaller than the width of a depletion layer extending from the base region; a group IV single-element semiconductor layer having an impurity concentration of 10 times or more and 500 times or less of the impurity concentration of the collector) region.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例の製造方法を
説明するための工程順に示した断面図である。
FIGS. 1(a) to 1(e) are cross-sectional views showing the order of steps for explaining a manufacturing method according to an embodiment of the present invention.

まず、第1図(a)に示すように、p型シリコン基板1
の表面を全面酸化し、一部の酸化膜を除去して窓あけし
た後、残存酸化膜をマスクとして砒素を拡散してn+型
埋込層2を形成し、マスクとして用いた酸化膜を除去す
る。シリコン基板表面に不純物濃度1.0 x 101
6Cffl−sのn型層3を約1.3μmの厚さにエピ
タキシャル成長させる。n型層3の上に酸化膜13、窒
化814を順次形成し、ホトリソグラフィ技術を用いて
素子領域間及びエミッタとコレクタとなる領域の窒化膜
、酸化膜をエツチングし、更にn型層3の半ば迄エツチ
ングにより除去する。
First, as shown in FIG. 1(a), a p-type silicon substrate 1
After the entire surface is oxidized, a part of the oxide film is removed and a window is opened, arsenic is diffused using the remaining oxide film as a mask to form an n+ type buried layer 2, and the oxide film used as a mask is removed. do. Impurity concentration on the silicon substrate surface: 1.0 x 101
An n-type layer 3 of 6Cffl-s is epitaxially grown to a thickness of about 1.3 μm. An oxide film 13 and a nitride film 814 are sequentially formed on the n-type layer 3, and the nitride film and oxide film between the device regions and in the region that will become the emitter and collector are etched using photolithography technology. Remove by etching up to the middle.

次に、第1図(b)に示すように、イオン注入法を用い
てチャネル防止用p+型層4を形成し、イオン注入によ
り発生した結晶欠陥を除くためアニールを行う。最上部
にある窒化膜14をマスクにして熱酸化してフィールド
酸化膜5を形成した後、マスクとして用いた窒化wA1
4、酸化膜13を除去し、新しく酸化膜をつける。選択
エツチングで窓あけし、コレクタ取り出し領域にリンを
拡散した後、再び酸化膜7を設ける。ホトレジスト15
をマスクにしてホウ素をイオン注入し、p型ベース領域
6を形成する。
Next, as shown in FIG. 1(b), a p+ type layer 4 for preventing a channel is formed using an ion implantation method, and annealing is performed to remove crystal defects generated by the ion implantation. After forming the field oxide film 5 by thermal oxidation using the uppermost nitride film 14 as a mask, the nitride wA1 used as a mask is
4. Remove the oxide film 13 and apply a new oxide film. After opening a window by selective etching and diffusing phosphorus into the collector extraction region, an oxide film 7 is provided again. Photoresist 15
Using this as a mask, boron ions are implanted to form p-type base region 6.

次に、第1図(c)に示すように、パッシベーション用
のリンガラス膜8を被着後、ホトリソグラフィ技術を用
いてエミッタを形成する領域のリンガラス膜8、酸化膜
7を選択除去する。この開口部に、不純物濃度約1 、
 OX 1018cm−’のn型InP19を約8nm
の厚さに堆積する。この上に不純物濃度約2.0XIO
2°Cl1lうで単結晶のn+型シリコン層10を選択
成長させる。特に、選択性に優れていないエピタキシャ
ル成長系の場合、絶縁股上に多結晶InP層及び多結晶
シリコン層が成長するが、その場合、エミッタ領域をホ
トレジストにより被覆し、多結晶層をエツチングにより
除去する。
Next, as shown in FIG. 1(c), after depositing a phosphorus glass film 8 for passivation, the phosphorus glass film 8 and oxide film 7 in the region where the emitter will be formed are selectively removed using photolithography technology. . This opening has an impurity concentration of about 1,
About 8 nm of n-type InP19 of OX 1018 cm-'
Deposited to a thickness of . On top of this, impurity concentration is about 2.0XIO
A single-crystal n+ type silicon layer 10 is selectively grown using 2.degree. Cl1l. In particular, in the case of an epitaxial growth system that does not have excellent selectivity, a polycrystalline InP layer and a polycrystalline silicon layer grow on the insulating crotch. In this case, the emitter region is covered with photoresist and the polycrystalline layer is removed by etching.

次に、第1図(d)に示すように、ホトリソグラフィ技
術を用いてコレクタ、ベース領域の絶縁膜を選択除去し
て窓をあける。
Next, as shown in FIG. 1(d), a window is formed by selectively removing the insulating film in the collector and base regions using photolithography.

次に、第1図(e)に示すように、アルミニウムを全面
に蒸着した後、ホトリソグラフィ技術を用いてエミッタ
、ベース及びコレクタ領域上アルミニウム電極11を形
成する。不要なAβをエツチング除去し、@極部を形成
する。
Next, as shown in FIG. 1(e), after aluminum is deposited on the entire surface, aluminum electrodes 11 are formed on the emitter, base, and collector regions using photolithography. Unnecessary Aβ is removed by etching to form the @ pole part.

このようにして本発明のへテロ接合バイボーラ・トラン
ジスタが製造される。この構造のトランジスタのエミッ
タ・ベースに形成される空乏層の幅を見積ると、ベース
はp型シリコンは比誘電率11.9.不純物濃度3 X
 1018cm−3であり、このベース領域6とp−n
接合を形成するInPは比誘電率12.4、n型不純物
濃度I X 1018cm−’である。シリコンとIn
Pとはほぼ同一の誘電率であり、順バイアスを印加して
エミッタ・ペース間空乏層を縮めた時、InP側に伸び
る空乏層幅は内蔵電位十印加電圧=O,IVの時、約9
.5nmであり、InP層9は完全に空乏化している。
In this way, the heterojunction bibolar transistor of the present invention is manufactured. Estimating the width of the depletion layer formed at the emitter and base of a transistor with this structure, the relative permittivity of the base is p-type silicon is 11.9. Impurity concentration 3×
1018 cm-3, and this base region 6 and p-n
InP forming the junction has a dielectric constant of 12.4 and an n-type impurity concentration I x 1018 cm-'. Silicon and In
It has almost the same dielectric constant as P, and when the depletion layer between the emitter and paste is shortened by applying a forward bias, the width of the depletion layer extending toward the InP side is approximately 9 when the built-in potential + applied voltage = O, IV.
.. 5 nm, and the InP layer 9 is completely depleted.

上記実施例では、■−■族化合物としてn型InPを用
いたが、n型GaAsを用いても良いことは明らかであ
る。GaAsを用いた場合は、不純物濃度は2 X 1
018cm−’とし、厚さは5nmにする。
In the above embodiment, n-type InP was used as the ■-■ group compound, but it is clear that n-type GaAs may also be used. When using GaAs, the impurity concentration is 2 x 1
018 cm-' and the thickness is 5 nm.

GaAsとシリコンとの電子親和力の差は20mVとI
nPとシリコンとの電子親和力の差350mVより小さ
く、同一のコレクタ電流となるベース電圧値がシリコン
ホモ接合バイポーラ・トランスタと変化する量が少なく
、現状の回路構成に適用しやすいという利点がある。
The difference in electron affinity between GaAs and silicon is 20 mV and I
The difference in electron affinity between nP and silicon is less than 350 mV, and the base voltage value for the same collector current differs little from that of a silicon homojunction bipolar transformer, which has the advantage of being easy to apply to current circuit configurations.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、バイポーラ・トランジ
スタのベースを構成する半導体より広い禁制帯幅と逆導
電性を有するI−V族化合物層を10r++++以下の
厚さにしてベース・エミッタ間に配して■−V族化合物
半導体を完全に空乏化させることによりシリコン結晶よ
りドープ上限界が低く、その限界値が1018cm−’
台の低濃度であることにより発生するエミッタ抵抗成分
を収り去ることができるという効果がある。
As explained above, the present invention provides an IV group compound layer having a forbidden band width wider than that of the semiconductor constituting the base of a bipolar transistor and having reverse conductivity and having a thickness of 10r++++ or less and disposing it between the base and emitter. ■-By completely depleting the V group compound semiconductor, the upper limit of doping is lower than that of silicon crystal, and the limit value is 1018 cm-'
There is an effect that the emitter resistance component generated due to the low concentration of the base can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の一実施例の製造方法を
説明するための工程順に示した断面図、第2図は従来の
へテロ接合バイポーラ・トランジスタの一例の断面図で
ある。 1・・・p型シリコン基板、2・・・n+型埋込層、3
・・・n型層、4・・・p+型層、5・・・フィールド
酸化膜、6・・・p型ベース領域、7・・・酸化膜、8
・・・リンガラス膜、9・・・n型InP層、10・・
・n+型シリコン層、11・・・アルミニウム電極、1
2・・・Ni/AuGe電極、13・・・酸化膜、14
・・・窒化膜、15・・・ホトレジスト。
FIGS. 1(a) to (e) are cross-sectional views showing the manufacturing method of an embodiment of the present invention in the order of steps, and FIG. 2 is a cross-sectional view of an example of a conventional heterojunction bipolar transistor. be. 1...p-type silicon substrate, 2...n+ type buried layer, 3
... n-type layer, 4 ... p + type layer, 5 ... field oxide film, 6 ... p-type base region, 7 ... oxide film, 8
...phosphorus glass film, 9... n-type InP layer, 10...
・n+ type silicon layer, 11...aluminum electrode, 1
2...Ni/AuGe electrode, 13...Oxide film, 14
...Nitride film, 15...Photoresist.

Claims (1)

【特許請求の範囲】[Claims] IV族単元素から成る半導体基板上に絶縁分離層で囲まれ
て形成された島状のIV族単元素からなる一導電型コレク
タ(またはエミッタ)領域と、前記コレクタ(またはエ
ミッタ)領域内に形成された逆導電型ベース領域と、前
記ベース領域の表面の一部に形成され前記IV族単元素半
導体よりは禁制帯幅が広いIII−V族化合物から成り、
かつ前記ベース領域から拡がる空乏層の幅より小さい寸
法の厚さを有する一導電型エミッタ(またはコレクタ)
領域と、前記エミッタ(またはコレクタ)領域上に形成
され前記エミッタ(またはコレクタ)領域の不純物濃度
の10倍以上500倍以下の不純物濃度を有するIV族単
元素半導体層とを含むことを特徴とするヘテロ接合バイ
ポーラ・トランジスタ。
An island-shaped collector (or emitter) region of one conductivity type made of a group IV single element formed on a semiconductor substrate made of a group IV single element surrounded by an insulating separation layer, and a collector (or emitter) region of one conductivity type formed within the collector (or emitter) region. a base region of opposite conductivity type, and a group III-V compound formed on a part of the surface of the base region and having a wider forbidden band width than the group IV single-element semiconductor,
and an emitter (or collector) of one conductivity type having a thickness smaller than the width of a depletion layer extending from the base region.
and a group IV single-element semiconductor layer formed on the emitter (or collector) region and having an impurity concentration of 10 times or more and 500 times or less than the impurity concentration of the emitter (or collector) region. Heterojunction bipolar transistor.
JP14633989A 1989-06-07 1989-06-07 Hetero junction bipolar transistor Pending JPH039528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14633989A JPH039528A (en) 1989-06-07 1989-06-07 Hetero junction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14633989A JPH039528A (en) 1989-06-07 1989-06-07 Hetero junction bipolar transistor

Publications (1)

Publication Number Publication Date
JPH039528A true JPH039528A (en) 1991-01-17

Family

ID=15405461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14633989A Pending JPH039528A (en) 1989-06-07 1989-06-07 Hetero junction bipolar transistor

Country Status (1)

Country Link
JP (1) JPH039528A (en)

Similar Documents

Publication Publication Date Title
US5557118A (en) Hetero-junction type bipolar transistor
EP0184016A1 (en) Heterojunction bipolar transistor
US5331186A (en) Heterojunction bipolar transistor with base electrode having Schottky barrier contact to the emitter
EP0194197B1 (en) Heterojunction bipolar transistor and process for fabricating same
EP0551185A2 (en) Heterojunction bipolar transistor
JPH07263663A (en) Field effect type compound semiconductor device
US4967254A (en) Semiconductor device
US6680522B1 (en) Semiconductor device with reduced electrical variation
JP2576828B2 (en) High gain MIS transistor
JP3368449B2 (en) Semiconductor device and manufacturing method thereof
JP3874919B2 (en) Compound semiconductor device
JP2701583B2 (en) Tunnel transistor and manufacturing method thereof
JPH06163563A (en) Semiconductor device
JPH039528A (en) Hetero junction bipolar transistor
JPS63200567A (en) Hetero junction bipolar transistor and manufacture thereof
KR920005128B1 (en) Manufacturing method of junction-type field effect transistor
JPH05275453A (en) Junction fet and manufacture thereof
JPH0452627B2 (en)
JP2800246B2 (en) Manufacturing method of vertical transistor
JP2512084B2 (en) Method for manufacturing semiconductor device
JPH0387033A (en) Heterojunction bipolar transistor
JPS61123175A (en) Manufacture of hetero-junction bipolar transistor
JPH01187863A (en) Semiconductor device
JP2002222938A (en) Semiconductor device
JPH07130966A (en) Compound semiconductor device and its manufacture