JPH0395190A - Production of alpha,omega-dichloroorganopolysiloxane - Google Patents

Production of alpha,omega-dichloroorganopolysiloxane

Info

Publication number
JPH0395190A
JPH0395190A JP1234248A JP23424889A JPH0395190A JP H0395190 A JPH0395190 A JP H0395190A JP 1234248 A JP1234248 A JP 1234248A JP 23424889 A JP23424889 A JP 23424889A JP H0395190 A JPH0395190 A JP H0395190A
Authority
JP
Japan
Prior art keywords
nmr
formula
δppm
carbon tetrachloride
heavy benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1234248A
Other languages
Japanese (ja)
Other versions
JP2610519B2 (en
Inventor
Hiroaki Uchida
宏昭 内田
Yoshio Kabe
義夫 加部
Koji Yoshino
浩二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1234248A priority Critical patent/JP2610519B2/en
Publication of JPH0395190A publication Critical patent/JPH0395190A/en
Application granted granted Critical
Publication of JP2610519B2 publication Critical patent/JP2610519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain the subject polysiloxane having a definite and uniform siloxane chain length and useful as an intermediate for silicones by reacting dihydrogen organopolysiloxane with carbon tetrachloride in the presence of a metal chloride. CONSTITUTION:The objective polysiloxane of formula II is produced by reacting an alpha,omega-dihydrogen organopolysiloxane of formula I (R<1> and R<2> are H, alkyl, alkenyl, aryl or halogenoalkyl; (n) is 3-10) with preferably 100-500mol% (based on the compound of formula I) of carbon tetrachloride in the presence of preferably 0.01-10mol% (based on the compound of formula I) of a metal chloride (preferably palladium chloride) preferably at 10-40 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、一定シロキサン鎖長を有するα.ω−ジクロ
ロオルガノボリシロキサンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides an α. The present invention relates to a method for producing ω-dichloroorganoborisiloxane.

[従来の技術コ シロキサンの両末端が塩素原子であるα,ω−ジクロロ
オルガノボリシロキサンは、シリコーン産業界において
広く用いられている有用なシリコーン中間体である。こ
のα,ω−ジクロロオルガノポリシロキサンの製造法と
しては、例えば、ジクロロシランを部分加水分解縮合す
る方法によりオリゴマーを得る方法(J. Am. C
hem. Soc., 68, 358(1946))
 、環状シリコーンとジクロロシランを適当な酸・塩基
触媒によって不均化する方法(米国特許第3,101,
361号明細書及び米国特許第3,642,851号明
細書)等が知られている。
[Prior Art] α,ω-dichloroorganoborisiloxanes, in which cosiloxanes have chlorine atoms at both ends, are useful silicone intermediates widely used in the silicone industry. As a method for producing this α,ω-dichloroorganopolysiloxane, for example, a method of obtaining an oligomer by partially hydrolyzing and condensing dichlorosilane (J. Am.
hem. Soc. , 68, 358 (1946))
, a method of disproportionation of cyclic silicone and dichlorosilane using an appropriate acid/base catalyst (U.S. Pat. No. 3,101,
No. 361 and US Pat. No. 3,642,851) are known.

[発明が解決しようとする課題] しかしながら、これらの方法はいずれも平衡化反応であ
るため、得られるα.ω−ジクロロオルガノボリシロキ
サンはシロキサン液長に分布を有するものであった。そ
のため、特定のシロキサン鎖長を有するα.ω−ジクロ
ロオルガノボリシロキサンを得るには、それらの准合物
を分別蒸留するという迂遠な方法によらねばならず、し
かも極めて低収率でしか得られないという問題があった
[Problems to be Solved by the Invention] However, since all of these methods involve equilibration reactions, the obtained α. The ω-dichloroorganoborisiloxane had a distribution in the siloxane liquid length. Therefore, α with a specific siloxane chain length. In order to obtain ω-dichloroorganoborisiloxane, it is necessary to use a roundabout method of fractionally distilling these quasi-compounds, and there is a problem in that it can only be obtained in an extremely low yield.

そこで、シロキサン鎖長に分布を生じることなくα.ω
−ジクロロオルガノポリシロキサンを合或する方法とし
て、環状シリコーンに塩化チオニルを作用させる方法が
報告されている(米国特許第3,646,090号明細
書)。しかしながら、この方法は塩化チオニルの取り扱
いが煩雑であり、しかも有害な二酸化硫黄が副生ずると
いう問題を有している。
Therefore, α. ω
- As a method for synthesizing dichloroorganopolysiloxane, a method in which thionyl chloride is applied to a cyclic silicone has been reported (US Pat. No. 3,646,090). However, this method has problems in that thionyl chloride is complicated to handle and harmful sulfur dioxide is produced as a by-product.

従って、簡便な反応操作により、有害物質を副生ぜずに
、特定のシロキサン鎖長を有するα.ω−ジクロロオル
ガノポリシロキサンを高収率で製造できる方法の開発が
要望されていた。
Therefore, by a simple reaction operation, α having a specific siloxane chain length can be obtained without producing harmful substances as by-products. There has been a demand for the development of a method that can produce ω-dichloroorganopolysiloxane in high yield.

[課題を解決するための手段] かかる実情において、本発明者らは上記課題を解決すべ
く鋭意研究を行なった結果、一定シロキサン鎖長を有す
るα,ω−ジハイド口ジエンオルガノボリシロキサンを
、シロキサン結合を切断しない反応条件で、両末端の水
素原子を塩素原子に置換することにより該目的が達威さ
れることを見出し、本発明を完或した。
[Means for Solving the Problems] Under these circumstances, the present inventors have conducted extensive research to solve the above problems, and as a result, we have developed an α,ω-dihyde-diene organoborisiloxane having a certain siloxane chain length. We have completed the present invention by discovering that this objective can be achieved by substituting hydrogen atoms at both ends with chlorine atoms under reaction conditions that do not break bonds.

本発明は次の反応式で示される。The present invention is shown by the following reaction formula.

(II) (式中、R1及びR2は同一でも異なってもよい水素原
子、アルキル基、アルケニル基、アリール基またはハロ
ゲノアルキル基を示し、nは3〜10の整数を示す) すなわち本発明は、α.ω−ジハイドロジエンオルガノ
ポリシロキサン(1)を、金属塩化物の存在下、四塩化
炭素と反応させることを特徴とするα,ω−ジクロロオ
ルガノボリシロキサン(■)の製造法を提供するもので
ある。
(II) (In the formula, R1 and R2 represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, or a halogenoalkyl group, which may be the same or different, and n represents an integer of 3 to 10.) α. This invention provides a method for producing α,ω-dichloroorganoborisiloxane (■), which comprises reacting ω-dihydrodieneorganopolysiloxane (1) with carbon tetrachloride in the presence of a metal chloride. be.

本発明の製造方法において用いられる四塩化炭素の量は
、α,ω−ジハイド口ジェンオルガノボリシロキサン(
I)に対して50〜1000モル%、特に100〜50
0モル%が好ましい。
The amount of carbon tetrachloride used in the production method of the present invention is
50 to 1000 mol %, especially 100 to 50 mol % based on I)
0 mol% is preferred.

金属塩化物としては、クロム、マンガン、鉄、コバルト
、ニッケル、銅、パラジウム、白金、水銀等の遷移金属
;ランタン等の希土類金属:スズ、アンチモン、鉛等の
非遷移金属などの塩化物が用いられ、特に塩化パラジウ
ムが好ましい。金属塩化物の使用量はα.ω−ジハイド
口ジエンオルガノボリシロキサン(1)に対して0.0
01〜1ooモル%、特に0.01〜lOモル%が好ま
しい。
As metal chlorides, chlorides of transition metals such as chromium, manganese, iron, cobalt, nickel, copper, palladium, platinum, and mercury; rare earth metals such as lanthanum; and non-transition metals such as tin, antimony, and lead are used. Palladium chloride is particularly preferred. The amount of metal chloride used is α. 0.0 for ω-dihydride diene organoborisiloxane (1)
01-10 mol%, particularly 0.01-10 mol% is preferred.

反応温度は、O′C〜反応溶液の還流温度、特にlO℃
〜40℃の範囲が好ましい。
The reaction temperature ranges from O'C to the reflux temperature of the reaction solution, especially 10C.
A range of 40°C to 40°C is preferred.

反応終了後、必要に応じ不溶物をろ過し、ろ液を蒸留す
ることにより、α,ω−ジクロロオルガノボリシロキサ
ン(n)が得られる。
After the reaction is completed, insoluble matter is filtered if necessary, and the filtrate is distilled to obtain α,ω-dichloroorganoborisiloxane (n).

本発明の製造法に用いるα.ω−ジハイド口ジエンオル
ガノボリシロキサン(1)は、例えば次の反応式に従っ
て環状シリコーン(■)、クロロシラン(IV)及び水
を無機固体化合物の存在下で反応させることにより製造
される。
α used in the production method of the present invention. The ω-dihydride diene organoborisiloxane (1) is produced, for example, by reacting a cyclic silicone (■), a chlorosilane (IV), and water in the presence of an inorganic solid compound according to the following reaction formula.

R2  R2   R2 (1) (式中、R′、R2及びnは前記と同じ意味を有する) 本反応に用いられる環状シリコーン(III)において
 R1及びR2で示されるアルキル基としては炭素数1
〜6のものが、アルケニル基としては炭素数2〜6のも
のが、アリール基としてはフエニル基が、ハロゲノアル
キル基としては1〜3個の塩素原子、臭素原子またはフ
ッ素原子で置換された炭素数1〜6のアルキル基が好ま
しい。その具体例としては、ヘキサメチルシクロトリシ
ロキサン、ヘキサエチルシクロトリシロキサン、ヘキサ
フエニルシクロトリシロキサン、トリメチルトリビニル
シクロトリシロキサン、トリメチルトリフエニルシクロ
トリシロキサン、オクタメチルシクロテトラシロキサン
、テトラメチルシクロテトラシロキサン、オクタエチル
シクロテトラシロキサン、オクタフエニルシクロテトラ
シロキサン、テトラメチルテトラフェニルシク口テトラ
シロキサン、テトラメチルテトラビニルシクロテトラシ
ロキサン、テトラ(トリフルオロブロビル)テトラメチ
ルシクロテトラシロキサン、デカメチルシクロベンタシ
ロキサン、ドデカメチルシクロヘキサシロキサン等が挙
げられる。
R2 R2 R2 (1) (In the formula, R', R2 and n have the same meanings as above) In the cyclic silicone (III) used in this reaction, the alkyl group represented by R1 and R2 has 1 carbon number.
~6, alkenyl groups include those with 2 to 6 carbon atoms, aryl groups include phenyl groups, and halogenoalkyl groups include carbon atoms substituted with 1 to 3 chlorine, bromine, or fluorine atoms. An alkyl group of number 1 to 6 is preferred. Specific examples include hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane, hexaphenylcyclotrisiloxane, trimethyltrivinylcyclotrisiloxane, trimethyltriphenylcyclotrisiloxane, octamethylcyclotetrasiloxane, and tetramethylcyclotetrasiloxane. , octaethylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, tetramethyltetraphenylcyclotetrasiloxane, tetramethyltetravinylcyclotetrasiloxane, tetra(trifluorobrovir)tetramethylcyclotetrasiloxane, decamethylcyclobentasiloxane, dodeca Examples include methylcyclohexasiloxane.

クロロシラン(IV)としては、例えばジメチルクロロ
シラン、ジエチルク口ロシラン、ジフェニルクロロシラ
ン、ジビニルクロロシラン等が挙げられる。クロロシラ
ン(IV)の使用量は、環状シリコーン(I[I)に対
して2〜10倍モル、特に2〜4倍モル、更に3倍モル
程度が好ましい。
Examples of the chlorosilane (IV) include dimethylchlorosilane, diethylchlorosilane, diphenylchlorosilane, and divinylchlorosilane. The amount of chlorosilane (IV) to be used is preferably about 2 to 10 times the mole, particularly 2 to 4 times, and more preferably about 3 times the mole of the cyclic silicone (I[I).

また、触媒として用いられる無機固体化合物としては、
反応溶液に不溶性で、かつ均一に分散するものが好まし
く、例えばシリカゲル、二酸化チタン、シリカ・アルミ
ナ等が挙げられる。これらのうち、特にシリカゲルが好
ましく用いられる。
In addition, inorganic solid compounds used as catalysts include:
Those that are insoluble and uniformly dispersed in the reaction solution are preferred, such as silica gel, titanium dioxide, silica/alumina, and the like. Among these, silica gel is particularly preferably used.

無機固体化合物の使用量は、環状シリコーン(III)
とクロロシラン(rV)との反応性に応じて適宜選択さ
れるが、環状シリコーン(III)に対して1〜50重
量%の範囲であることが好ましい。
The amount of inorganic solid compound used is cyclic silicone (III)
The amount is appropriately selected depending on the reactivity of the silicone and chlorosilane (rV), but it is preferably in the range of 1 to 50% by weight based on the cyclic silicone (III).

更に、水は原fll1として化学量論的過剰量使用され
る。すなわち環状シリコーン(III)に対して1〜5
00倍モル、特に5〜20倍モルの範囲の使用量が好ま
しい。
Furthermore, water is used in stoichiometric excess as raw flll1. That is, 1 to 5 for cyclic silicone (III)
The amount used is preferably in the range of 00 times the mole, particularly 5 to 20 times the mole.

反応溶媒は使用してもしなくてもよいが、環状シリコー
ンとして常温で固体であるヘキサメチルシクロトリシロ
キサンを用いる場合は反応を円滑に進めるために用いる
のが好ましい。用いられる溶媒としては、ペンタン、ヘ
キサン、ヘブタン、ベンゼン、トルエン等の水と混じり
合わない炭化水素系溶媒が挙げられる。
A reaction solvent may or may not be used, but when hexamethylcyclotrisiloxane, which is solid at room temperature, is used as the cyclic silicone, it is preferably used to facilitate the reaction. Examples of the solvent used include hydrocarbon solvents that are immiscible with water, such as pentane, hexane, hebutane, benzene, and toluene.

本反応は、環状シリコーン(■)、無機固体化合物及び
水の混合物中にクロロシラン(rV)を添加することに
より行なうのが好ましい。反応時間は環状シリコーン(
III)の反応性によっても異なるが、通常、クロロシ
ラン(IV)添加後室温条件下で1〜5時間で終了する
。得られた反応液を常圧下、好ましくは減圧下に蒸留し
て未反応の環状シリコーン及びクロロシランを分離する
ことにより、αω−ジハイド口ジェンオルガノポリシロ
キサン(I)が得られる。
This reaction is preferably carried out by adding chlorosilane (rV) to a mixture of the cyclic silicone (■), the inorganic solid compound, and water. The reaction time is cyclic silicone (
Although it varies depending on the reactivity of III), the reaction is usually completed in 1 to 5 hours at room temperature after addition of chlorosilane (IV). The resulting reaction solution is distilled under normal pressure, preferably under reduced pressure to separate unreacted cyclic silicone and chlorosilane, thereby obtaining αω-dihydrogenorganopolysiloxane (I).

また、かくして得られたα.ω−ジハイドロジエンオル
ガノポリシロキサンをシランジオールに変換し、クロロ
シラン(IV)を反応させてシロキサン単位を2個延長
するという工程を繰り返すことにより、より長鎖のα.
ω−ジハイド口ジエンオルガノポリシロキサン(1)を
得ることもできる。n’=7以上の環状シリコーンは入
手困難なため、目的物が艮鎖である場合にはこの方法が
有効である。
Also, α obtained in this way. By repeating the process of converting ω-dihydrodiene organopolysiloxane into silane diol and reacting with chlorosilane (IV) to extend the siloxane unit by two, a longer chain α.
It is also possible to obtain ω-dihydride diene organopolysiloxane (1). Since cyclic silicones with n'=7 or more are difficult to obtain, this method is effective when the object is a chain.

[実施例] 以下、実施例を挙げて更に詳細に説明するが、本発明は
これらに限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail by giving examples, but the present invention is not limited thereto.

製造例1 滴下ロートを備えたIAフラスコにヘキサメチルシクロ
トリシロキサン100g,ヘキサン100g,水81g
及びシリカゲル(メルク社製キーゼルゲル60,250
〜400メッシュ) 5.0gを装入した。フラスコを
水冷し、充分な攪拌を行ないながら、ジメチルク口ロシ
ラン127.7gを30分かけて滴下した。30分後フ
ラスコを室温に戻し、攪拌を継続した。1時間後、攪往
を停止し、シリカゲルをろ過した。得られたろ岐から過
剰のジメチルクロロシランを留去した後、分液ロートに
移し、200ml1の水で2回、200ml2の飽和炭
酸水素ナトリウム水溶液で1回、更に200mQの水で
2回洗浄した。ベンゼンとの共沸により溶液中の水を完
全に除去した後、減圧蒸留して1.9〜ジハイドロジエ
ンデカメチルペンタシロキサン137.3gを得た(収
率85.5%)o原料のヘキサメチルシクロトリシロキ
サンは全て反応していた。
Production Example 1 In an IA flask equipped with a dropping funnel, 100 g of hexamethylcyclotrisiloxane, 100 g of hexane, and 81 g of water were added.
and silica gel (Merck Kieselgel 60, 250)
~400 mesh) 5.0 g was charged. The flask was cooled with water, and 127.7 g of dimethylsiloxane was added dropwise over 30 minutes while stirring thoroughly. After 30 minutes, the flask was returned to room temperature and stirring was continued. After 1 hour, stirring was stopped and the silica gel was filtered. After distilling off excess dimethylchlorosilane from the obtained filter, it was transferred to a separating funnel and washed twice with 200 ml of water, once with 200 ml of saturated aqueous sodium bicarbonate solution, and twice with 200 mQ of water. After completely removing water in the solution by azeotroping with benzene, it was distilled under reduced pressure to obtain 137.3 g of 1.9-dihydrodiene decamethylpentasiloxane (yield 85.5%). All of the methylcyclotrisiloxane had reacted.

b.p,  57℃70.5mmHg MS :  355(M”−1), 341(M”−1
5)I R :  2128cm−’ (SL−H)”
SL−NMR(重ベンゼン,TMS基準.δppm) 
:−6.73(1 .9−Si) −19.78(3 7−Si) −21.57(5−Si) ’H−NMR(重ベンゼン,CsHs δ=7.15基
準.δppm):0.16(s, 18H) 0.18(d  3Hz  128) 4.96 〜5.00(bs, 21{)製造例2 環状シリコーンとしてオクタメチルシクロテl・ラシロ
キサンを使用し、製造例1とほぼ同様にして1.11−
ジハイドロジェンドデカメチルヘキサシロキサンを得た
b. p, 57°C 70.5mmHg MS: 355 (M”-1), 341 (M”-1
5) IR: 2128cm-'(SL-H)"
SL-NMR (heavy benzene, TMS standard. δppm)
:-6.73 (1.9-Si) -19.78 (37-Si) -21.57 (5-Si) 'H-NMR (heavy benzene, CsHs δ=7.15 standard. δppm): 0.16 (s, 18H) 0.18 (d 3Hz 128) 4.96 ~ 5.00 (bs, 21{) Production Example 2 Using octamethylcyclotel/lasiloxane as the cyclic silicone, Production Example 1 In almost the same way as 1.11-
Dihydrogendodecamethylhexasiloxane was obtained.

b.p.  81’C/0.16mmHgMS :  
429(M”−1), 415(M“−15)! R 
:  2128cm−’ (Si−H)”Si−NMR
(重ベンゼン,TMS基準,δI)pr[l) :−6
.74(1 .11−Si) −19.81(3.9−Si) −2 1 . 62 (5 . 7−Si)’H−NM
R(重ベンゼン,C,H.δ=7.15基準,δppm
)0.18(s. 12H) 0.19(d, 2.1Hz, 12B)0.21(s
, 12H) 5.00(sept, 2.7Hz, 2H)製造例3 製造例4 4.96(sept,  2.7Hz,  2H)環状
シリコーンとしてデカメチルシクロベンタシロキサンを
使用し .′!A造例1とほぼ同様にして1.13−ジ
ハイド口ジエンテトラメチルヘブタシロキサンを得た。
b. p. 81'C/0.16mmHgMS:
429 (M”-1), 415 (M”-15)! R
: 2128cm-'(Si-H)"Si-NMR
(Heavy benzene, TMS standard, δI) pr[l): -6
.. 74(1.11-Si) -19.81(3.9-Si) -2 1. 62 (5.7-Si)'H-NM
R (heavy benzene, C, H. δ=7.15 standard, δppm
) 0.18 (s. 12H) 0.19 (d, 2.1Hz, 12B) 0.21 (s.
, 12H) 5.00 (sept, 2.7Hz, 2H) Production Example 3 Production Example 4 4.96 (sept, 2.7Hz, 2H) Using decamethylcyclobentasiloxane as the cyclic silicone. ′! 1.13-dihydride dienetetramethylhebutasiloxane was obtained in substantially the same manner as in Preparation Example 1.

b.p.  107℃/2.OmmHgMS :  4
89(M”−15) I R :  2128cm−’ (Si−H)”SL
−NMR(重ベンゼン,TMS基準,δppm) :−
6.75(1.13−Si) −19.83(3.11−SL) −21.64(5.7 9−Si) ’H −NMR (重ベンゼン, TMS基/$1δp
pm) :0.16(s, 12H) 0.19(d, 2.71{z, 12H)0.20(
s. 12H) 0.21(s, 6H) 環状シリコーンとしてドデヵメチルシク口ヘキサシロキ
サンを使用し、製造例1とほぼ同様にして1.15−ジ
ハイドロジエンへキサデヵメチルオククシロキサンを得
た。
b. p. 107℃/2. OmmHgMS: 4
89(M"-15) I R: 2128cm-'(Si-H)"SL
-NMR (heavy benzene, TMS standard, δppm): -
6.75(1.13-Si) -19.83(3.11-SL) -21.64(5.7 9-Si) 'H-NMR (Heavy benzene, TMS group/$1δp
pm) :0.16(s, 12H) 0.19(d, 2.71{z, 12H) 0.20(
s. 12H) 0.21(s, 6H) 1.15-dihydrodiene hexadecamethylocucsiloxane was obtained in substantially the same manner as in Production Example 1, using dodecamethylocucsiloxane as the cyclic silicone.

b.p,  105℃70.14mmHgMS :  
563(M“−15) I R :  2132cm−’ (Si−H)”St
 −NMR (重ベンゼン, TMS基準,δppm)
 :−6.68(1 . 15−SL) −19.76(3.13−Si) −21.58(5.11−SL) −21.60(7.9−Si) ’H −NMR (重ベンゼン.C.H6 δ=7.1
5基準.δppmIO.1?(s, 12H) 0.19(d, 2.8Hz. 12H)製造例5 0.21(s,12H) 0.22(s,12H) 4.97(sept,  2.8Hz,  2H)製造
例6 0.16(s.12H) 0.18(d,2.7Hz.12H) 0.20(s.  18}1) 0.21(s,12H) 4.95(Sept,2.7}1z,2}1)環状シリ
コーンとしてテトラデ力メチルシク口ヘブタシロキサン
を使用し、製造例1とほぼ同様にして117−ジハイド
口ジェンオクタデカメチルノナシロキサンを得た。
b. p, 105℃70.14mmHgMS:
563(M"-15) I R: 2132cm-'(Si-H)"St
-NMR (heavy benzene, TMS standard, δppm)
: -6.68 (1.15-SL) -19.76 (3.13-Si) -21.58 (5.11-SL) -21.60 (7.9-Si) 'H -NMR ( Heavy benzene.C.H6 δ=7.1
5 criteria. δppmIO. 1? (s, 12H) 0.19 (d, 2.8Hz. 12H) Production Example 5 0.21 (s, 12H) 0.22 (s, 12H) 4.97 (sept, 2.8Hz, 2H) Production Example 6 0.16(s.12H) 0.18(d,2.7Hz.12H) 0.20(s.18}1) 0.21(s,12H) 4.95(Sept,2.7}1z , 2}1) 117-dihydeoctadecamethylnonasiloxane was obtained in substantially the same manner as in Production Example 1 using tetradecamethylsiloxane as the cyclic silicone.

b.p.  109°C /0 , 14mm HgM
S :  637 (M”−15) I R :  2128cm−’ (SL−H)”Si
−NMR(重ベンゼン, TMS基準.δpptn) 
:−6.68(1.17−Si) ’H −NMR (重ベンゼン,ctos δ=7. 
15基準,δppQl):環状シリコーンとしてヘキサ
デ力メチルシクロオクタシロキサンを使用し、製造例1
とほぼ同様にして1,l9−ジハイド口ジエンエイコサ
メチルデカシロキサンを得た。
b. p. 109°C/0, 14mm HgM
S: 637 (M"-15) IR: 2128cm-'(SL-H)"Si
-NMR (heavy benzene, TMS standard. δpptn)
:-6.68(1.17-Si)'H-NMR (heavy benzene, ctos δ=7.
15 standard, δppQl): Using hexadelytic methylcyclooctasiloxane as the cyclic silicone, Production Example 1
1,19-dihyde dieneicosamethyldecasiloxane was obtained in substantially the same manner as above.

b.p  136℃/0.014mmHgM S : 
 711(M”−15) I R :  2134cm−” (Si−H)”SL
−NMR(重ベンゼン,TMS基準.δppm) :−
6.65(1 . 19−Si) ”I{−NMR(重ベンゼン.CmHs δ=7.15
基準,δppm):0.17(s,  12}!) 0.19(d,3Hz,12H) 0.21(s.  12H) 0.23(s,  24H) 4.99(Sept,3}1z,2H)実施例1 虹 四塩化炭素84帷及び塩化パラジウム0.15gを、ア
ルゴン置換した200mlフラスコに装入した。水冷下
、充分に攪拌を行ないながら1.9−ジハイドロジエン
デカメチルベンタシロキサン30gを1時間かけて滴下
した。滴下終了後、室温に戻して2時間攪拌を継続した
。次いで、析出したパラジウム金属をろ過し、得られた
ろ液から四塩化炭素を留去した。得られた液体を減圧蒸
留し、1.9−ジクロ口デカメチルペンタシロキサン2
7gを得た(収率75.3%)。
b. p 136℃/0.014mmHgMS:
711 (M”-15) I R: 2134cm-” (Si-H)”SL
-NMR (heavy benzene, TMS standard. δppm): -
6.65 (1.19-Si) "I{-NMR (heavy benzene.CmHs δ=7.15
Standard, δppm): 0.17 (s, 12}!) 0.19 (d, 3Hz, 12H) 0.21 (s. 12H) 0.23 (s, 24H) 4.99 (Sept, 3} 1z , 2H) Example 1 84 strips of carbon tetrachloride and 0.15 g of palladium chloride were placed in a 200 ml flask purged with argon. While cooling with water and thoroughly stirring, 30 g of 1,9-dihydrodiene decamethylbentasiloxane was added dropwise over 1 hour. After the dropwise addition was completed, the temperature was returned to room temperature and stirring was continued for 2 hours. Next, the precipitated palladium metal was filtered, and carbon tetrachloride was distilled off from the obtained filtrate. The obtained liquid was distilled under reduced pressure to obtain 1,9-dichlorodecamethylpentasiloxane 2
7 g was obtained (yield 75.3%).

b.p.  72℃70.22mmHgMS  :  
El  409(M”−15); CI  442(l
J”+NH4)I R :  465cm−’ (Si
−CQ)”Si−NMR(重ベンゼン,TMS基準,δ
ppm) :3.87(1.9−Si) −18.83(3.7−Si) −20.97(5−SL) ’H −NMR (重ベンゼン,CaHs δ=7.1
5基準.δppm)0.13(s,18H) 0.32(s,12H) 実施例2 四塩化炭素100mR,塩化パラジウム0.16g及び
1l1−ジハイドロジェンドデ力メチルヘキサシロキサ
ン20gを用いた以外は実施例1と同様にして、l,1
1−ジクロロドデ力メチルヘキサシロキサン18 . 
9gを得た(収率81%)。
b. p. 72℃70.22mmHgMS:
El 409 (M"-15); CI 442 (l
J"+NH4)IR: 465cm-' (Si
-CQ)"Si-NMR (heavy benzene, TMS standard, δ
ppm) :3.87(1.9-Si) -18.83(3.7-Si) -20.97(5-SL) 'H-NMR (Heavy benzene, CaHs δ=7.1
5 criteria. δppm) 0.13 (s, 18H) 0.32 (s, 12H) Example 2 Example except that 100 mR of carbon tetrachloride, 0.16 g of palladium chloride, and 20 g of 1l1-dihydrogendomethylhexasiloxane were used. Similarly to 1, l,1
1-dichlorododemethylhexasiloxane 18.
9 g was obtained (yield 81%).

b.p.  94℃/0.1n+mHgMS  :  
El  483(Mゝ−15),Cl  516(M”
+NH.)I  R  :  466cm−’ (Si
−CI2)”Si−NMR(重ベンゼン,TMS基準.
δppm) :3.87(1.11−Si) −18.83(3.9−Si) −20.97(5.7−Si) 1}1 −NMR (重ベンゼン,C.H,δ=’!.
15基準,δppm):0.13(s,  121{) 0.14(s,  !2H) 0.33(s,  12H) 実施例3 土工jし【暖二 四塩化炭素100ml2 、塩化パラジウム0.14g
及び113−ジハイドロジエンテトラデ力メチルヘブタ
シロキサン20gを用いた以外は実施例1と同様にして
、1.13−ジクロロテトラデ力メチルヘブタシロキサ
ン18.1gを得た(収率80%)。
b. p. 94℃/0.1n+mHgMS:
El 483 (Mゝ-15), Cl 516 (M”
+NH. )IR: 466cm-' (Si
-CI2)”Si-NMR (heavy benzene, TMS standard.
δppm) :3.87(1.11-Si) -18.83(3.9-Si) -20.97(5.7-Si) 1}1 -NMR (Heavy benzene, C.H, δ= '!.
15 standard, δppm): 0.13 (s, 121{) 0.14 (s, !2H) 0.33 (s, 12H) Example 3 Earthworks [warm carbon ditetrachloride 100ml2, palladium chloride 0. 14g
18.1 g of 1,13-dichlorotetrademethylhebutasiloxane was obtained in the same manner as in Example 1 except that 20 g of 113-dihydrodienetetrademethylhebutasiloxane was used (yield: 80%). ).

b.p,  102℃/0,13mmHgMS  : 
 El  557(M”−15),CI  590(M
”+NH4)I  R  :  466cm−’ (S
t−CI2)”SL−NMR(lベンゼン, TMS基
準,δppm) :3.92(1.13−Si) −18.83(3.11−Si) −21.05(5.9−Si) −21.41(7−Si) ’H−NMR(重ベンゼン,C8H.δ=7.15基準
,δppm)0.20(s,30H) 0.32(s,  121) 実施例4 1,15−ジクロロへキサデカメチルオクタシロキサ四
塩化炭素5 2 ml2、塩化パラジウム0 . 09
g及びll5−ジハイドロジエンへキサデカメチルオク
タシロキサン30gを用いた以外は実施例1と同様にし
て、1.15−ジクロロへキサデ力メチルオクタシロキ
サン25gを得た(収率745%)。
b. p, 102℃/0.13mmHgMS:
El 557 (M”-15), CI 590 (M
”+NH4)I R: 466cm-' (S
t-CI2)" SL-NMR (1 benzene, TMS standard, δppm): 3.92 (1.13-Si) -18.83 (3.11-Si) -21.05 (5.9-Si) -21.41(7-Si)'H-NMR (heavy benzene, C8H. δ=7.15 standard, δppm) 0.20 (s, 30H) 0.32 (s, 121) Example 4 1,15 -dichlorohexadecamethyloctasiloxa carbon tetrachloride 52 ml2, palladium chloride 0.09
25 g of 1,15-dichlorohexadecamethyloctasiloxane was obtained in the same manner as in Example 1, except that 30 g of 1,15-dichlorohexadecamethyloctasiloxane was used (yield: 745%).

b.p.  121℃70.2mml{gMS  : 
 El  631(M“−15),Cl  666(M
”+NH4)I R  :  465cm−’ (St
−Cfl)”Si−NMR(重ベンゼン, TMS基準
.δppm) :3.89(1.15−Si) −18.83(3.13−Si) −21.05(5.11−Si) −21.41(7.9−SL) ’H−NMR(重ベンゼン,CaHs δ=7.15基
準,δppm)0.19(s,  12H) 0.20(bs  24H) 0.35(s,12}1) 実施例5 四塩化炭素50ml! ,塩化パラジウム0.054g
及び117−ジハイド口ジェンオクタデカメチルノナシ
ロキサン10gを用いた以外は実施例1と同様にして、
117−ジクロロオクタデカメチルノナシロキサン9.
4gを得た(収率85%)。
b. p. 121°C 70.2 mml {gMS:
El 631 (M“-15), Cl 666 (M
”+NH4)IR: 465cm-' (St
-Cfl)"Si-NMR (heavy benzene, TMS standard. δppm): 3.89 (1.15-Si) -18.83 (3.13-Si) -21.05 (5.11-Si) - 21.41 (7.9-SL) 'H-NMR (heavy benzene, CaHs δ=7.15 standard, δppm) 0.19 (s, 12H) 0.20 (bs 24H) 0.35 (s, 12 }1) Example 5 Carbon tetrachloride 50ml!, Palladium chloride 0.054g
and 117-dihydride, except that 10 g of octadecamethylnonasiloxane was used,
117-dichlorooctadecamethylnonasiloxane9.
4 g was obtained (85% yield).

b.p,  116℃/2.4X 10−’mn+l{
gMS  :  EI  705(M”−15),Cl
  740(M“+NH.)I  R  :  466
cm−’ (SL−CQ)”Si−NMR(重ベンゼン
,TMS基準,δppm) :3.97(1.17−S
L) −18.76(3.15−SL) −20.99(5.13−SL) −21.38(7.11−Si) 一21.44(9−Si) ’H −NMR (重ベンゼン,C,H,δ=7.15
基準.δppm):0.20(bs,42H) 0.35(s.12H) 実施例6 四塩化炭素23.4mffi、塩化パラジウム0 . 
042g及び1.19−ジハイドロジェンエイコサメチ
ルデカシロキサン16.7gを用いた以外は実施例1と
同様にして、1.19−ジクロロエイコサメチルデカシ
ロキサン11.8gを得た(収率63.1%)。
b. p, 116℃/2.4X 10-'mn+l{
gMS: EI 705 (M"-15), Cl
740 (M"+NH.)I R: 466
cm-'(SL-CQ)"Si-NMR (heavy benzene, TMS standard, δppm): 3.97 (1.17-S
L) -18.76 (3.15-SL) -20.99 (5.13-SL) -21.38 (7.11-Si) -21.44 (9-Si) 'H -NMR (Heavyweight Benzene, C, H, δ=7.15
standard. δppm): 0.20 (bs, 42H) 0.35 (s. 12H) Example 6 Carbon tetrachloride 23.4 mffi, palladium chloride 0.
11.8 g of 1.19-dichloroeicosamethyldecasiloxane was obtained in the same manner as in Example 1 except that 16.7 g of 042 g and 1.19-dihydrogeneicosamethyldecasiloxane were used (yield 63 .1%).

MS :  El  749(M”−15).  CI
 814(M”+NH4)I  R  :  465c
m−’ (SL−Cll)”Si−NMR(重ベンゼン
, TMS基準.δppm) :3.79(1.19−
SL) −18.89(3.17−Si) −21.13(5.15−Si) −21.52(7.13−Si) −21.59(9.11−Si) ”H −NMR (fflベンゼン,C,}Ia δ=
7.15基準.δm)pm)0.20(s,24H) 0.21(s,12}1) 0.22(s,12H) 0.35(s,12H) [発明の効果] 以上のように、本発明によればシリコーン中間体として
有用な、鎖長に分布のないα.ω−ジクロロオルガノボ
リシロキサンが簡便な反応操作により、高収率で得られ
る。
MS: El 749 (M"-15). CI
814(M”+NH4)IR: 465c
m-'(SL-Cll)"Si-NMR (heavy benzene, TMS standard. δppm): 3.79 (1.19-
SL) -18.89(3.17-Si) -21.13(5.15-Si) -21.52(7.13-Si) -21.59(9.11-Si) "H-NMR (fflbenzene, C, }Ia δ=
7.15 Standards. δm)pm) 0.20(s, 24H) 0.21(s, 12}1) 0.22(s, 12H) 0.35(s, 12H) [Effects of the Invention] As described above, the present invention According to α., which has no distribution in chain length and is useful as a silicone intermediate. ω-Dichloroorganoborisiloxane can be obtained in high yield through simple reaction operations.

以上 b.p 150℃70.02帥Hgthat's all b. p 150℃70.02cmHg

Claims (2)

【特許請求の範囲】[Claims] (1)次の一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、R^1及びR^2は同一でも異なってもよい水
素原子、アルキル基、アルケニル基、アリール基または
ハロゲノアルキル基を示し、nは3〜10の整数を示す
) で表わされるα,ω−ジハイドロジェンオルガノポリシ
ロキサンを、金属塩化物の存在下、四塩化炭素と反応さ
せることを特徴とする次の一般式(II) ▲数式、化学式、表等があります▼(II) (式中、R^1、R^2及びnは上記と同じ意味を示す
) で表わされるα,ω−ジクロロオルガノポリシロキサン
の製造法。
(1) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R^1 and R^2 may be the same or different, a hydrogen atom, an alkyl group, an alkenyl group, aryl group or halogenoalkyl group, n is an integer of 3 to 10) is reacted with carbon tetrachloride in the presence of a metal chloride. The following general formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, R^1, R^2 and n have the same meanings as above) α, ω- Method for producing dichloroorganopolysiloxane.
(2)金属塩化物が塩化パラジウムである請求項1記載
の製造法。
(2) The manufacturing method according to claim 1, wherein the metal chloride is palladium chloride.
JP1234248A 1989-09-08 1989-09-08 Production method of α, ω-dichloroorganopolysiloxane Expired - Fee Related JP2610519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234248A JP2610519B2 (en) 1989-09-08 1989-09-08 Production method of α, ω-dichloroorganopolysiloxane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234248A JP2610519B2 (en) 1989-09-08 1989-09-08 Production method of α, ω-dichloroorganopolysiloxane

Publications (2)

Publication Number Publication Date
JPH0395190A true JPH0395190A (en) 1991-04-19
JP2610519B2 JP2610519B2 (en) 1997-05-14

Family

ID=16967994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234248A Expired - Fee Related JP2610519B2 (en) 1989-09-08 1989-09-08 Production method of α, ω-dichloroorganopolysiloxane

Country Status (1)

Country Link
JP (1) JP2610519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010928A (en) * 2022-08-01 2022-09-06 汕头市深泰新材料科技发展有限公司 Method for preparing linear polysiloxane by ring opening of cyclic siloxane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010928A (en) * 2022-08-01 2022-09-06 汕头市深泰新材料科技发展有限公司 Method for preparing linear polysiloxane by ring opening of cyclic siloxane

Also Published As

Publication number Publication date
JP2610519B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP2612991B2 (en) Method for chlorinating silicon compounds
JPH0559072A (en) Olefinic and acetylenic azasilacyclopentane and preparation thereof
JPH0395190A (en) Production of alpha,omega-dichloroorganopolysiloxane
JPS6222790A (en) Production of tertiary hydrocarbonsilyl compound
JPH09100352A (en) Polysiloxane and its production
JP3606613B2 (en) Low polymerization degree organopolysiloxane production method
JPH0436292A (en) Alkoxysilane
JPH04182491A (en) Organosilicon compound and production thereof
JPS6312636A (en) Dimethylphenylsilylmethylpolysilane and production thereof
JP2585099B2 (en) Method for producing α, ω-dihydrogen organopolysiloxane
JPH064699B2 (en) 1,2,2-Trimethyl-1-phenylpolydisilane and method for producing the same
JP2528471B2 (en) Method for producing dichlorosilanes
JP2652888B2 (en) Method for producing α-chloro-ω-hydrogen organopolysiloxane
JPH082911B2 (en) 1,3-Bis (p-hydroxybenzyl) -1,1,3,3-tetramethyldisiloxane and method for producing the same
JPH03263431A (en) Silicon-containing dendrimer
JPH09227685A (en) Novel fluorine-modified silicone
JP7350253B2 (en) Bishaloalkylsiloxane compound and method for producing the same, and method for producing a siloxane compound having both terminal functionalities
JPH0188A (en) Method for producing dichlorosilanes
JPH0559071A (en) Allylcyclosilalactam
JPS62263189A (en) Production of diaryldihalosilane
JPH0710886A (en) Production of dicyclopentyldichlorosilane
JP4891536B2 (en) Method for producing aminoaryl group-containing organosilicon compound, and method for producing an intermediate thereof
JP2805393B2 (en) Method for producing linear silicone
JPS6039079B2 (en) Method for manufacturing disilanes
JP2512348B2 (en) Butadienyl group-containing siloxane compound and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees