JPH0394265A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0394265A
JPH0394265A JP23035389A JP23035389A JPH0394265A JP H0394265 A JPH0394265 A JP H0394265A JP 23035389 A JP23035389 A JP 23035389A JP 23035389 A JP23035389 A JP 23035389A JP H0394265 A JPH0394265 A JP H0394265A
Authority
JP
Japan
Prior art keywords
layer
photosensitive
intermediate layer
layers
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23035389A
Other languages
Japanese (ja)
Inventor
Tetsushi Otomura
哲史 乙村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP23035389A priority Critical patent/JPH0394265A/en
Publication of JPH0394265A publication Critical patent/JPH0394265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain excellent basic characteristics, high quality stability and high durability and to allow the inexpensive formation by providing an A1 layer of the film thickness at which the average spectral transmittance in a visible region corresponds to a specific value and further an intermediate layer having a specific substantial volume resistance thereon, and then laminating photosensitive layers consisting of >=1 layers thereon. CONSTITUTION:The A1 layer of the film thickness at which the average spectral transmittance in the visible region corresponds to <=3%, the intermediate layer having >=10<6>OMEGA.cm substantial volume resistance and the photoconductive insulating layers consisting of >=1 layers are successively provided on a supporting base body. This A1 layer has the effect of enhancing the effective sensitivity by efficiently reflecting the incident light to the photosensitive body to the photosensitive body layer side. The intermediate layer thereon enhances the adhesiveness to the photosensitive layer and improves the potential holdability. The photosensitive member which has the excellent basic characteristics and the high durability and is relatively inexpensive is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] [産業上の利用分野] 本発明は、電子写真感光体の改良に関する。[Detailed description of the invention] [Industrial application field] [Industrial application field] The present invention relates to improvements in electrophotographic photoreceptors.

[従来の技術] 一般に、ゼログラフィと呼ばれる電子写真法では、金属
または金属皮膜か導電塗料で導電層を設けたガラス、プ
ラスチック、紙等の支持基体表面に光導電性絶縁層(以
下感光層)を設けた感光部材が用いられる。
[Prior Art] Generally, in an electrophotographic method called xerography, a photoconductive insulating layer (hereinafter referred to as a photosensitive layer) is formed on the surface of a supporting substrate such as glass, plastic, paper, etc., on which a conductive layer is provided with a metal, a metal film, or a conductive paint. A photosensitive member is used.

支持基体の材料と形態は感光材料の特性や製造方法によ
り適宜選ばれる。感光部材がドラム状の場合は基体とし
てAlかA1合金がよく用いられる。シート状とする場
合には表面に金属被覆したプラスチックフィルムが多く
用いられる。とりわけA1を被覆(メタライジング)し
たポリエチレンテレフタレート(以下PET)フィルム
は、有機感光体(以下OPC)の支持基体として広く用
いられている。
The material and form of the supporting substrate are appropriately selected depending on the characteristics of the photosensitive material and the manufacturing method. When the photosensitive member is drum-shaped, Al or A1 alloy is often used as the substrate. When forming into a sheet, a plastic film whose surface is coated with metal is often used. In particular, a polyethylene terephthalate (hereinafter PET) film coated with A1 (metallized) is widely used as a support substrate for an organic photoreceptor (hereinafter referred to as OPC).

A1が電極の導電性材料として広く用いられている理由
は、比較的容易にフィルム上に皮膜形成できること、お
よびAlが感光層との界面に一定の整流性を作り易く、
電気特性を損わずに高い受容電位が得られることによる
The reason why Al is widely used as a conductive material for electrodes is that it is relatively easy to form a film on a film, and Al easily creates a certain rectification property at the interface with the photosensitive layer.
This is because a high acceptance potential can be obtained without impairing electrical characteristics.

OPCの代表的な形態として、電極側に電荷発生層、そ
の上に電荷輸送層を積層したいわゆる多層・機能分離型
のものが挙げられる。すなわち、基本的に、絶縁性基体
、A1層、電荷発生層、電荷輸送層、の順に積層して或
る構成は、電子写真用感光体として、現在最も広く採用
されている形態の一つである。
A typical form of OPC is a so-called multilayer/functionally separated type in which a charge generation layer is laminated on the electrode side and a charge transport layer is laminated thereon. That is, basically, a structure in which an insulating substrate, an A1 layer, a charge generation layer, and a charge transport layer are laminated in this order is one of the most widely used forms for electrophotographic photoreceptors at present. be.

上記の基本構成に加えて、さらに感光層一機能分離型の
場合には電荷発生層一と電極との間に中間層を設けるこ
とも屡々行われる。かかる中間層は、感光層の接着性を
高め、また電位保持性を良好にし、さらには電極表面に
発生しうる種々の欠陥を隠蔽して画質の改善に寄与する
ことのいずれかで、感光部材の性能と信頼性を高める。
In addition to the above-mentioned basic structure, in the case of a type in which one function of the photosensitive layer is separated, an intermediate layer is often provided between the charge generating layer and the electrode. Such an intermediate layer enhances the adhesion of the photosensitive layer, improves the potential retention, and furthermore contributes to improving the image quality by hiding various defects that may occur on the electrode surface. improve performance and reliability.

入射光にレーザービームを用いる装置では、感光層と中
間層との界面に、その干渉を抑える拡散層としての機能
を持たせることもある。いずれにしても、電子写真感光
体における中間層は、今や常套的な層措成の一部である
In devices that use a laser beam as incident light, the interface between the photosensitive layer and the intermediate layer may function as a diffusion layer to suppress interference. In any case, intermediate layers in electrophotographic photoreceptors are now part of a conventional layer configuration.

ところで、多層・機能分離型oPcの前記電荷輸送層は
、一般に、スチルベン系やヒドラゾン系の正孔移動物質
をボリマー中に相溶したものから成る。有機化合物で実
用上有効な電子移動性を示す材料は見出されていないた
め、機能分離型のOPCは、通常負帯電で用いられる。
By the way, the charge transport layer of the multilayer/functionally separated OPC is generally made of a polymer in which a stilbene-based or hydrazone-based hole transport substance is dissolved. Since no organic compound has been found that exhibits practically effective electron mobility, functionally separated OPCs are usually used with negative charges.

本発明者は、Alを含むいくつかの金属が、とりわけ負
帯電で用いる感光体の電極として重大な欠点を持つこと
を見出し、そのいくつかの解決を本発明に先立って提示
した。
The present inventors have found that some metals including Al have serious drawbacks, particularly as electrodes for photoreceptors used for negative charging, and have proposed some solutions to these problems prior to the present invention.

即ち、Al電極は帯電・露光の反復により徐々に陽極酸
化され、究極的には酸化物の絶縁性薄膜となってその機
能を失う。電極が光を透過するほど薄い時、酸化の進行
の速さは感光体の耐久性によって無視し得ない程度にな
る。ちなみに、感光部材を光透過性とし裏面からの効率
よい光除電を利用する技術の利点は既に広く知られてい
る。先の発明の一つでは、Ni基、Fe基、Co基の耐
酸化性合金がとりわけoPC用透明電極材料として良好
である旨を提示している。
That is, the Al electrode is gradually anodized by repeated charging and exposure, and ultimately becomes an insulating thin film of oxide and loses its function. When the electrode is thin enough to transmit light, the speed of oxidation will be negligible depending on the durability of the photoreceptor. Incidentally, the advantages of the technique of making the photosensitive member transparent and utilizing efficient photostatic charge removal from the back side are already widely known. One of the previous inventions proposes that Ni-based, Fe-based, and Co-based oxidation-resistant alloys are particularly good as transparent electrode materials for OPC.

しかし、これらの耐酸化性合金がなおいくつかの欠点を
持つことも事実である。その一つは、これらの合金の表
面反射率の低さにある。Alが反射鏡の表面形威に用い
られる程高反射性であるのに比して、上記合金の表面は
黒っぽい。
However, it is also true that these oxidation-resistant alloys still have some drawbacks. One of these is the low surface reflectance of these alloys. In contrast to Al, which is highly reflective enough to be used for the surface shape of a reflector, the surface of the above alloy is blackish.

従って、それを電極とした感光体の光の利用効率(結果
的には感度)は相対的に低いものとなる。他の欠点の一
つは、高い製造原価にある。
Therefore, the light utilization efficiency (and eventually the sensitivity) of a photoreceptor using this as an electrode is relatively low. One of the other drawbacks lies in the high manufacturing costs.

合金の薄膜形成はスバッタによらなければならず、A1
蒸着よりも生産性に劣る。また、合金の材料であるNi
..CoSCr、Mo等は希少資源であり高価である。
Thin film formation of the alloy must be done by sputtering, and A1
Productivity is lower than vapor deposition. In addition, Ni, which is the material of the alloy,
.. .. CoSCr, Mo, etc. are rare resources and expensive.

従って、光透過性を犠牲にしても、高感度と高耐久性を
具えかつ安価な、Alを電極材料とする感光部材を開発
することは、高性能で高耐久、かつ低コストの、電子複
写機やプリンターを開発する上で、依然としてその意義
は極めて大きい。
Therefore, it is important to develop a photosensitive member using Al as an electrode material, which has high sensitivity, high durability, and is inexpensive even if it sacrifices optical transparency. It remains extremely significant in the development of machines and printers.

本発明者が鋭意検討した結果、前述の中間層を設けた感
光部材においては、Alを電極材料とする場合に、中間
層の電気的条件とAl電極の膜厚との関係が、原理的な
感光部材の寿命を決定するとの知見を得るに至った。
As a result of intensive studies by the present inventors, in the photosensitive member provided with the above-mentioned intermediate layer, when Al is used as the electrode material, the relationship between the electrical conditions of the intermediate layer and the film thickness of the Al electrode is in principle. We have come to the conclusion that this determines the lifespan of photosensitive members.

電子写真用感光体−とりわけ、いわゆるOPCにおいて
、性能、耐久性、コスト等に関して、中間層の存在とA
l電極の価値は明白であり、従ってその望ましい構成上
の関係を明らかにすることは、結局、高性能で耐久性に
優れ、かつ低原価の電子複写機やプリンターを開発をす
る上で、最も重要な技術事項であり社会的に急務な事項
でもある。
Photoreceptors for electrophotography - In particular, in so-called OPC, the presence of an intermediate layer and A
The value of the l electrode is obvious, and identifying its desirable structural relationships is ultimately the most important step in developing high-performance, durable, and low-cost electronic copiers and printers. This is an important technical matter and an urgent social issue.

[発明が解決しようとする課題] 本発明は、以上の事情に鑑みて、優れた基本特性と高い
品質安定性、及び高耐久性を有し、しかも比較的安価な
、Al電極と中間層を有する、電子写真用感光体を提供
しようとするものである。
[Problems to be Solved by the Invention] In view of the above circumstances, the present invention provides an Al electrode and an intermediate layer that have excellent basic characteristics, high quality stability, and high durability, and are relatively inexpensive. An object of the present invention is to provide an electrophotographic photoreceptor having the following characteristics.

[課題を解決するための手段] 上記課題は、支持基体表面に、可視域での平均分光透過
率が3%以下相当の膜厚のAl層と、さらにその上に実
質体積抵抗が106Ω・cam以上の中間層を設け、次
いで一層以上よりなる感光層を積層してなる電子写真感
光体によって解決された。
[Means for Solving the Problem] The above problem is solved by forming an Al layer on the surface of the supporting substrate with a thickness corresponding to an average spectral transmittance of 3% or less in the visible range, and further having an Al layer with a thickness equivalent to an average spectral transmittance of 3% or less in the visible range, and further having a substantial volume resistivity of 106 Ω·cam. The problem was solved by an electrophotographic photoreceptor formed by providing the above intermediate layer and then laminating one or more photosensitive layers.

上記感光体の構成のうち、まずAl層は、感光体への入
射光を効率よく感光体層側へ反射することで実効感度を
高める作用を有する。その上の中間層は、感光層の接着
性を高め、また電位保持性を良好にし、更には電極表面
に発生しうる種々の欠陥を隠蔽し画質の改善に寄与する
ことのいずれかで、感光部材の性能と信頼性を高める。
In the structure of the photoreceptor, the Al layer has the effect of increasing the effective sensitivity by efficiently reflecting light incident on the photoreceptor toward the photoreceptor layer. The intermediate layer on top of the photosensitive layer enhances the adhesion of the photosensitive layer, improves the potential retention, and also hides various defects that may occur on the electrode surface, contributing to the improvement of image quality. Improve component performance and reliability.

中間層は、接着性と電位保持性、および画像欠陥発生の
防止効果等を考慮すると、樹脂単独の層が良好である。
As for the intermediate layer, a layer made of resin alone is preferable in consideration of adhesion, potential retention, and the effect of preventing the occurrence of image defects.

中間層の体積抵抗が低くなると、電荷発生材料と電荷移
動材料の組合せが制限される。電荷発生層から電荷暢送
層への電荷注入性が高いと、高感度が得られやすい一方
で、電位保持性が比較的低く、その改善のために、ある
程度高抵抗の中間層を必要とするからである0その最適
抵抗値を簡便に計算する方法は存在しないが、発明者の
経験からその実質体積抵抗は、およそ106Ω・ell
である。この範囲内ならば中間層に種々の抵抗制御材料
、即ち、金属/炭素/インジウム、スズ、アンチモン等
の酸化物/電解質等を含有せしめてもよい。さらにはレ
ーザー光の干渉防止の機能を持たせるべく、金属/金属
の酸化物、珪化物、硫化物、フッ化物、水酸化物等/タ
ルク、クレイ、マイカ、珪藻上等の鉱物等の微粒子を分
散させてもよい。
The lower volume resistivity of the intermediate layer limits the combinations of charge generating materials and charge transport materials. If the charge injection property from the charge generation layer to the charge transport layer is high, it is easy to obtain high sensitivity, but the potential retention property is relatively low, and to improve this, an intermediate layer with a certain degree of high resistance is required. There is no easy way to calculate the optimal resistance value, but from the inventor's experience, the effective volume resistance is approximately 106Ω・ell.
It is. Within this range, the intermediate layer may contain various resistance controlling materials, such as metals/carbon/oxides of indium, tin, antimony, etc./electrolytes. Furthermore, in order to have the function of preventing laser light interference, fine particles of metals/metal oxides, silicides, sulfides, fluorides, hydroxides, etc./minerals such as talc, clay, mica, and diatoms are added. May be dispersed.

中間層の主材料としては、例えば、ポリビニルアルコー
ル、ポリビニルブチラール、ポリビニルアセタール、ポ
リアミド、ポリメチルメタアクリレート、ポリエステル
、カゼイン、ゼラチン、セルロース誘導体、エポキシレ
ジン、フェノールレジン、フエノキシレジン、アクリル
・スチレン共重合体、アクリル●スチレンψプタジエン
共重合体、ポリウレタン、ニトリルゴム、クロロプレン
ゴム等が挙げられる。
Main materials for the intermediate layer include, for example, polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, polyamide, polymethyl methacrylate, polyester, casein, gelatin, cellulose derivatives, epoxy resin, phenol resin, phenoxy resin, acrylic-styrene copolymer, Examples include acrylic/styrene ψ butadiene copolymer, polyurethane, nitrile rubber, and chloroprene rubber.

中間層の膜厚は厚くなるほど感光体の帯電時に該中間層
に分圧される電界も高くなり、結果的にいわゆる残留電
位が高くなるため、その厚さは、好ましくは1μm以下
、さらに好ましくは0.7μm以下である。
The thicker the intermediate layer, the higher the electric field applied to the intermediate layer when charging the photoreceptor, resulting in a higher so-called residual potential. Therefore, the thickness is preferably 1 μm or less, more preferably It is 0.7 μm or less.

Al電極層の膜厚は、電気的機能のみを考えると任意に
選び得る。しかし、実は、中間層の抵抗を前記の範囲に
した場合には、次に述べる理由で、その膜厚を、可視域
での平均分光透過率で3%以下相当とする必要がある。
The thickness of the Al electrode layer can be arbitrarily selected considering only the electrical function. However, in reality, when the resistance of the intermediate layer is set within the above range, the film thickness must be equivalent to an average spectral transmittance of 3% or less in the visible range for the following reasons.

Al電極が帯電・露光の反復により徐々に陽極酸化され
て、究極的には完全にその機能を失うことを前に述べた
。これは電気化学的反応ゆえに当然その反応速度は反応
部での電界強度に依存する。中間層を持つ感光体におい
ては、この電界強度は中間層の電気抵抗によって決まる
As mentioned above, the Al electrode is gradually anodized by repeated charging and exposure, and ultimately loses its function completely. Since this is an electrochemical reaction, the reaction rate naturally depends on the electric field strength in the reaction area. In photoreceptors with an intermediate layer, this electric field strength is determined by the electrical resistance of the intermediate layer.

かかる抵抗が低い場合には、電荷が中間層の横(ラテラ
ル)方向に移動しうるため電極・中間層界面にかかる電
界強度が減じられて結局陽極酸化が抑制される。逆に、
中間層の抵抗が高い場合、具体的には106Ω・elm
以上の場合にはAl電極層を少なくとも陽極酸化が回避
できる程度まで厚くする必要がある。A1電極層の、可
視域での平均分光透過率で3%相当の膜厚は、事実上そ
の限界に相当するものである。
When such resistance is low, charges can move in the lateral direction of the intermediate layer, thereby reducing the electric field strength applied to the electrode/intermediate layer interface and ultimately suppressing anodic oxidation. vice versa,
If the resistance of the intermediate layer is high, specifically 106Ω・elm
In the above cases, it is necessary to thicken the Al electrode layer at least to the extent that anodic oxidation can be avoided. The thickness of the A1 electrode layer corresponding to an average spectral transmittance of 3% in the visible region corresponds to its limit in fact.

感光材料は所望する諸特性を考慮して任意に選択されて
よいが、感度、特性制御の容易さ、量産性、安定性、耐
久性、安全性等を考えると有機材料を用いた機能分離型
のOPCが良好である。またそれは、本発明の利点を十
分に活用し得る感光材料でもある。
The photosensitive material may be arbitrarily selected in consideration of desired characteristics, but in consideration of sensitivity, ease of controlling characteristics, mass production, stability, durability, safety, etc., a functionally separated type using an organic material is recommended. The OPC is good. It is also a photosensitive material that can take full advantage of the advantages of the present invention.

[実施例] 以下に、本発明の詳細を実施例を示して具体的に説明す
る。
[Example] Hereinafter, the details of the present invention will be specifically explained with reference to Examples.

実施例1 厚さ l00μa+PETフィルム上に、可視域での平
均分光透過率(以下、単に透過率)が2%相当の膜厚の
A1層を蒸着により形成した。
Example 1 On a 100 μa thick PET film, an A1 layer having a thickness corresponding to an average spectral transmittance (hereinafter simply referred to as transmittance) of 2% in the visible range was formed by vapor deposition.

その上に中間層として、アルコール可溶性のボリアミド
樹脂層を0.5μmの膜厚に塗布した。
Thereon, as an intermediate layer, an alcohol-soluble polyamide resin layer was applied to a thickness of 0.5 μm.

以上の方法で作製した基板上に、下記式(I)で示され
るビスアゾ顔料をブチラール樹脂中に分散し′Cなる電
荷発生層(顔料/樹脂、重量比2.5/ L)を波長5
83問での透過率が4%相当の膜厚になるよう塗布した
On the substrate prepared by the above method, a charge generation layer 'C' (pigment/resin, weight ratio 2.5/L) is formed by dispersing a bisazo pigment represented by the following formula (I) in a butyral resin at a wavelength of 5.
The coating was applied to a film thickness equivalent to a transmittance of 4% at 83 questions.

この製品の電気特性と耐久性の評価結果は以下に記載す
る他の実施例及び比較例と併せて表一1に示す。
The evaluation results of the electrical properties and durability of this product are shown in Table 1 along with other examples and comparative examples described below.

実施例2 実施例1中の式(1〉の化合物を下記式(2〉のヒドラ
ゾン系化合物にかえ他は同じとした。
Example 2 The compound of formula (1) in Example 1 was replaced with a hydrazone compound of formula (2) below, and the other conditions were the same.

ついでその上に、下記式(1)で示されるスチルベン系
化合物をポリカーボネート中に相溶してなる電荷輸送層
(化合物/樹脂の重量比9/10)を27μ一の膜厚に
塗布した。
Then, a charge transport layer (compound/resin weight ratio of 9/10) formed by dissolving a stilbene compound represented by the following formula (1) in polycarbonate was coated thereon to a thickness of 27 μm.

H3C C2H5 比較例1 実施例1の電極層を透過率で5%相当のA1蒸着層とし
、他は同じとした。
H3C C2H5 Comparative Example 1 The electrode layer of Example 1 was changed to an A1 vapor deposited layer with a transmittance equivalent to 5%, and the other conditions were the same.

比較例2 実施例1の電極層を、透過率で5%相当のAl蒸着層と
し、そのうえに平均粒径が0.8μmの、酸化アンチモ
ンを3%ドープした酸化スズを、ポリメチルメタアクリ
レート中に80wt%分散した厚さ tμmの中間層を
塗布し、他は実施例と同じとした。
Comparative Example 2 The electrode layer of Example 1 was changed to an Al vapor-deposited layer with a transmittance equivalent to 5%, and tin oxide doped with 3% antimony oxide and having an average particle size of 0.8 μm was added to polymethyl methacrylate. An intermediate layer having a thickness of t μm in which 80 wt% was dispersed was applied, and the other conditions were the same as in the example.

比較例3 実施例1のAl電極層を透過率で50%相当のHast
el loy C ( N i M o系合金)層とし
、他は実施例1と同じとした。llastelloy 
C層はスバッタにより形成した。
Comparative Example 3 Hast equivalent to 50% transmittance of the Al electrode layer of Example 1
Elloy C (NiMo alloy) layer was used, and the other aspects were the same as in Example 1. lastelloy
The C layer was formed by sputtering.

実施例3 外径80問、肉厚7IIIIIlのフェノールパイプ表
面に約3500五の厚さにAlを蒸着し、その上に平均
粒径0.6μωの酸化チタンを62νt%分散させるボ
リアミドの中間層(レーザー光の干渉防止層)を1μ形
成した。
Example 3 Al was vapor-deposited to a thickness of about 3,500 mm on the surface of a phenol pipe with an outer diameter of 80 mm and a wall thickness of 7 III mm, and a polyamide intermediate layer (62 νt%) of titanium oxide with an average particle size of 0.6 μω was dispersed thereon ( A 1 μm layer (laser light interference prevention layer) was formed.

以上の方法で作製した基体上に、下記式(n)で示され
るトリスアゾ顔料を含有する電荷発生層(顔料/樹脂、
重量比2.5/l)を波長700nm テ次いで前記式
(1)で示されるスチルベン系化合物を含有する電荷輸
送層(化合物/樹脂、重量比7/10)を28μ厘の膜
厚に塗布した。但し、それぞれの樹脂は実施例1と同じ
ものを用いた。
A charge generation layer (pigment/resin,
Then, a charge transport layer (compound/resin, weight ratio 7/10) containing a stilbene compound represented by the above formula (1) was coated to a thickness of 28 μm. . However, each resin used was the same as in Example 1.

比較例4 実施例2のA1電極層を約150λとし、他は実施例2
と同じとした。
Comparative Example 4 The A1 electrode layer of Example 2 was approximately 150λ, and the rest were as in Example 2.
The same as

なお、Al薄層の可視域での平均分光透過率が3%相当
の膜厚は3000λを上回らない。また、膜厚が200
λ以下のA1層は、該透過率で30%以上である。従っ
て、実施例3は本発明に属する構或であり、比較例4は
その範囲外の構或である。
Note that the thickness of the Al thin layer corresponding to an average spectral transmittance of 3% in the visible range does not exceed 3000λ. In addition, the film thickness is 200
The A1 layer below λ has a transmittance of 30% or more. Therefore, Example 3 is a structure that belongs to the present invention, and Comparative Example 4 is a structure that is outside the scope of the present invention.

(感光体の測定と評価) 実施例3を除く5種の試料を川口電気製作所製のペーパ
ーアナライザーSP428を用いて測定・評価した。
(Measurement and Evaluation of Photoreceptor) Five types of samples except Example 3 were measured and evaluated using Paper Analyzer SP428 manufactured by Kawaguchi Electric Seisakusho.

帯電性は放電電流を−24μA(非回転時)にし、ダイ
ナミックモードでの帯電2秒後の電位(V2)で見た。
The charging property was determined by setting the discharge current to -24 μA (when not rotating) and looking at the potential (V2) after 2 seconds of charging in dynamic mode.

感度は、光量を4.51uXとし、初期電泣−800V
からの半減露光ffi(E+.,・2)で見た。また、
露光30秒後の電位を残留電位(Vr)とした。
The sensitivity is 4.51uX of light and an initial voltage of -800V.
Viewed at half-exposure ffi (E+., 2). Also,
The potential after 30 seconds of exposure was defined as the residual potential (Vr).

同ペーパーアナライザーで、光量を45 luxとし、
放?1[流が9.6μA(回転時)となる条件で連続1
5時間の静電疲労をかけ、その後、疲労前と同じ条件、
方法で帯電性と感度、残留電位を測定した。(表−1の
*は疲労後の特性値であることを示す。) 実施例2のみは、ペーパーアナライザーによる前記測定
及び疲労と同等の光量・帯電条件に整合させたドラム状
感光部{才の試験装置を用いて測定した。従って、表−
1の数値は全て相互に比較し得るものである。
Using the same paper analyzer, set the light intensity to 45 lux,
Free? 1 [Continuous 1 under the condition that the current is 9.6 μA (during rotation)
Electrostatic fatigue was applied for 5 hours, and then the same conditions as before fatigue were applied.
The chargeability, sensitivity, and residual potential were measured using the method. (The * in Table 1 indicates the characteristic value after fatigue.) Only in Example 2, the drum-shaped photosensitive section {of Measured using a test device. Therefore, table −
All values of 1 are mutually comparable.

なお、中間層の抵抗値は、感光体とは別に作製した単独
の薄膜の帯電電位減衰の時定数から、概算して求めた。
Note that the resistance value of the intermediate layer was roughly calculated from the time constant of charge potential decay of a single thin film produced separately from the photoreceptor.

表−1 表−1に示した実施例と比較例の測定結果から明らかな
ように、可視域での平均透過率が3%以下相当のAl電
極層と実質体積抵抗が106Ω・cm以上の中間層とを
併用することにより、高感度で電位保持性もよく、かつ
高い耐久性の感光部材を得ることができる。
Table 1 As is clear from the measurement results of the examples and comparative examples shown in Table 1, the average transmittance in the visible range is between the Al electrode layer equivalent to 3% or less and the effective volume resistivity 106 Ω・cm or more. By using these layers together, it is possible to obtain a photosensitive member with high sensitivity, good potential retention, and high durability.

なお、実施例で示した感光部材の材料、構成、製造方法
等は、本発明の本質ではなく、従って本発明の主たる技
術を限定するものではない。
Note that the material, structure, manufacturing method, etc. of the photosensitive member shown in the examples are not the essence of the present invention, and therefore do not limit the main technology of the present invention.

又、本特許は感光部材及び作像装置の要素に従来任意に
なされてきた、材料上、製造上、機構上、工程上等の種
々の付加的技術を、なんら特定するものでもない。
Furthermore, this patent does not specify any of the various additional techniques, such as material, manufacturing, mechanical, process, etc., that have heretofore been arbitrarily applied to photosensitive members and elements of image forming apparatuses.

し発明の効果] 以上説明したように、本発明によれば、優れた基本特性
と高耐久性を有し、しかも比較的安価な、電子写真用感
光部材を得ることができる。
Effects of the Invention] As described above, according to the present invention, it is possible to obtain an electrophotographic photosensitive member that has excellent basic characteristics and high durability, and is relatively inexpensive.

Claims (3)

【特許請求の範囲】[Claims] (1)支持基体上に、順に、可視域での平均分光透過率
が3%以下相当の膜厚のAl層、実質体積抵抗が10^
6Ω・cm以上の中間層、および、一層以上より成る光
導電性絶縁層を有することを特徴とする電子写真感光体
(1) On the support substrate, in order, an Al layer with a thickness equivalent to an average spectral transmittance of 3% or less in the visible region, and an Al layer with a substantial volume resistance of 10^
An electrophotographic photoreceptor characterized by having an intermediate layer of 6 Ω·cm or more and a photoconductive insulating layer consisting of one or more layers.
(2)光導電性絶縁層が、中間層側より電荷発生層、電
荷輸送層からなることを特徴とする請求項(1)記載の
電子写真感光体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the photoconductive insulating layer is comprised of a charge generation layer and a charge transport layer from the intermediate layer side.
(3)電荷発生層が、樹脂中にアゾ系顔料を分散させた
層であり、電荷輸送層が、樹脂中に、ヒドラゾン系、ト
リフェニルアミン系またはフェニルスチルベン系の何れ
かの電荷移動剤を相溶させたものであることを特徴とす
る請求項(2)記載の電子写真感光体。
(3) The charge generation layer is a layer in which an azo pigment is dispersed in a resin, and the charge transport layer is a layer in which a hydrazone-based, triphenylamine-based, or phenylstilbene-based charge transfer agent is dispersed in a resin. The electrophotographic photoreceptor according to claim 2, wherein the electrophotographic photoreceptor is a compatible one.
JP23035389A 1989-09-07 1989-09-07 Electrophotographic sensitive body Pending JPH0394265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23035389A JPH0394265A (en) 1989-09-07 1989-09-07 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23035389A JPH0394265A (en) 1989-09-07 1989-09-07 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0394265A true JPH0394265A (en) 1991-04-19

Family

ID=16906530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23035389A Pending JPH0394265A (en) 1989-09-07 1989-09-07 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0394265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955197B2 (en) 2008-02-08 2011-06-07 Roudybush Kenneth A Pitching and throwing training mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955197B2 (en) 2008-02-08 2011-06-07 Roudybush Kenneth A Pitching and throwing training mechanism

Similar Documents

Publication Publication Date Title
JPH0693129B2 (en) Electrophotographic photoreceptor
TW200949470A (en) Electrophotographic-photosensitive element and method for manufacturing the element, and electrophotographic device using the same
JPH0530262B2 (en)
US5068762A (en) Electrophotographic charging device
JPH06266136A (en) Single layer type electrophotographic sensitive body
JPH0394265A (en) Electrophotographic sensitive body
JPH0259767A (en) Electrophotographic sensitive body
KR100525686B1 (en) Substrate for Electrophotographic Photoconductor and Electrophotographic Photoconductor Using The Same
JPH0331855A (en) Electrophotographic sensitive body
JPH06236061A (en) Electrophotoreceptor
JPH09152731A (en) Electrophotographic photoreceptor
JP3069449B2 (en) Electrophotographic photoreceptor
US4764442A (en) Dual layer electrode used with electrophotographic photoconductor
JP2002287387A (en) Image forming method, image forming device and electrophotographic sensitive body
JPS62250460A (en) Electrophotographic sensitive body
JPH0764313A (en) Electrophotographic photoreceptor
JP2001060011A (en) Electrophotographic photoreceptor
JPH06266135A (en) Single layer type electrophotographic sensitive body
JP2631735B2 (en) Electrophotographic photoreceptor
JP2000231207A (en) Electrophotographic photoreceptor
JP3232819B2 (en) Electrophotographic photoreceptor
JP2000147811A (en) Electrophotographic photoreceptor body
JPH06100837B2 (en) Electrophotographic photoreceptor
JP3345689B2 (en) Single-layer electrophotographic photoreceptor
JPH06138685A (en) Electrophotographic sensitive body