JPH0394158A - Chromatography device and forming device for component separating means - Google Patents

Chromatography device and forming device for component separating means

Info

Publication number
JPH0394158A
JPH0394158A JP2012369A JP1236990A JPH0394158A JP H0394158 A JPH0394158 A JP H0394158A JP 2012369 A JP2012369 A JP 2012369A JP 1236990 A JP1236990 A JP 1236990A JP H0394158 A JPH0394158 A JP H0394158A
Authority
JP
Japan
Prior art keywords
mesh
column
grooves
groove
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012369A
Other languages
Japanese (ja)
Other versions
JP2779676B2 (en
Inventor
Hideaki Yamagishi
秀章 山岸
Atsushi Kawai
淳 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2012369A priority Critical patent/JP2779676B2/en
Publication of JPH0394158A publication Critical patent/JPH0394158A/en
Application granted granted Critical
Publication of JP2779676B2 publication Critical patent/JP2779676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N2030/388Elution in two different directions on one stationary phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • G01N30/463Flow patterns using more than one column with serial coupling of separation columns for multidimensional chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To execute a continuous separation in columns by providing a first substrate in which grooves of a mesh are formed and a second substrate which covers airtightly the grooves and fixed to become columns of a mesh, and forming a component separating means in the columns. CONSTITUTION:In grooves 11 in the direction as indicated with an arrow X of the mesh-like grooves 11 formed in a regular square, at least two kinds of component separating members 21 are formed, and the grooves 11 in the direction as indicated with an arrow Y are in an unprocessed state. Carrier gas is led into columns from the directions as indicated with arrows C1, C2 through a carrier gas distributing groove, and flows out in the directions as indicated with arrows D1, D2. In the case sample gas having components A, B is led into one point O of mesh-like columns, the sample gas advances at the same speed in the OY direction, but in the OX direction in which the separating members 21 are formed, a difference of a speed of flowing out is generated in accordance with the component, and it flows out from different outlets (points P, Q). Accordingly, by sensors provided in the vicinity of the tips of those outlets, the components A, B can be detected continuously, and by executing a waveform processing, concentration of the components A, B can be known by executing a waveform processing.

Description

【発明の詳細な説明】 く産業」二の利用分野〉 本発明は、クロマ1〜クラフィ装置に関し、連続分離測
定を可能とし、切替バルブを不要とすることにより長寿
命化を図ったクロマ1・グラフィ装置に関する。
[Detailed Description of the Invention] Field of Use in Industry 2〉 The present invention relates to the Chroma 1 to Craffy device, and the present invention relates to the Chroma 1 to Craffy device, which enables continuous separation measurement and has a longer service life by eliminating the need for a switching valve. Relating to a graphics device.

く従来の技術〉 従来用いられている例えばガスクロマ1−グラフィ装置
(以下、単にガスクロという)は、第9図に示すような
構成となっている。即ち、キャリアガスとサンプルガス
の流れを切替バルブ1で切替え、この切替バルブ1を介
してキャリアカスにより搬送されるサンプル刃スをカラ
ム2を通すことにより成分毎に分離し、分離したガスの
成分を検出器3により測定している。
BACKGROUND ART A conventionally used gas chromatography apparatus (hereinafter simply referred to as gas chromatography), for example, has a configuration as shown in FIG. That is, the flow of the carrier gas and the sample gas is switched by a switching valve 1, and the sample gas carried by the carrier gas is passed through the column 2 through the switching valve 1 to be separated into components, and the components of the separated gas are separated. is measured by detector 3.

く発明が解決しようとする課題〉 上記従来技術においては、測定は基本的にバッチ方式で
あり、プロセス用カスク冑ではシーケンスコント1コー
ラに上り定期的にLIJ替バルブを17J替えている。
Problems to be Solved by the Invention In the above-mentioned conventional technology, measurements are basically made in a batch manner, and for process cask helmets, the sequence control is 1 cola, and the LIJ replacement valve is periodically replaced by 17J.

又、従来のラボ用カスクロでは、手動によるマイクロシ
リンジでサンプル流体を注入している。しかしながら将
来カスクロシステムが小形化、マイクロ化された時、従
来のような切替バルブを用いるものにおいては、切替バ
ルブの性能(特にリーク)や寿命及び小形化の点で問題
があり、又、マイクロシリンジを用いるものにおいては
、サンプリング量が例えばn(1.p(lというような
微量になるとシリンジの構造にも限界があるという問題
があった。
Furthermore, in conventional laboratory cassettes, sample fluid is injected manually using a microsyringe. However, when cascro systems become smaller and more micro in the future, those that use conventional switching valves will have problems in terms of switching valve performance (particularly leakage), lifespan, and miniaturization. In the case of using a syringe, there is a problem in that when the sampling amount is as small as n(1.p(l), the structure of the syringe has a limit.

本発明は上記従来技術の課題を踏まえて威されたもので
あり、カラムに連続分離機能を持たせることにより、切
替バルブの不要なクロマトクラフィ装置を提供すること
を目的とするものである。
The present invention has been developed in light of the above problems of the prior art, and aims to provide a chromatography apparatus that does not require a switching valve by providing a column with a continuous separation function.

く課題を解決するための手段〉 」二記課題を解決するための本発明の第1の構成は、網
目の溝が形成された第1の基板と、前記溝を気密に覆っ
て網目のカラムとなるように固着された第2の基板と、
前記網目のカラムの任意の特定方向のカラム中に形成さ
れた少なくとも二種類の成分分離手段と、前記網目のカ
ラムのそれぞれの一端にキャリア流体を導入するキャリ
ア流体導入手段と、])1f記キャリア流体導入叫の一
点から前一  3 記カラムにサンプル流体を導入するサンプル流体導入手
段とを具備したことを特徴とするものであり、第2の構
成は、網目の溝が形成された第1の基板と、前記湧を気
密に覆って網目のカラムとなるように固着された第2の
基板と、前記網目のカラムの任意の特定方向のカラム中
に形成された少なくとも二種類の成分分離手段と、前記
網目のカラムのそれぞれの一端にキャリア流体を導入す
るキャリア流体導入手段と、前記キャリア流体導入側の
一点から前記カラムにサンプル流体を導入するサンプル
流体導入手段とを具備するクロマトグラフィ装置におい
て、前記成分分離手段は、網1」の清が形成された第1
の基板の任意の一方向について、網目の溝の両開の印面
に斜め蒸着の方法により成分分離手段を塗布する工程と
、次いで網目の溝以外の面及び網目の消の底面に付着し
た成分分離手段を異方性エツヂングにより除去する工程
により形成したことを特徴とするものである。
A first configuration of the present invention for solving the second problem includes a first substrate in which a mesh groove is formed, and a mesh column that airtightly covers the groove. a second substrate fixed so that
at least two types of component separation means formed in a column in any specific direction of the mesh column; a carrier fluid introduction means for introducing a carrier fluid into one end of each of the mesh columns; The second structure is characterized by comprising a sample fluid introducing means for introducing the sample fluid into the column mentioned above from one point of the fluid introduction point. a second substrate fixed to the substrate so as to airtightly cover the well to form a mesh column; and at least two types of component separation means formed in columns in any specific direction of the mesh column. , a chromatography apparatus comprising a carrier fluid introduction means for introducing a carrier fluid into one end of each of the mesh columns, and a sample fluid introduction means for introducing a sample fluid into the column from a point on the carrier fluid introduction side, The component separation means is a first
In one direction of the substrate, a component separation means is applied by diagonal vapor deposition on both sides of the grooves of the mesh, and then a component separation means adhering to the surfaces other than the grooves of the mesh and the bottom of the bottom of the mesh is separated. It is characterized in that it is formed by a step of removing the means by anisotropic etching.

く作用〉 木発rリJによると、網目のカラムの−・点に流入し4 た複数の成分を有するサンプル流体は、カラムの端部に
流入するキャリア流体に搬送されて進むが、成分分離手
段はカラムの任意の特定方向に形成されているので、サ
ンプル流体はその成分に応じて遅延する。その結果、カ
ラムのそれぞれの出口には特定の成分を有する流体のみ
が排出される。そして、それらのカラムの出口にセンサ
を配置しておけば、異なった種類の流体の成分を連続し
て測定することができる。
According to J. Kibo, a sample fluid containing multiple components that flows into a mesh column is carried forward by a carrier fluid that flows into the end of the column, but the components are not separated. Since the means are formed in any particular direction of the column, the sample fluid is delayed depending on its composition. As a result, only fluids with specific components are discharged at each outlet of the column. By placing sensors at the outlets of these columns, it is possible to continuously measure the components of different types of fluids.

く実施例〉 以下、本発明を図面に基づいて説明する。Example Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明をカスクロマトグラフイ装置に応用した
ー実施例を示す構成斜視図である。第1図において、1
0は例えばSiウエハからなる第1の基板、11はこの
基板10の表面にフォトリングラフィとエッチングの技
術により格子状に形成された微細な溝( PAえは縦方
向に500本、横方向に500本)であり、涌11が形
成された部分は全体として正方形の網目状となっている
。これらの消11の内の任意の特定方向(図に示す矢印
X方向)の湯には、少なくとも二種類の成分分離部材が
形或されている。12は正方形に形戒された網目状の溝
11の隣り合う2辺の近傍に形成されたキャリアガス分
配滑であり、各溝11の一端はこのキャリアカス分配溝
】2に連通している。
FIG. 1 is a perspective view showing an embodiment in which the present invention is applied to a gas chromatography apparatus. In Figure 1, 1
0 is a first substrate made of, for example, a Si wafer, and 11 is a fine groove formed in a lattice pattern on the surface of this substrate 10 by photolithography and etching technology (PA grooves are 500 in the vertical direction and 500 in the horizontal direction). 500 pieces), and the portion where the bowls 11 are formed has a square mesh shape as a whole. At least two types of component separating members are formed in the hot water in any specific direction (direction of the arrow X shown in the figure) among these water heaters 11. Reference numeral 12 denotes carrier gas distribution slides formed in the vicinity of two adjacent sides of the square-shaped mesh groove 11, and one end of each groove 11 communicates with the carrier waste distribution groove 2.

13はキャリアガス分配溝12の対辺に形成された混合
カス捕捉溝であり、各講l1の池端が連通している。1
4は各溝11中に形戒されたカスセンサであり、溝11
の端部が混合ガス捕捉溝13に達する直前に配置されて
いる。15はピーク検出、波形処理、演算等を行う電子
回路部で、ガスセンサ14とはリード線16で接続され
ている。
Reference numeral 13 denotes a mixed waste trapping groove formed on the opposite side of the carrier gas distribution groove 12, and the pond ends of each groove 11 are communicated with each other. 1
4 is a waste sensor formed in each groove 11;
The end portion of the groove 13 is disposed just before reaching the mixed gas trapping groove 13. Reference numeral 15 denotes an electronic circuit section that performs peak detection, waveform processing, calculation, etc., and is connected to the gas sensor 14 through a lead wire 16.

17は電子回路部15からの信号を取り出す出力端子で
ある。18は第1の基板と同様のSiウエハからなる第
2の基板であり、この第2の基板18は公知の陽極接合
法等により接合され、第1の基板10に形或された満1
1を気密に覆って格子状のカラムを形成する。19は第
1の基板のキャリアカス分配渦12に連通ずるキャリア
カス導入孔、20は格子状のカラムの角部に連通ずるサ
ンブルガス導入孔である。
17 is an output terminal for taking out a signal from the electronic circuit section 15. Reference numeral 18 denotes a second substrate made of a Si wafer similar to the first substrate, and this second substrate 18 is bonded by a known anodic bonding method, etc.
1 to form a grid-like column. 19 is a carrier waste introduction hole communicating with the carrier waste distribution vortex 12 of the first substrate, and 20 is a sample gas introduction hole communicating with the corner of the grid-like column.

第2図は第l図装置の網目部分を拡大して示す図(a)
及び溝のA部を拡大して示す図(b)である。第2図に
おいて、矢印X方向の溝には(b)図のB−B断面に示
すような成分分離部材21が形成され、矢印Y方向の溝
はC−C断面に示すように未処理状態とされる。なお、
成分分離部材21は充填剤を詰めたり、塗布したり、溝
の表面を処理したりすることにより形成される。
Figure 2 is an enlarged view of the mesh part of the device shown in Figure 1 (a).
and FIG. 7(b) is an enlarged view of part A of the groove. In FIG. 2, a component separating member 21 is formed in the groove in the direction of arrow X, as shown in the cross section B-B in FIG. It is said that In addition,
The component separating member 21 is formed by filling or coating a filler or treating the surface of the groove.

」二記構成において、キャリアカスはキャリアガス分配
溝12を介して矢印C I , C 2方向からそれぞ
れのカラムに導入され、矢印DI,D2で示す方向に流
出する。
2, the carrier waste is introduced into each column from the directions of arrows C I and C through the carrier gas distribution groove 12, and flows out in the directions indicated by arrows DI and D2.

第3図はこのようにキャリアガスが流れている網目状の
カラムの一点(0)に成分A,Bを有するサンプル刃ス
を導入した場合のガスの動きを示すものである(ここで
は成分Bの方が成分Aに比較して成分分離部材中で遅延
するものとする)。
Figure 3 shows the movement of gas when a sample blade containing components A and B is introduced into one point (0) of a mesh column through which carrier gas is flowing (here, component B is delayed in the component separation member compared to component A).

即ち、網目状のカラムに流入したサンプルガスはOY方
向(未処理方向)には同一速度で進行する7 か、少なくとも二種類の成分分離部材か形成されたOX
方向には従来の分離カラムと同様に成分に応じて流出す
る速度の違いが生じ、その結果、異なった出口(点1)
,Q)から流出する。したかって、それらの出口の先端
付近にセンサを設けて置けば、成分A,Bを連続的に検
知することかでき、波形処理を行うことで各戊分の濃度
を知ることができる。
In other words, the sample gas flowing into the mesh column advances at the same speed in the OY direction (unprocessed direction), or at least two types of component separation members are formed in the OX column.
Similar to conventional separation columns, there are differences in the outflow velocity depending on the component, resulting in different exits (point 1).
, Q). Therefore, if a sensor is provided near the tips of these outlets, components A and B can be detected continuously, and the concentration of each component can be determined by performing waveform processing.

第4図は例えは渦の数を500X500とし、O点から
流入したカスの威分の進行方向と乗直な方向への拡がり
具合の計算結果を示すものである。
FIG. 4 shows, for example, the number of vortices is 500×500, and shows the calculation result of the extent to which the debris flowing from point O spreads in a direction perpendicular to the traveling direction.

各流線はピーク値の5%,50%,95%の位置を流出
方向に結んだものを示している。
Each streamline connects the positions of 5%, 50%, and 95% of the peak value in the outflow direction.

第5図は溝の数に対するザンプルカスの拡がりを最高値
を1と規格化して示すものである。
FIG. 5 shows the spread of sample cassettes with respect to the number of grooves, with the highest value being normalized to 1.

上記構成によれは、サンプルガスに含まれる成分か異な
った出口から流出するので、切替バルブか不要となると
共に連続的な測定か可能となる。
With the above configuration, components contained in the sample gas flow out from different outlets, eliminating the need for a switching valve and allowing continuous measurement.

又、切替バルブを用いることによる故障も皆無となる。Furthermore, there is no malfunction caused by using a switching valve.

8 第6図及び第7図は本発明の第2の実施例を示す成分分
離手段を網目の溝の両側の圓面の任意の特定方向だけに
形成させる工程を示す工程図及び作業フローである。第
6図(a)において、第1の基板10に形或された網目
の溝11の縦スは横の一方向について、一つ向こうj則
の泪の測面の底辺(例えば明面1. 1 aから見て叫
rfii l l bの底辺)が見えるような角度で斜
め上方から成分分離部材を蒸着する(第7図(a)〉。
8 FIGS. 6 and 7 are process diagrams and work flows showing the process of forming component separation means only in arbitrary specific directions of the circular surfaces on both sides of the mesh groove, according to the second embodiment of the present invention. . In FIG. 6(a), the vertical lines of the mesh grooves 11 formed on the first substrate 10 are aligned in one horizontal direction to the base of the 3-dimensional surface of the J-law (for example, the bright surface 1. The component separating member is deposited diagonally from above at an angle such that the base of the rfii l l b is visible when viewed from 1a (FIG. 7(a)).

成分分離部材は講11の両開面には厚く、溝11以外の
面と溝11の底面には薄く蒸着される。次に、溝11以
外の面と溝11の底面に付着した成分分離部材を除去す
るが、溝11以外の面と溝11の底面に付着した成分分
離部材は、溝11の両開面に付着した成分分離部材に対
して付着方向か異なる。したがって、方向性のある異方
性エッチングを行う(第7図(b))ことにより、第6
図(b)に示すように縦又は横の清の両開面にのみ成分
分離部材21が形成される。〈図では横方向の溝の両側
面に成分分離部材21が形成されている。〉 なお、上記実施例においては網目の形状を格子状とした
が、例えば第8図に示すように網目を六角状にして、イ
,口で示す方向やハ,二で示す方向のみに成分分離部材
を形成することにより、格子状のものと同様の効果を得
ることも可能であり、カラムの形状(よ(.T: Hに
変形可能である。又、カラムの全体形状は正方形に限る
こと無く成分分離状態に応じて任意に変更可能である。
The component separating member is deposited thickly on both open faces of the groove 11, and thinly on the faces other than the groove 11 and the bottom of the groove 11. Next, the component separation member that has adhered to the surface other than the groove 11 and the bottom surface of the groove 11 is removed, but the component separation member that has adhered to the surface other than the groove 11 and the bottom surface of the groove 11 is adhered to both open surfaces of the groove 11. The direction of adhesion is different for the component separation member. Therefore, by performing directional anisotropic etching (FIG. 7(b)), the sixth
As shown in Figure (b), component separation members 21 are formed only on both vertically and horizontally open faces. (In the figure, component separation members 21 are formed on both sides of the horizontal groove. 〉 In the above embodiment, the mesh was shaped like a lattice, but for example, as shown in FIG. By forming members, it is possible to obtain the same effect as a grid-like one, and the column shape (. It can be changed arbitrarily depending on the state of component separation.

又、上記格子状の実施例においては、一方向の溝に成分
分離部材を形成し、他方向は無処理としたが、然処那と
せず、秤類の異なる成分分離部材を形成することも可能
である。このように種類の異なる成分分離部材を用いれ
ば、多種の成分分離が可能となるばかりでなく、このカ
ラムの分離能をより向上させることも可能となる。この
ことは、例えば第8図に示す六角状のものにおいては、
イロの方向とハ,二の方向に別の種類の成分分離部材を
形戊すれば良い。
In addition, in the above-mentioned grid-shaped embodiment, component separating members were formed in the grooves in one direction and no treatment was made in the other direction, but it is also possible to form component separating members in different scales. It is possible. By using such different types of component separation members, it is not only possible to separate a wide variety of components, but also to further improve the separation performance of this column. This means that, for example, in the hexagonal shape shown in Figure 8,
Different types of component separating members may be formed in the (a) direction and (c) and (ii) direction.

メ、本実施的においては、ガスクロに応用した場合につ
いて説明したか、液体クロマトグラフィ装置に応用する
ことも可能である。
In this embodiment, the case where the present invention is applied to gas chromatography has been described, but it is also possible to apply it to a liquid chromatography apparatus.

火に、本実施例においては、微細構造に応用した例につ
いて示したか、基板として他の部材(例えは金属やプラ
スチック)を用いて、カラムを機械加工等により形成し
、網目の全体面積を数十C川・〜数川1/方の大きさと
して、複数の成分を含む液体の成分を分離するための分
離装置として利用することも可能である。
In addition, in this example, we have shown an example of application to microstructures, or we have used another material (for example, metal or plastic) as a substrate, formed columns by machining, etc., and calculated the total area of the mesh by several steps. It is also possible to use it as a separation device for separating the components of a liquid containing a plurality of components with a size of 10 C rivers to several rivers 1/direction.

く発明の効果〉 以上、実施例と共に具体的に説明したように、本発明に
よれば、切替バルブか不要となると共に連続的な測定か
可能となる。又、切替バルブを用いないので故障の少な
いクロマトグラフィ装置を実現することができる。
Effects of the Invention> As described above in detail with the embodiments, according to the present invention, a switching valve is not necessary and continuous measurement is possible. Furthermore, since no switching valve is used, a chromatography apparatus with fewer failures can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のクロマトクラフィ装置の一実施例を示
すW4戒斜視図、第2図(a)及び(b)は第1図装置
の網目部分を拡大して示す図及び溝部を拡大して示す図
、第3図は第1図装置の成分分離の原理を示す図、第4
図はカラム中での成分11 のピークの分布状態を示す図、第5図は溝の数に対する
サンプルガスの拡がりを規格化して示す図、第6図及び
第7図は本発明の第2の実施例を示す成分分離手段を網
目の溝の両開の測面の任意の特定方向だけに形成させる
工程を示す工程図及び作業フロー、第8図はカラムの他
の実胤例を示す図、第9図は従来のガスクロマトグラフ
ィ装置の原理図である。 10・・・第1の基板、11・・・溝、12・・・キャ
リアガス分配溝、13・・・混合ガス捕捉溝、14・・
・センサ、15・・・電子回路部、16・・・リード線
、17・・・出力端子、18・・・第2の基板、1つ・
・・キャリアガス導入孔、20・・・サンプルガス導入
孔、21・・・成分分離部材。 12 第 5 図 0 20 30 40 50
FIG. 1 is a W4 perspective view showing an embodiment of the chromatography apparatus of the present invention, and FIGS. 2(a) and (b) are enlarged views of the mesh portion and the groove portion of the apparatus shown in FIG. Figure 3 is a diagram showing the principle of component separation of the apparatus shown in Figure 1, Figure 4 is a diagram showing the principle of component separation of the apparatus shown in Figure 1.
The figure shows the distribution state of the peak of component 11 in the column, Figure 5 shows the normalized spread of sample gas with respect to the number of grooves, and Figures 6 and 7 show the second aspect of the present invention. A process diagram and a work flow showing a process of forming a component separation means only in an arbitrary specific direction of a double-sided measurement surface of a mesh groove showing an embodiment, FIG. 8 is a diagram showing another example of a column, FIG. 9 is a diagram showing the principle of a conventional gas chromatography apparatus. DESCRIPTION OF SYMBOLS 10... First substrate, 11... Groove, 12... Carrier gas distribution groove, 13... Mixed gas capture groove, 14...
・Sensor, 15...Electronic circuit section, 16...Lead wire, 17...Output terminal, 18...Second board, one.
... Carrier gas introduction hole, 20 ... Sample gas introduction hole, 21 ... Component separation member. 12 5th Figure 0 20 30 40 50

Claims (1)

【特許請求の範囲】 (1)網目の溝が形成された第1の基板と、前記溝を気
密に覆って網目のカラムとなるように固着された第2の
基板と、前記網目のカラムの任意の特定方向のカラム中
に形成された少なくとも二種類の成分分離手段と、前記
網目のカラムのそれぞれの一端にキャリア流体を導入す
るキャリア流体導入手段と、前記キャリア流体導入側の
一点から前記カラムにサンプル流体を導入するサンプル
流体導入手段とを具備したことを特徴とするクロマトグ
ラフィ装置。 (2)前記網目のカラムの任意の特定方向のカラム中に
形成された少なくとも二種類の成分分離手段は、前記網
目の溝の両側の側面に形成したことを特徴とする請求項
1記載のクロマトグラフィ装置。 (3)網目の溝が形成された第1の基板と、前記溝を気
密に覆って網目のカラムとなるように固着された第2の
基板と、前記網目のカラムの任意の特定方向のカラム中
に形成された少なくとも二種類の成分分離手段と、前記
網目のカラムのそれぞれの一端にキャリア流体を導入す
るキャリア流体導入手段と、前記キャリア流体導入側の
一点から前記カラムにサンプル流体を導入するサンプル
流体導入手段とを具備するクロマトグラフィ装置におい
て、前記成分分離手段は、下記工程により形成したこと
を特徴とする成分分離手段の形成方法。 (1)網目の溝が形成された第1の基板の任意の一方向
について、網目の溝の両側の側面に斜め蒸着の方法によ
り成分分離手段を塗布する工程。 (2)網目の溝以外の面及び網目の溝の底面に付着した
成分分離手段を異方性エッチングにより除去する工程。
Scope of Claims: (1) A first substrate on which a mesh groove is formed, a second substrate that is fixed to form a mesh column so as to airtightly cover the groove, and a second substrate formed with a mesh column; at least two types of component separation means formed in a column in any specific direction; a carrier fluid introduction means for introducing a carrier fluid into one end of each of the mesh columns; A chromatography apparatus comprising a sample fluid introducing means for introducing a sample fluid into the chromatography apparatus. (2) The chromatography according to claim 1, characterized in that at least two types of component separation means formed in the column in any particular direction of the mesh column are formed on both sides of the mesh groove. Device. (3) A first substrate in which a mesh groove is formed, a second substrate that is fixed to the mesh column so as to airtightly cover the groove, and a column in any specific direction of the mesh column. at least two types of component separation means formed therein, a carrier fluid introduction means for introducing a carrier fluid into one end of each of the mesh columns, and a sample fluid introduced into the column from a point on the carrier fluid introduction side. A method for forming a component separating means, in a chromatography apparatus comprising a sample fluid introducing means, wherein the component separating means is formed by the following steps. (1) A step of applying a component separation means to the side surfaces on both sides of the mesh grooves by an oblique vapor deposition method in any one direction of the first substrate on which the mesh grooves are formed. (2) A step of removing the component separation means attached to the surfaces other than the mesh grooves and the bottom surfaces of the mesh grooves by anisotropic etching.
JP2012369A 1989-06-14 1990-01-22 Chromatography apparatus and method of forming component separation means Expired - Fee Related JP2779676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012369A JP2779676B2 (en) 1989-06-14 1990-01-22 Chromatography apparatus and method of forming component separation means

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-151191 1989-06-14
JP15119189 1989-06-14
JP2012369A JP2779676B2 (en) 1989-06-14 1990-01-22 Chromatography apparatus and method of forming component separation means

Publications (2)

Publication Number Publication Date
JPH0394158A true JPH0394158A (en) 1991-04-18
JP2779676B2 JP2779676B2 (en) 1998-07-23

Family

ID=26347975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012369A Expired - Fee Related JP2779676B2 (en) 1989-06-14 1990-01-22 Chromatography apparatus and method of forming component separation means

Country Status (1)

Country Link
JP (1) JP2779676B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955028A (en) * 1996-08-02 1999-09-21 Caliper Technologies Corp. Analytical system and method
US6811668B1 (en) 1999-06-22 2004-11-02 Caliper Life Sciences, Inc. Apparatus for the operation of a microfluidic device
JP2008232799A (en) * 2007-03-20 2008-10-02 Shimadzu Corp Pyrolysistic gas chromatograph system
JP2008229468A (en) * 2007-03-20 2008-10-02 Daifuku Co Ltd Heat treatment facility on coating line

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399023B1 (en) 1996-04-16 2002-06-04 Caliper Technologies Corp. Analytical system and method
US5955028A (en) * 1996-08-02 1999-09-21 Caliper Technologies Corp. Analytical system and method
US6071478A (en) * 1996-08-02 2000-06-06 Caliper Technologies Corp. Analytical system and method
US6399025B1 (en) 1996-08-02 2002-06-04 Caliper Technologies Corp. Analytical system and method
US6432720B2 (en) 1996-08-02 2002-08-13 Caliper Technologies Corp. Analytical system and method
US6503757B1 (en) 1996-08-02 2003-01-07 Caliper Technologies Corp. Analytical system and method
US6811668B1 (en) 1999-06-22 2004-11-02 Caliper Life Sciences, Inc. Apparatus for the operation of a microfluidic device
JP2008232799A (en) * 2007-03-20 2008-10-02 Shimadzu Corp Pyrolysistic gas chromatograph system
JP2008229468A (en) * 2007-03-20 2008-10-02 Daifuku Co Ltd Heat treatment facility on coating line

Also Published As

Publication number Publication date
JP2779676B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
JP5897780B2 (en) Apparatus and method for operating droplets on a printed circuit board
Andersson et al. Micromachined filter‐chamber array with passive valves for biochemical assays on beads
US7846392B2 (en) Prevention of precipitate blockage in microfluidic channels
CN106492891B (en) The micro-fluidic chip and preparation method of electrical impedance flow cytometer detection molecule, cell
JP5138223B2 (en) Hydrodynamic multilayer sheath flow structure
US20090104689A1 (en) Microchip For Use In Cytometry, Velocimetry And Cell Sorting Using Polyelectrolytic Salt Bridges
JP2003527972A (en) Modular microfluidic device containing sandwiched stencils
EP1340810A1 (en) Apparatus for treating sample in microamount
EP1145760A3 (en) High-throughput screening assay systems in microscale fluidic devices
KR101338349B1 (en) A device for separating micro particles and a method for fabricating the device
JP2007514522A5 (en)
WO2006042727A1 (en) Miniaturised separation column with bonding agent for a gas chromatograph
KR101097357B1 (en) Multi function microfluidic flow control apparatus and multi function microfluidic flow control method
CN104248996A (en) Microfluidic chip and control method thereof
Nieuwenhuis et al. Integrated flow-cells for novel adjustable sheath flows
WO2015145280A1 (en) Microfluidic chip with conic bead trapping cavities and fabrication thereof
JPH0394158A (en) Chromatography device and forming device for component separating means
CA2463223C (en) Method and separating module for separating particles from a dispersion, particularly blood corpuscles from blood
US20030086333A1 (en) Electrohydrodynamic mixing on microfabricated devices
KR101584083B1 (en) Device for analyzing deformability and fatigue characteristic of particles
US20190310225A1 (en) Microfluidic organic electrochemical transistor sensors for real time nitric oxide detection
KR20150040939A (en) Method for producing microcarriers
JP2002055098A (en) Liquid sample analyzing element and method for manufacturing the same
CN213181226U (en) Sample detection device
KR101048858B1 (en) Open groove channel chip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees