JPH0394148A - Moisture measuring method - Google Patents

Moisture measuring method

Info

Publication number
JPH0394148A
JPH0394148A JP1231875A JP23187589A JPH0394148A JP H0394148 A JPH0394148 A JP H0394148A JP 1231875 A JP1231875 A JP 1231875A JP 23187589 A JP23187589 A JP 23187589A JP H0394148 A JPH0394148 A JP H0394148A
Authority
JP
Japan
Prior art keywords
water content
neutron
moisture
moisture content
unit time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1231875A
Other languages
Japanese (ja)
Other versions
JPH0758253B2 (en
Inventor
Takashi Fujii
貴 藤井
Tadashi Teramine
寺峰 正
Nobuo Aoki
青木 延夫
Yasuaki Kato
泰明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP1231875A priority Critical patent/JPH0758253B2/en
Publication of JPH0394148A publication Critical patent/JPH0394148A/en
Publication of JPH0758253B2 publication Critical patent/JPH0758253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure moisture distribution and moisture content nondestructively by measuring the neutron counting rate of a sample with known moisture content area distribution and moisture content by a neutron moisture meter and obtaining the standard correlation of the counting rate of the moisture content area distribution and the moisture content. CONSTITUTION:A fast neutron is radiated from the neutron moisture meter 4 arranged at set intervals l1(=0) and l2(=30mm) to a real pipeline A and a thermal neutron generated by the action of the moisture in the moisture content area is captured by the moisture meter 4 to respectively obtain the neutron counting rate n1 and n2. Based on the counting rate n1 and the 1st standard correlation(example:three external, intermediate and internal moisture content area distributions) which is previously obtained, the 1st moisture content in the respective three moisture content area distributions is obtained. In the same way, the 2nd moisture content is obtained based on the counting rate n2 and the 2nd standard correlation(three moisture content area distributions). Then, the moisture content area distribution in which the 1st and the 2nd moisture contents are nearly equal is decided from the respective three moisture content area distributions. Then, it is decided that the moisture is unevenly distributed in the decided moisture content area distribution, where the moisture of the 1st and the 2nd moisture contents which are nearly equal is contained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばLNG輸送配管の保温材などの各種被
検査体に含まれる水分の分布及び含水量(g/cc)を
調べるための水分測定法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a method for measuring moisture distribution and moisture content (g/cc) contained in various test objects such as heat insulating materials for LNG transport piping. Regarding measurement methods.

〔従来の技術〕[Conventional technology]

従来、被検査体の一部をサンプルとして切取り、そのサ
ンプルによって水分の分布と含水量を推定していた。
Conventionally, a part of the object to be inspected has been cut out as a sample, and the moisture distribution and water content have been estimated from that sample.

〔発明が解決しようとする課題〕 しかし、含水量を正確に測定することが極めて困難であ
り、サンプルを切取った箇所の補修が面倒であり、測定
に多くの時間が必要である等の欠点があった。
[Problems to be solved by the invention] However, there are drawbacks such as it is extremely difficult to accurately measure the water content, it is troublesome to repair the part where the sample was cut, and a lot of time is required for measurement. was there.

本発明の目的は、被検査体を破壊せずに、水分の分布と
含水量を正確にかつ容易迅速に測定できるようにする点
にある。
An object of the present invention is to enable accurate, easy and rapid measurement of moisture distribution and moisture content without destroying the object to be inspected.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴手段は、 被検査体と同材料のサンプルに対して第1設定間隔で設
置した中性子水分計から単位時間当り一定個数の速中性
子を放射し、前記サンプルにその厚さ方向における既知
の含水域分布で含まれる既知含水量の水分の作用により
生じた熱中性子を前記中性子水分計で捕捉して、その捕
捉した熱中性子の単位時間当りの個数である中性子計数
率を計測し、複数の含水域分布夫々における含水量と中
性子計数率の第1標準相関を予め求めておき、かつ、 前記被検査体と同材料のサンプルに対して第2設定間隔
で設置した中性子水分計から単位時間当り一定個数の速
中性子を放射し、前記サンプルにその厚さ方向における
既知の含水域分布で含まれる既知含水量の水分の作用に
より生じた熱中性子を前記中性子水分計で捕捉して、そ
の捕捉した熱中性子の単位時間当りの個数である中性子
計数率を計測し、複数の含水域分布夫々における含水量
と中性子計数率の第2標準相関を予め求めておき、そし
て、 前記被検査体に対して前記第1設定間隔で設置した中性
子水分計から単位時間当り一定個数の速中性子を放射し
、前記被検査体に含まれる水分の作用により生じた熱中
性子を前記中性子水分計で捕捉して、その捕捉した熱中
性子の単位時間当りの個数である第1中性子計数率を求
め、かつ、 前記被検査体に対して前記第2設定間隔で設置した中性
子水分計から単位時間当り一定個数の速中性子を放射し
、前記被検査体に含まれる水分の作用により生じた熱中
性子を前記中性子水分計で捕捉して、その捕捉した熱中
性子の単位時間当りの個数である第2中性子計数率を求
め、そして、 前記第1中性子計数率と前記第1標準相関に基いて前記
複数の含水域分布夫々における第1含水量を求め、かつ
、 前記第2中性子計数率と前記第2標準相関に基いて前記
複数の含水域分布夫々における第2含水量を求め、そし
て、 前記第l含水量と前記第2含水量がほぼ等しくなるもの
を前記複数の含水域分布から判定し、その判定した含水
域分布に水分が偏在すると共に、前記ほぼ等しい第1及
び第2含水量で水分が含まれると判定することにあり、
その作用・効果は次の通りである。
The characteristic means of the present invention is to emit a fixed number of fast neutrons per unit time from neutron moisture meters installed at first set intervals to a sample made of the same material as the object to be inspected, and to emit a fixed number of fast neutrons to the sample in the thickness direction. Thermal neutrons generated by the action of water with a known water content contained in the water content distribution are captured by the neutron moisture meter, and the neutron count rate, which is the number of captured thermal neutrons per unit time, is measured. The first standard correlation between the water content and the neutron count rate in each water content distribution is determined in advance, and the sample of the same material as the object to be inspected is measured by a neutron moisture meter installed at a second set interval for a unit time. emitting a certain number of fast neutrons per sample, and capturing thermal neutrons generated by the action of water with a known water content contained in the sample with a known water content distribution in the thickness direction using the neutron moisture meter; neutron count rate, which is the number of thermal neutrons per unit time, is determined in advance, and a second standard correlation between water content and neutron count rate in each of a plurality of water content distributions is determined in advance; emitting a fixed number of fast neutrons per unit time from the neutron moisture meter installed at the first set interval, and capturing thermal neutrons generated by the action of moisture contained in the object to be inspected with the neutron moisture meter, Determine the first neutron count rate, which is the number of captured thermal neutrons per unit time, and obtain a fixed number of fast neutrons per unit time from a neutron moisture meter installed at the second set interval with respect to the object to be inspected. , and capturing thermal neutrons generated by the action of moisture contained in the test object with the neutron moisture meter, and determining a second neutron count rate, which is the number of captured thermal neutrons per unit time, and determining a first water content in each of the plurality of water-containing area distributions based on the first neutron count rate and the first standard correlation, and calculating the first water content based on the second neutron count rate and the second standard correlation. Determine the second water content in each of the plurality of water content distributions, determine from the plurality of water content distributions the one where the first water content and the second water content are approximately equal, and apply the determined water content distribution to the water content distribution. determining that moisture is unevenly distributed and that moisture is contained at the substantially equal first and second moisture contents;
Its actions and effects are as follows.

〔作 用〕[For production]

被検査体の全体に水分が含まれている場合、中性子水分
計により被検査体に単位時間当り一定個数の速中性子を
放射し、水分の水素原子との弾性散乱によりエネルギー
を失った熱中性子を中性子水分計で捕捉して、捕捉した
熱中性子の単位時間当りの個数である中性子計数率を計
測すると、その中性子計数率と含水量の相関が被検査体
の材質や厚さで定まる一定の相関関係があるために、被
検査体の含水量を正確に測定できることは知られている
。しかし、含水域分布が変化すると、つまり、水分が被
検査体の厚さ方向において偏在すると、正確な含水量測
定が不可能であった。
If the entire surface of the object to be inspected contains moisture, a neutron moisture meter emits a fixed number of fast neutrons per unit time to the object, and emits thermal neutrons that have lost energy due to elastic scattering with hydrogen atoms in the moisture. When a neutron moisture meter captures thermal neutrons and measures the neutron count rate, which is the number of captured thermal neutrons per unit time, the correlation between the neutron count rate and moisture content is a certain correlation determined by the material and thickness of the inspected object. It is known that the water content of a test object can be determined accurately because of the relationship. However, when the distribution of water content changes, that is, when water is unevenly distributed in the thickness direction of the test object, accurate water content measurement is impossible.

そこで、含水域分布が変化して不明であっても含水量測
定を正確に実行できるようにするためには、いかなる手
法が有効であるかを、各種実験により追究したところ、
次の事実が判明した。
Therefore, we conducted various experiments to find out what method would be effective in making it possible to accurately measure water content even if the water content distribution has changed and is unknown.
The following facts were discovered.

(イ) 第4図(イ)に示すようにポリウレタンフォーム(7)
の外側部分(7a)に水分が偏在する場合、第4図(口
)に示すようにポリウレタンフォーム(7)の中側部分
(7b)に水分が偏在する場合、第4図(ハ)に示すよ
うにポリウレタンフォーム(7)の内側部分(7c)に
水分が偏在する場合の夫々について、中性子水分計を用
いて、中性子計数率と含水量の相関を調べたところ、第
5図に示すように、いずれの場合も直線的ではないが一
定の相関になり、かつ、場合により相関が相違する事実
を確認できた。
(a) Polyurethane foam (7) as shown in Figure 4 (a)
When moisture is unevenly distributed in the outer part (7a) of the polyurethane foam (7), as shown in Fig. 4 (opening), when moisture is unevenly distributed in the inner part (7b) of the polyurethane foam (7), as shown in Fig. 4 (c). When we investigated the correlation between the neutron count rate and the water content using a neutron moisture meter in each case where water was unevenly distributed in the inner part (7c) of the polyurethane foam (7), we found that the results were as shown in Figure 5. Although the correlation was not linear in all cases, it was confirmed that the correlation was constant, and that the correlation differed depending on the case.

(口)第4図(イ)乃至(ハ)に実線で示すように中性
子水分計(4)を密着させた場合と、第4図(イ)乃至
(ハ)に点線で中性子水分計(4)を30mm離した場
合とで、上記(イ)項の中性子計数率と含水量の相関が
いかに変化するかを調べたところ、第5図に示すように
、水分の偏在位置いかんにかかわらず相関が大きく変化
し、かつ、その変化が水分の偏在位置によって相違する
事実を確認できた。
(Explanation) Figure 4 (A) to (C) show the case where the neutron moisture meter (4) is placed in close contact as shown by the solid lines, and the dotted line in Figure 4 (A) to (C) shows the case where the neutron moisture meter (4) ) When we investigated how the correlation between the neutron count rate and water content in item (a) above changes when the neutron count rate and water content are separated by 30 mm, we found that there is a correlation regardless of the uneven distribution position of water, as shown in Figure 5. It was confirmed that the amount of water changes greatly, and that this change differs depending on the uneven distribution position of water.

そして、上記(ロ)項の実験結果を詳細に検討しかつ解
析し、次のような新規な技術的考えを得た。
The experimental results in section (b) above were examined and analyzed in detail, and the following new technical idea was obtained.

つまり、第4図(イ)乃至(ハ)に示すように、サンプ
ル(B)に対して第1設定間隔(j71=o)で設置し
た中性子水分計(4)により、複数の含水域分布(外側
、中側、内側)夫々における含水量と中性子計数率の第
1標準相関[外(X1)、中(Y1〉、内(Zl)]を
予め求めておき、かつ、サンプル(B)に対して第2設
定間隔(jL=30mm)で設置した中性子水分計(4
)により、上記複数の含水域分布夫々における含水量と
中性子計数率の第2標準相関[外(X2)、中(Y2)
、内(Z2)]を予め求めておいて、下記(a)〜(e
)項の手段を講じると、含水域分布が変化して不明であ
っても、含水量を正確に測定できる。
In other words, as shown in FIGS. 4(a) to 4(c), the neutron moisture meter (4) installed at the first setting interval (j71=o) for the sample (B) measures the distribution of water content ( The first standard correlation between water content and neutron count rate [outer (X1), middle (Y1〉, inner (Zl)] for each of the outer, middle, and inner sides) is determined in advance, and A neutron moisture meter (4
), the second standard correlation between water content and neutron count rate [outer (X2), middle (Y2)
, inside (Z2)] is determined in advance, and the following (a) to (e
By taking the measures in section ), it is possible to accurately measure water content even if the water content distribution has changed and is unknown.

(a)  第l図に実線で示すように、被検査体(A)
に対して前記第1設定間隔(l+=0)で設置した中性
子水分計(4)により、第l中性子計数率(n + =
 8000 )を得る。
(a) As shown by the solid line in Figure 1, the object to be inspected (A)
The neutron moisture meter (4) installed at the first set interval (l + = 0) calculates the lth neutron count rate (n + =
8000).

(b)  第1図に点線で示すように、被検査体(A)
に対して前記第2設定間隔(Il2=30mm)で設置
した中性子水分計(4)により、第2中性子計数率(n
2ξ3400)を得る。
(b) As shown by the dotted line in Figure 1, the object to be inspected (A)
The second neutron count rate (n
2ξ3400) is obtained.

(c)  第6図に示すように、第l中性子計数率(n
1−8000)と第1標準相関[外(X.)、中(Y1
)、内(Zl)]に基いて、複数の含水域分布夫々にむ
ける第l含水量(交点A, B, Cに相当する含水量
)を求める。
(c) As shown in Figure 6, the lth neutron count rate (n
1-8000) and the first standard correlation [outside (X.), inside (Y1
), within (Zl)], the l-th water content (water content corresponding to intersection points A, B, and C) for each of the plurality of water-containing water distributions is determined.

(d)  第6図に示すように、第2中性子計数率(n
g = 3400)と第2標準相関[外(x2)、中(
Y2)、内(z2)]に基いて、複数の含水域分布夫々
における第2含水量(交点D, E, Fに相当する含
水量)を求める。
(d) As shown in Figure 6, the second neutron count rate (n
g = 3400) and the second standard correlation [outside (x2), inside (
Y2), within (z2)], the second water content (water content corresponding to the intersections D, E, F) in each of the plurality of water content distributions is determined.

(e)  第6図に示すように、第l含水量と第2含水
量がほぼ等しくなるものを複数の含水域分布から判定し
、つまり、ADD, Bf=E,C−I=Fから水分が
外側に偏在しているというように水分の分布を判定し、
かつ、含水量が約0. 32g/ccというように含水
量を判定する。
(e) As shown in Figure 6, the water content where the first water content and the second water content are almost equal is determined from the distribution of multiple water areas, that is, the water content is determined from ADD, Bf=E, C-I=F. Determine the distribution of moisture such that it is unevenly distributed on the outside,
And the water content is about 0. Determine the water content as 32 g/cc.

要するに、本願発明の特徴手段によれば、従来中性子水
分計による測定では正確な含水量測定が不可能と観念さ
れていた、含水域分9 10 布が変化して不明な場合であっても、変化するであろう
と予測される含水域分布夫々に対して、第1標準相関と
第2標準相関を予め求めておけば、水分の分布と含水量
を正確に測定でき、しかも、被検査体を破壊しなくて済
む。
In short, according to the characteristic means of the present invention, even when the moisture content is unknown due to changes in the water content, which was conventionally thought to be impossible to measure using a neutron moisture meter, If the first standard correlation and second standard correlation are calculated in advance for each water content distribution that is predicted to change, it is possible to accurately measure the moisture distribution and moisture content. No need to destroy it.

〔発明の効果〕〔Effect of the invention〕

その結果、保温材の含水による劣化の検査などにおいて
、被検査体を破壊せずに、水分の分布と含水量を正確に
かつ容易迅速に測定できる、新規かつ有用な水分測定法
を確立できた。
As a result, we were able to establish a new and useful moisture measurement method that can accurately, easily and quickly measure moisture distribution and moisture content without destroying the test object, such as when inspecting the deterioration of insulation materials due to moisture content. .

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

第1図に示すように、SUS製のパイプ(l)を多孔質
のポリウレタンフォーム(2)で覆って保冷し、ポリウ
レタンフォーム(2)を外装用板金(3)で覆ったLN
G輸送配管において、外部に設置した中性子水分計(4
)によりポリウレタンフォーム(2)に含まれる水分の
分布及び含水量を調べる場合について説明する。
As shown in Figure 1, a SUS pipe (l) is covered with porous polyurethane foam (2) to keep it cool, and the polyurethane foam (2) is covered with an exterior sheet metal (3).
In the G transport piping, a neutron moisture meter (4
) to investigate the water distribution and water content contained in polyurethane foam (2) will be explained.

中性子水分計(4)は、第2図に示すように、2本の検
出器(4a)の中央に線源(4b)を配置し、線源(4
b)からの単位時間当り一定個数(個/分)の速中性子
をポリウレタンフォーム(2)に放射し、水分中の水素
原子との弾性散乱によりエネルギーを失った熱中性子の
みを検出器(4a)で捕捉し、カウンター(4c)で捕
捉した熱中性子の単位時間当りの個数(個/分)を計測
し、その計測した中性子計数率を表示部(4d)で示す
ように構成したものである。
As shown in Figure 2, the neutron moisture meter (4) has a radiation source (4b) placed in the center of two detectors (4a).
A fixed number of fast neutrons per unit time (number/minute) from b) are emitted to the polyurethane foam (2), and only the thermal neutrons that have lost energy due to elastic scattering with hydrogen atoms in water are detected by the detector (4a). The counter (4c) measures the number of thermal neutrons captured per unit time (pieces/minute), and the measured neutron counting rate is shown on the display (4d).

先ず、標準相関の求め方を説明する。First, we will explain how to find the standard correlation.

(イ)第3図に示すように、実配管(A)を平板でモデ
ル化したサンプル(B)を準備する。
(a) As shown in FIG. 3, prepare a sample (B) that is a flat plate model of the actual piping (A).

つまり、水素濃度がLNGとほぼ等しい厚さ10mmの
アクリル(5)をl2枚重ねて、LNGに相当する層を
形成し、パイプ(l)に相当する厚さ6mmのSUS板
(6)をアクリル(5)に載せ、ポリウレタンフォーム
(2)に相当する厚さ10mmのポリウレタンフォーム
(7)を12枚SUS板(6)に載せ、外装用板金(3
)に相当1l する板金(8)をポリウレタンフォーム(7)に載せて
、サンプル(B)を形成する。
In other words, two sheets of acrylic (5) with a thickness of 10 mm, whose hydrogen concentration is almost equal to that of LNG, are stacked to form a layer corresponding to LNG, and a SUS plate (6) with a thickness of 6 mm, which corresponds to the pipe (l), is made of acrylic. (5), 12 sheets of polyurethane foam (7) with a thickness of 10 mm, which corresponds to polyurethane foam (2), were placed on the SUS board (6), and
) is placed on the polyurethane foam (7) to form a sample (B).

(口)第4図(イ)に示すように外側の4枚のポリウレ
タンフォーム(7a)に水分を含ませた場合、第4図(
ロ)に示すように中側の4枚のポリウレタンフォーム(
7b)に水分を含ませた場合、第4図(ハ)に示すよう
に内側の4枚のポリウレタンフォーム(7c)に水分を
含ませた場合の夫々について、含水量を種々変更設定し
、それら含水域分布及び含水量が既知のサンプル(B)
夫々に対して第l設定間隔11=0で、つまり密着させ
て設置した中性子水分計(4)から速中性子を放射し、
水分とアクリル(5)の作用により生じた熱中性子を中
性子水分計(4)で捕捉して、中性子計数率を計測し、
第5図に示すように、複数の含水域分布夫々における含
水量と中性子計数率の第1標準相関[外(X+)、中(
Y1)、内(Zl)]を求める。
(Exposure) When the four outer polyurethane foams (7a) are soaked with water as shown in Figure 4 (A), as shown in Figure 4 (A),
As shown in (b), the inner four sheets of polyurethane foam (
7b) and when the four inner polyurethane foams (7c) are soaked with water as shown in Figure 4(c), the water content was variously changed and set. Sample with known water content distribution and water content (B)
Emit fast neutrons from the neutron moisture meter (4) installed at the lth set interval 11=0, that is, in close contact with each other,
Thermal neutrons generated by the action of moisture and acrylic (5) are captured by a neutron moisture meter (4), and the neutron count rate is measured.
As shown in FIG.
Y1), within (Zl)].

(ハ)上記(口)項と同様にして、含水域分布と含水量
が既知で種々変更設定したサンプル(B)12 夫々に対して、第4図(イ)〜(ハ)に示すように第2
設定間隔j#=30mmで設置した中性子水分計(4)
により中性子計数率を計測する。
(C) Samples with known water content distribution and water content, and various settings were made in the same manner as in the above (Part 2). Second
Neutron moisture meter installed at setting interval j#=30mm (4)
Measure the neutron count rate.

そして、第5図に示すように、複数の含水域分布夫々に
おける含水量と中性子計数率の第2標準相関[外(x2
)、中(Y2)、内(Z2)] ヲ求める。
As shown in Fig. 5, the second standard correlation [out(x2
), inside (Y2), inside (Z2)] Find wo.

次に、実配管(A)の水分測定法を説明する。Next, a method for measuring moisture in actual piping (A) will be explained.

(a)  第1図に示すように、実配管(A)に対して
前記第1設定間隔11=0で設置した中性子水分計(4
)から速中性子を放射し、中性子水分計(4)により第
l中性子計数率(n+=8000)を求める。
(a) As shown in Figure 1, a neutron moisture meter (4
), and the l-th neutron count rate (n+=8000) is determined using a neutron moisture meter (4).

(b)  第1図に示すように、実配管(A)に対して
前記第2設定間隔A’2=30mmで設置した中性子水
分計(4)から速中性子を放射し、中性子水分計(4)
により第2中性子計数率(n2#3400)を求める。
(b) As shown in FIG. )
The second neutron count rate (n2#3400) is determined by:

(c)  第6図に示すように、第1中性子計数率(n
l−8000)と予め求めておいた第1標準相13 14 関[外(X1)、中(Y1)、内(Zl)]に基いて、
複数の含水域分布夫々における第1含水量(交点A, 
B, Cに相当する含水量)を求める。
(c) As shown in Figure 6, the first neutron count rate (n
l-8000) and the first standard phase 13 14 obtained in advance [outside (X1), inside (Y1), inside (Zl)],
The first water content (intersection A,
Find the water content (corresponding to B and C).

(d)  第6図に示すように、第2中性子計数率(n
2#3400)と予め求めておいた第2標準相関[外(
X2)、中(Y2)、内(Z2)コに基いて、複数の含
水域分布夫々における第1含水量(交点D, E, F
に相当する含水量)を求める。
(d) As shown in Figure 6, the second neutron count rate (n
2#3400) and the second standard correlation [outside (
X2), middle (Y2), and inner (Z2), the first water content (intersections D, E, F
(moisture content equivalent to).

(e)  第6図に示すように、第1含水量と第2含水
量がほぼ等しくなるものを複数の含水域分布から判定し
、つまり、A=D. Bf−E, C≠Fから水分が外
側に偏在しているというように水分の分布を判定し、か
つ、含水率が約0.32g/ccというように含水量を
判定する。
(e) As shown in FIG. 6, one in which the first water content and the second water content are approximately equal is determined from a plurality of water content distributions, that is, A=D. From Bf-E, C≠F, the distribution of moisture is determined such that moisture is unevenly distributed on the outside, and the moisture content is determined such that the moisture content is approximately 0.32 g/cc.

尚、A?’B, B#E, C≠Fの場合は、水分が中
側に偏在して、B,Eに相当する含水量であると判定し
、また、A≠D, Bf=E, C#Fの場合は、水分
が内側に偏在して、C,Fに相当する含水量であると判
定する。
Furthermore, A? 'B, B#E, C≠F, moisture is unevenly distributed in the middle, and it is determined that the water content corresponds to B, E, and A≠D, Bf=E, C#F In the case of , it is determined that water is unevenly distributed inside and the water content corresponds to C and F.

〔別実施例〕[Another example]

次に別実施例を説明する。 Next, another embodiment will be described.

水分測定対象は、ポリウレタンフォーム(2)等の断熱
材(保温材、保冷材)が好適であるが、例えばコンクリ
ートなどの各種固体を測定対象にできる。また、それら
水分測定対象がいかなる用途であるかは不問であり、従
って、水分測定対象を被検査体(A)と総称する。
The moisture content to be measured is preferably a heat insulating material (heat insulating material, cold insulating material) such as polyurethane foam (2), but various solids such as concrete can also be measured. Moreover, it does not matter what purpose these moisture measurement objects are used for, and therefore, the moisture measurement objects are collectively referred to as the test object (A).

サンプル(B)の作り方は適当に選択でき、被検査体(
A)とサンプル(B)が同材料で、望ましくは、同寸・
同形であれば良い。
The method of preparing the sample (B) can be selected appropriately, and the sample (B) can be prepared as desired.
A) and sample (B) are made of the same material, preferably of the same size and size.
It is fine as long as it is the same shape.

被検査体(A)と中性子水分計(4)の間における第1
設定間隔(l1)及び第2設定間隔(l2)は適当に選
定できるが、l1=0で、l2は、lの中性子計数率に
対するl2の中性子計数率の比が各々の水分分布で異な
るように選定することが望ましい。
The first part between the test object (A) and the neutron moisture meter (4)
The set interval (l1) and the second set interval (l2) can be selected appropriately, but when l1 = 0, l2 is set such that the ratio of the neutron counting rate of l2 to the neutron counting rate of l is different for each moisture distribution. It is desirable to select

第1及び第2標準相関を求めるに際して、含水域分布を
いかに選択するかは、被検査体(A)の含水状況に見合
って適当に定められ、2種類以上の含水域分布を選択す
れば良い。
When determining the first and second standard correlations, how to select the water-containing distribution is determined appropriately depending on the water content of the test object (A), and two or more types of water-containing distributions may be selected. .

15 16 第1及び第2標準相関は表であってもよく、あるいは、
コンピュータに記憶させたもので、第1及び第2中性子
計数率の入力に基いて含水域分布と含水量が自動的に判
定表示されるように、コンピュータがプログラムされて
いてもよい。
15 16 The first and second standard correlations may be tables, or
The information may be stored in a computer, and the computer may be programmed to automatically determine and display the water content distribution and water content based on the input of the first and second neutron counting rates.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施例を示す概念図である
。第3図はサンプルの説明図である。 第4図(イ)ないし(ハ)は実験方法を示す概念図であ
り、第5図は実験結果を示すグラフである。 第6図はデータの処理方法を示すグラフである。 (A)・・・・・・被検査体、(B)・・・・・・サン
プル、(4)・・・・・・中性子水分計。
1 and 2 are conceptual diagrams showing an embodiment of the present invention. FIG. 3 is an explanatory diagram of a sample. 4(a) to 4(c) are conceptual diagrams showing the experimental method, and FIG. 5 is a graph showing the experimental results. FIG. 6 is a graph showing a data processing method. (A)...Test object, (B)...Sample, (4)...Neutron moisture meter.

Claims (1)

【特許請求の範囲】 被検査体(A)と同材料のサンプル(B)に対して第1
設定間隔(l_1)で設置した中性子水分計から単位時
間当り一定個数の速中性子を放射し、前記サンプル(B
)にその厚さ方向における既知の含水域分布で含まれる
既知含水量の水分の作用により生じた熱中性子を前記中
性子水分計(4)で捕捉して、その捕捉した熱中性子の
単位時間当りの個数である中性子計数率を計測し、複数
の含水域分布夫々における含水量と中性子計数率の第1
標準相関を予め求めておき、かつ、前記被検査体(A)
と同材料のサンプル(B)に対して第2設定間隔(l_
2)で設置した中性子水分計(4)から単位時間当り一
定個数の速中性子を放射し、前記サンプル(B)にその
厚さ方向における既知の含水域分布で含まれる既知含水
量の水分の作用により生じた熱中性子を前記中性子水分
計(4)で捕捉して、その捕捉した熱中性子の単位時間
当りの個数である中性子計数率を計測し、複数の含水域
分布夫々における含水量と中性子計数率の第2標準相関
を予め求めておき、そして、 前記被検査体(A)に対して前記第1設定間隔(l_1
)で設置した中性子水分計(4)から単位時間当り一定
個数の速中性子を放射し、前記被検査体(A)に含まれ
る水分の作用により生じた熱中性子を前記中性子水分計
(4)で捕捉して、その捕捉した熱中性子の単位時間当
りの個数である第1中性子計数率を求め、かつ、 前記被検査体(A)に対して前記第2設定間隔(l_2
)で設置した中性子水分計(4)から単位時間当り一定
個数の速中性子を放射し、前記被検査体(A)に含まれ
る水分の作用により生じた熱中性子を前記中性子水分計
(4)で捕捉して、その捕捉した熱中性子の単位時間当
りの個数である第2中性子計数率を求め、そして、 前記第1中性子計数率と前記第1標準相関に基いて前記
複数の含水域分布夫々における第1含水量を求め、かつ
、 前記第2中性子計数率と前記第2標準相関に基いて前記
複数の含水域分布夫々における第2含水量を求め、そし
て、 前記第1含水量と前記第2含水量がほぼ等しくなるもの
を前記複数の含水域分布から判定し、その判定した含水
域分布に水分が偏在すると共に、前記ほぼ等しい第1及
び第2含水量で水分が含まれると判定する水分測定法。
[Claims] The first test object (A) and the sample (B) made of the same material.
A fixed number of fast neutrons are emitted per unit time from the neutron moisture meter installed at set intervals (l_1), and the sample (B
) is captured by the neutron moisture meter (4) due to the action of water with a known water content contained in the known water content distribution in the thickness direction, and the thermal neutrons captured per unit time are The neutron count rate, which is the number of particles, is measured, and the first
A standard correlation is determined in advance, and the test object (A)
The second set interval (l_
A fixed number of fast neutrons are emitted per unit time from the neutron moisture meter (4) installed in 2), and the action of the known water content contained in the sample (B) with a known water content distribution in the thickness direction The thermal neutrons generated by the above are captured by the neutron moisture meter (4), and the neutron count rate, which is the number of captured thermal neutrons per unit time, is measured, and the water content and neutron count in each of the multiple water content distributions are calculated. A second standard correlation of the rate is determined in advance, and the first set interval (l_1
) A fixed number of fast neutrons are emitted per unit time from the neutron moisture meter (4) installed at capture and obtain a first neutron counting rate, which is the number of captured thermal neutrons per unit time; and
) A fixed number of fast neutrons are emitted per unit time from the neutron moisture meter (4) installed at capture and obtain a second neutron count rate, which is the number of captured thermal neutrons per unit time; and, based on the first neutron count rate and the first standard correlation, calculate determining a first water content, and determining a second water content in each of the plurality of water content distributions based on the second neutron count rate and the second standard correlation, and determining the first water content and the second water content. Moisture that is determined to have approximately equal water content from the plurality of water content distributions, and that water is unevenly distributed in the determined water content distribution and that water is contained at the substantially equal first and second water contents. Measurement method.
JP1231875A 1989-09-06 1989-09-06 Moisture measurement method Expired - Lifetime JPH0758253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1231875A JPH0758253B2 (en) 1989-09-06 1989-09-06 Moisture measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1231875A JPH0758253B2 (en) 1989-09-06 1989-09-06 Moisture measurement method

Publications (2)

Publication Number Publication Date
JPH0394148A true JPH0394148A (en) 1991-04-18
JPH0758253B2 JPH0758253B2 (en) 1995-06-21

Family

ID=16930394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1231875A Expired - Lifetime JPH0758253B2 (en) 1989-09-06 1989-09-06 Moisture measurement method

Country Status (1)

Country Link
JP (1) JPH0758253B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121026A (en) * 2005-10-26 2007-05-17 Nippon Hihakai Kensa Kk Inspection method of corrosion
JP5022886B2 (en) * 2006-12-27 2012-09-12 株式会社日立エンジニアリング・アンド・サービス Moisture detection method, moisture detection device and pipe inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202337A (en) * 1984-03-28 1985-10-12 Nippon Doro Kodan New calibrating method of radioisotope type densitometer and moisture meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202337A (en) * 1984-03-28 1985-10-12 Nippon Doro Kodan New calibrating method of radioisotope type densitometer and moisture meter

Also Published As

Publication number Publication date
JPH0758253B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
TW509790B (en) Method for analyzing test piece of uneven density apparatus and system therefor
US7813470B2 (en) Three-dimensional contents determination method using transmitted x-ray
Borbély et al. Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography
RU2011111443A (en) CONSTRUCTION OF THE IMAGE BY THE CHARGED PARTICLES CREATED BY SPACE BEAMS
Bradley et al. Effect of boundary diffusers in a reverberation chamber: Standardized diffuse field quantifiers
EP0766814B1 (en) A method of determining the density profile of a plate-shaped material
Summers et al. Adapting a randomized beam-axis-tracing algorithm to modeling of coupled rooms via late-part ray tracing
US9091942B2 (en) Scatterometry measurement of line edge roughness in the bright field
KR20170063317A (en) Ellipsometer and method of inspecting pattern asymmetry using the same
Jeong Kurtosis of room impulse responses as a diffuseness measure for reverberation chambers
Orr et al. An ‘isolated diffusion’gravimetric calibration procedure for radar and microwave moisture measurement in porous building stone
Heinlein et al. Improved thickness measurement on rough surfaces by using guided wave cut-off frequency
JPH0394148A (en) Moisture measuring method
JP3764407B2 (en) Density non-uniform multilayer analysis method and apparatus and system thereof
Belkebir et al. Microwave tomography system for reinforced concrete structures
Koshti Assessing reliability of NDE flaw detection using smaller number of demonstration data points
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
Koshti Crack detection flaw size parameter modeling for x-rays at grazing angle to crack faces
US2890344A (en) Analysis of materials by x-rays
JPH0340839B2 (en)
Li et al. A note on noise propagation in street canyons
JP4565202B2 (en) Structure mapping method using neutron scattering
JPS6259255B2 (en)
Park et al. Applicability of a mobile in situ gamma detector with different scan speeds for evaluating hotspots in decommissioning sites
Sartowska et al. Determination of chemical homogeneity of historical glassware using autoradiography of potassium natural radioactivity