JPH0394133A - Differential pressure measuring device - Google Patents

Differential pressure measuring device

Info

Publication number
JPH0394133A
JPH0394133A JP23203689A JP23203689A JPH0394133A JP H0394133 A JPH0394133 A JP H0394133A JP 23203689 A JP23203689 A JP 23203689A JP 23203689 A JP23203689 A JP 23203689A JP H0394133 A JPH0394133 A JP H0394133A
Authority
JP
Japan
Prior art keywords
measurement
pressure
microvalve
measuring
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23203689A
Other languages
Japanese (ja)
Inventor
Toshio Aga
阿賀 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP23203689A priority Critical patent/JPH0394133A/en
Publication of JPH0394133A publication Critical patent/JPH0394133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To reduce the cost of the device by providing a microvalve on a measuring pressure introducing path and a connecting path, respectively, and also, providing a controller for bringing this microvalve to opening/closing operation. CONSTITUTION:A microvalve 20 is provided on measuring pressure introducing paths 16, 17 and a connecting path 18, respectively of a differential pressure sensor body 10, and also, a microvalve controller 40 for instructing an opening/ closing operation to the valve 20 is provided. Usually the introducing paths 16, 17 are communicating, therefore, measuring pressure is applied from the right and the left of the body 10, a measuring diaphragm 13 is displaced by differential pressure of the measuring pressure, and an electric signal output corresponding to the differential pressure can be obtained. In the case of adjusting a zero point of the device, the zero point can be adjusted by driving the controller 40, closing the introducing paths 16, 17 and opening the connecting path 18. Accordingly, a three-way valve becomes unnecessary, the device is made small in size and light in weight, and the cost of the device can be reduced.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、小型軽量化、配管等の部品の不要化等により
、コストダウンが図れ、ゼロ点校正を差圧測定装置自身
が行い得る差圧測定装置に関するものである. く従来の技術〉 第6図は従来より一般に使用されているオリフイスによ
る流量測定シスデムの従来例の構成説明図である。
[Detailed description of the invention] Industrial application field> The present invention is a differential pressure measuring device that can reduce costs by being smaller and lighter and eliminates the need for parts such as piping, and can perform zero point calibration by the differential pressure measuring device itself. This relates to pressure measuring devices. BACKGROUND ART FIG. 6 is a diagram illustrating the configuration of a conventional example of a flow rate measurement system using an orifice that has been commonly used in the past.

図において、Aは測定流体の流れる管路である.Bは管
路Aに設けられたオリフイスである。
In the figure, A is the conduit through which the measurement fluid flows. B is an orifice provided in conduit A.

CはオリフイスBの上流、あるいは、下流の管路Aに取
付けられた導管である。C1は導管を開閉する元弁であ
る。
C is a conduit attached to conduit A upstream or downstream of orifice B. C1 is a main valve that opens and closes the conduit.

Dは導管Cに接続された三岐井である。DIは三枝弁D
に設けられたスl〜ツプ弁、D 2は均圧弁である。
D is a Sanki well connected to conduit C. DI is Saegusaben D
D2 is a pressure equalizing valve.

Eは、三岐弁Dに接続された差圧測定装置である。E is a differential pressure measuring device connected to the three-way valve D.

く発明が解決しようとする課題〉 しかしながら、この様な装置においては、三岐弁Dと差
圧測定装JEとは別体であり、相互の配管が必要となる
。また、装置が複雑となり、装置の小型軽量化、コスト
ダウンが図れない。
Problems to be Solved by the Invention> However, in such a device, the three-way valve D and the differential pressure measuring device JE are separate bodies, and require mutual piping. Further, the device becomes complicated, and it is difficult to reduce the size and weight of the device and reduce the cost.

装置の両測定入力を均圧にし、装置のセロ点を調整する
場合には、ストップ弁D1を閉にし、均圧弁D2を開に
するか、人か操作するので、操作ミスが生じ易い。
When equalizing the pressures of both measurement inputs of the device and adjusting the cello point of the device, the stop valve D1 is closed and the pressure equalization valve D2 is opened or manually operated, so that operational errors are likely to occur.

本発明は、この問題点を解決するものである。The present invention solves this problem.

本発明の目的は、小型軽量化、配管等の部品の不要化等
により、コストタウンが図れ、ゼロ点校正を差圧測定装
置自身か行い得る差圧測定装置を提供するにある. く課題を解決するための手段〉 この目的を達戒するために、本発明は、ブロック状の金
属材よりなる本体と該本体内部に設けられた内部室と該
内部室を測定圧が導入される2個の測定室に分ける測定
ダイアフラムと前記2個の測定室に測定圧をそれぞれ導
入する2個の測定圧導入路と該測定圧導入路の途中を連
絡する連絡路とを具備する差圧センサ本体と、シリコン
基板と該シリコン基板に設けられた入力孔と該入力孔に
連通ずる出力孔と前記入力孔に対向して設けられ該入力
孔を開閉するシリコンタイアフラムと前記シリコン基板
に設けられた励磁コイルと前記シリコンダイアプラムに
設けられ前記励磁コイルが励磁された場合に吸引される
磁性膜とを備え前記測定圧導入路と前記連絡路に設けら
れ該測定圧導入路と該連絡路とをそれぞれ開閉する3個
のマイクロバルブと、前記本体に設けられ該マイクロバ
ルブに所要の開閉操作を指示するマイクロバルブ制御装
置とを具備してなる差圧測定装置を構成したものである
An object of the present invention is to provide a differential pressure measuring device that can reduce costs by being smaller and lighter and eliminates the need for parts such as piping, and can perform zero point calibration by itself. Means for Solving the Problems> In order to achieve this object, the present invention provides a main body made of a block-shaped metal material, an internal chamber provided inside the main body, and a measuring pressure introduced into the internal chamber. A pressure differential comprising a measurement diaphragm that divides into two measurement chambers, two measurement pressure introduction paths that introduce measurement pressure into the two measurement chambers, and a communication path that connects the measurement pressure introduction paths midway. A sensor body, a silicon substrate, an input hole provided in the silicon substrate, an output hole communicating with the input hole, a silicon tire phragm provided opposite to the input hole for opening and closing the input hole, and provided in the silicon substrate. an excitation coil provided on the silicon diaphragm and a magnetic film that is attracted when the excitation coil is excited; This is a differential pressure measurement device comprising three microvalves that open and close the microvalves, respectively, and a microvalve control device that is provided on the main body and instructs the microvalves to perform the required opening and closing operations.

〈作用〉 以上の構成において、通常は、測定圧導入路はそれぞれ
連通されているので、本体の左右から、測定圧力が加わ
り、測定タイアフラムは測定圧力の差圧によって変位す
る.測定ダイアフラムの変位によって、差圧に対応した
電気信号出力が得られる。
<Function> In the above configuration, the measurement pressure introduction paths are usually communicated with each other, so measurement pressure is applied from the left and right sides of the main body, and the measurement tire flammable is displaced by the differential pressure between the measurement pressures. The displacement of the measuring diaphragm provides an electrical signal output corresponding to the differential pressure.

装置の両測定入力を均圧にし、装置の七ロ点を調整する
場合には、マイクロバルブ制御装置を駆動して、マイク
ロバルブにより測定圧導入路を閉にし、連絡路を開にし
てから装置のゼロ点を調整する 通常、マイクロバルブは、開いており、必要時に、励磁
コイルに電気信号を印加する事により、励磁コイルに発
生した磁界により磁性膜の設けられたシリコンダイアフ
ラムを吸引し、入力孔を閉じる。
When equalizing the pressure of both measuring inputs of the device and adjusting the seven points of the device, drive the microvalve control device, close the measuring pressure introduction path with the microvalve, open the communication path, and then turn the device on. Normally, the microvalve is open, and when necessary, by applying an electric signal to the excitation coil, the magnetic field generated in the excitation coil attracts the silicon diaphragm provided with the magnetic film, and the input Close the hole.

以下、実施例に基づき詳細に説明する。Hereinafter, a detailed explanation will be given based on examples.

く実施例〉 第1図は本発明の一実施例の要部構戒説明図、第2図は
第1図の要部部品説明図である。
Embodiment> FIG. 1 is an explanatory view of the main part structure of an embodiment of the present invention, and FIG. 2 is an explanatory view of the main parts of FIG. 1.

図において、10は本体11、内部室12、測定ダイア
フラム13、ピエゾ抵抗素子131、測定室14.15
、測定圧導入路j6,17、受圧室161.171、連
絡路18とよりなる差圧センサ本体である。
In the figure, 10 indicates a main body 11, an internal chamber 12, a measuring diaphragm 13, a piezoresistive element 131, and a measuring chamber 14, 15.
, measurement pressure introduction paths j6 and 17, pressure receiving chambers 161 and 171, and communication path 18.

本体11は、ブロック状の金属材よりなる。The main body 11 is made of a block-shaped metal material.

内部室12は、本体11の内部に設けられている。Internal chamber 12 is provided inside main body 11 .

測定ダイアフラム13は、内部室12を測定圧が導入さ
れる2個の測定室14.15に分ける。
The measuring diaphragm 13 divides the internal chamber 12 into two measuring chambers 14,15 into which the measuring pressure is introduced.

ピエゾ抵抗素子131は、測定ダイアフラム13に設け
られている。
A piezoresistive element 131 is provided on the measurement diaphragm 13.

測定圧導入路16.17は、受圧室161,171より
それぞれ2個の測定室14.15に測定圧を導入する。
The measurement pressure introduction paths 16.17 introduce measurement pressure from the pressure receiving chambers 161 and 171 into the two measurement chambers 14.15, respectively.

連絡路18は、測定圧導入路16.17の途中を連絡す
る。
The communication path 18 connects the measurement pressure introduction path 16.17.

20は、測定圧導入路16.17と連絡路18に設けら
れ測定圧導入路16.17と連絡路18とをそれぞれ開
閉する3個のマイクロバルブである。
Reference numeral 20 denotes three microvalves that are provided in the measurement pressure introduction path 16.17 and the communication path 18 and open and close the measurement pressure introduction path 16.17 and the connection path 18, respectively.

マイクロバルブ20は、第2図に示す如く、第1のシリ
コン基板21、開閉室211、入力孔22、ヂューブ2
21、第2のシリコン基板23、凹部24、ダイアフラ
ム25、小突起251、励磁コイル26、アルミパター
ン261、連通孔27、磁性膜28、第3のシリコン基
板29、導圧室31、連通孔231、出力孔32、チュ
ーブ321、スペーサ33と金属枠34とよりなる。
As shown in FIG. 2, the microvalve 20 includes a first silicon substrate 21, an opening/closing chamber 211, an input hole 22, and a tube 2.
21, second silicon substrate 23, recess 24, diaphragm 25, small protrusion 251, excitation coil 26, aluminum pattern 261, communication hole 27, magnetic film 28, third silicon substrate 29, pressure chamber 31, communication hole 231 , an output hole 32, a tube 321, a spacer 33, and a metal frame 34.

開閉室211は、第1のシリコン基板21に設けられて
いる。
The opening/closing chamber 211 is provided on the first silicon substrate 21 .

入力孔22は、第1のシリコン基板21に一端が接続さ
れたガラス材よりなるチューブ221に設けられている
The input hole 22 is provided in a tube 221 made of glass whose one end is connected to the first silicon substrate 21 .

第2のシリコン基板23は、第1のシリコン基板21に
一面か接する. 凹部24は、第2のシリコン基板23に設けられシリコ
ン基板23にダイアフラム25を構成する。
The second silicon substrate 23 is in contact with the first silicon substrate 21 on one side. The recess 24 is provided in the second silicon substrate 23 and constitutes a diaphragm 25 in the silicon substrate 23.

ダイアフラム25は、入力孔22に対向して設けられ、
入力孔22を開閉する。
The diaphragm 25 is provided facing the input hole 22,
The input hole 22 is opened and closed.

小突起251はダイアフラム25に設けられている。The small protrusion 251 is provided on the diaphragm 25.

励磁コイル26は第1のシリコン基板21に設けられて
いるこの場合は、第4図に示す如く、シリコン基板21
にアルミパターン261が設けられている。
The excitation coil 26 is provided on the first silicon substrate 21. In this case, as shown in FIG.
An aluminum pattern 261 is provided on.

連通孔27はシリコン基板21に設けられ入力孔22と
開閉室211とを連通ずる。
The communication hole 27 is provided in the silicon substrate 21 and allows the input hole 22 and the opening/closing chamber 211 to communicate with each other.

磁性膜28は、シリコンダイアフラム25に設けられ励
磁手段26に吸引される。この場合は、第5図に示す如
く、純鉄あるいはパーマロイからなり、シリコンダイア
プラムにスパッタあるいは蒸着により設けられ、磁化処
理される。
The magnetic film 28 is provided on the silicon diaphragm 25 and is attracted to the excitation means 26 . In this case, as shown in FIG. 5, it is made of pure iron or permalloy, is provided on a silicon diaphragm by sputtering or vapor deposition, and is magnetized.

第3のシリコン基板2つは、第2のシリコン基板23に
一面が接して設けられ、凹部24と導圧室31を構成す
る。
The two third silicon substrates are provided with one side in contact with the second silicon substrate 23, and form the recess 24 and the pressure chamber 31.

連通孔211は、第2のシリコン基板23に設けられ、
開閉室211と導圧室31とを連通ずる。
The communication hole 211 is provided in the second silicon substrate 23,
The opening/closing chamber 211 and the pressure guiding chamber 31 are communicated with each other.

出力孔32は、第3のシリコン基板29に一端が取付け
られたガラス材よりなるチューブ321に設けられ、導
圧室3lと外部とを連通する。
The output hole 32 is provided in a tube 321 made of glass whose one end is attached to the third silicon substrate 29, and communicates the pressure chamber 3l with the outside.

スベーサ33は、第1のシリコン基板21または第3の
シリコン基板29と、金属枠34との間に設けられたカ
ラス材よりなる。
The spacer 33 is made of a glass material provided between the first silicon substrate 21 or the third silicon substrate 29 and the metal frame 34.

金属枠34はシリコン基板21,23.29相互の剥離
を防止する為のものである。
The metal frame 34 is for preventing the silicon substrates 21, 23, 29 from peeling off from each other.

40は、本体10に設けられマイクロバルブ20に所要
の開閉操作を指示するマイクロバルブ制御装置である。
Reference numeral 40 denotes a microvalve control device that is provided in the main body 10 and instructs the microvalve 20 to perform required opening/closing operations.

101,102は、測定室14,1.5、測定圧導入路
16,17、受圧室161,171、連絡路18に封入
される封入液である。この場合はシリコンオイルが用い
られている。
Reference numerals 101 and 102 denote liquids sealed in the measurement chambers 14 and 1.5, the measurement pressure introduction paths 16 and 17, the pressure receiving chambers 161 and 171, and the communication path 18. In this case, silicone oil is used.

以上の構成において、通常は、測定圧導入路17,18
はそれぞれ連通されているので、差圧セハサ本体10の
左右から、測定圧力が加わり、測定ダイアフラム13は
測定圧力の差圧によって変位する。測定ダイアフラム1
3の変位によって、差圧に対応した電気信号出力が得ら
れる。
In the above configuration, normally the measurement pressure introduction paths 17, 18
Since these are connected to each other, measurement pressure is applied from the left and right sides of the differential pressure separator main body 10, and the measurement diaphragm 13 is displaced by the difference in the measurement pressures. Measuring diaphragm 1
By the displacement of 3, an electric signal output corresponding to the differential pressure can be obtained.

装置の両測定入力を均圧にし、装置のセロ点を調整する
場合には、マイクロバルブ制御装置30を駆動して、マ
イクロバルブ20により測定圧導入路16.17を閉に
し、連絡路18を開にしてから装置のゼロ点を調整する 通常、マイクロバルブ20は、開いており、必要時に、
励磁コイル26に電気信号を印加する事により、励磁コ
イル26に発生した磁界により磁性膜28の設けられた
シリコンダイアフラム25を吸引し、入力孔22を閉じ
る。
When equalizing the pressure of both measurement inputs of the device and adjusting the cello point of the device, the microvalve control device 30 is driven to close the measurement pressure introduction paths 16 and 17 using the microvalve 20, and the communication path 18 is closed. Normally, the microvalve 20 is open and then adjusted when necessary.
By applying an electric signal to the excitation coil 26, the magnetic field generated in the excitation coil 26 attracts the silicon diaphragm 25 provided with the magnetic film 28, thereby closing the input hole 22.

この結果、 (1)三岐弁が不要であるので、ボルト、本体フランジ
、取付けブラケット等が不要となり、小型、軽量、コス
トダウンが図れる。
As a result, (1) Since there is no need for a three-way valve, bolts, body flanges, mounting brackets, etc. are no longer necessary, making it possible to reduce size, weight, and cost.

(2〉三岐弁か不要になり、差圧測定装置本体部分と三
岐弁間の配管が不要になり、計装が容易となる。
(2) There is no need for a three-way valve, and piping between the main body of the differential pressure measuring device and the three-way valve is no longer required, making instrumentation easier.

{3}三岐弁と同様の機能を自動化でき、操作ミスかな
くなる. (4)ゼロ調整か遠隔操作により可能となる。
{3} Functions similar to three-way valves can be automated, eliminating operational errors. (4) Possible by zero adjustment or remote control.

なお、マイクロバルブ20の配置位置は、測定圧導入路
16.17と連絡路l8とをそれぞれ開閉出来る位置で
あれば良いことは勿論である。
It goes without saying that the microvalve 20 may be placed in any position as long as it can open and close the measurement pressure introduction paths 16, 17 and the communication path 18, respectively.

〈発明の効果〉 以上説明したように、本発明は、ブロック状の金属材よ
りなる本体と該本体内部に設けられた内部室と該内部室
を測定圧が導入される2個の測定室に分ける測定タイア
フラムと前記2個の測定室に測定圧をそれぞれ導入する
2個の測定圧導入路と該測定圧導入路の途中を連絡する
連絡路とを具備する差圧センサ本体と、シリコン基板と
該シリコン基板に設けられた入力孔と該入力孔に連通ず
る出力孔と前記入力孔に対向して設けられ該入力孔を開
閉するシリコンダイアフラムと前記シリコン基板に設け
られた励磁コイルと前記シリコンダイアプラムに設けら
れ前記励磁コイルが励磁された場合に吸引される磁性膜
とを備え前記測定圧導入路と前記連絡路に設けられ該測
定圧導入路と該連絡路とをそれぞれ開閉する3個のマイ
クロバルブと、前記本体に設けられ該マイクロバルブに
所要の開閉操作を指示するマイクロバルブ制御装置とを
具備してなる差圧測定装置を楊成した。
<Effects of the Invention> As explained above, the present invention has a main body made of a block-shaped metal material, an internal chamber provided inside the main body, and the internal chamber into two measurement chambers into which measurement pressure is introduced. A differential pressure sensor body comprising a measuring tire phragm that separates the measurement chambers, two measuring pressure introducing paths for introducing measuring pressure into the two measuring chambers, and a communication path connecting the measuring pressure introducing paths midway, and a silicon substrate. An input hole provided on the silicon substrate, an output hole communicating with the input hole, a silicon diaphragm provided opposite to the input hole for opening and closing the input hole, an excitation coil provided on the silicon substrate, and the silicon diaphragm. a magnetic film that is provided on the plum and is attracted when the excitation coil is excited; A differential pressure measuring device has been developed which includes a micro-valve and a micro-valve control device provided on the main body and instructing the micro-valve to perform required opening/closing operations.

この結果、 (1)三岐弁が不要であるので、ボルト、本体フランジ
、取付けブラゲット等が不要となり、小型、軽量、コス
トダウンが図れる。
As a result, (1) Since a three-way valve is not required, bolts, body flanges, mounting bragets, etc. are no longer necessary, making it possible to reduce size, weight, and cost.

(2)三岐弁か不要になり、差圧測定装置本体部分と三
岐弁間の配管が不要になり、計装が容易となる。
(2) There is no need for a three-way valve, and piping between the main body of the differential pressure measuring device and the three-way valve is no longer necessary, making instrumentation easier.

(3)三岐弁と同様の機能を自動化でき、操作ミスがな
くなる. (4)ゼロ調整が遠隔操作により可能となる。
(3) The same functions as the three-way valve can be automated, eliminating operational errors. (4) Zero adjustment is possible by remote control.

従って、本発明によれば、小型軽量化、配管等の部品の
不要化等により、コストダウンが図れ、ゼロ点校正を差
圧測定装置自身が行い得る差圧測定装置を実現すること
ができる,
Therefore, according to the present invention, it is possible to realize a differential pressure measuring device that can reduce costs by reducing size and weight, eliminating the need for parts such as piping, and can perform zero point calibration by the differential pressure measuring device itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部構成説明図、第2図は
第1図の部品説明図、第3図は第2図の11 12 斜視図、第4由,第5図は第2図の部品説明図、第6図
は従来より一般に使用されている従来例の構成説明図で
ある。 10・・・差圧センサ、11・・・本体、12・・・内
部室、13・・・測定ダイアフラム、131・・・ピエ
ゾ抵抗素子、14.15・・・測定室、16.17・・
・測定圧導入路、161.,171・・・受圧室、18
・・・連絡路、20・・・マイクロバルブ、21・・・
第1のシリコン蘂板、211・・・開閉室、22・・一
人力孔、22】・・・チューブ、23・・・第2のシリ
コン基板、231・・・辿通孔、24・・・凹部、25
・・・ダイアフラム、251・・・少突起、26・・・
励磁コイル、27・・・連通孔、28・・・磁性膜、2
9・・・第3のシリコン基板、31・・・導圧室、32
・・・出力孔、321・・・ヂューブ、33・・・スベ
ーサ、34・・・金属枠。40・・・マイクロバルブ制
御装置、101.,102・・・封入液。 か寸 (VVIr′PI
Figure 1 is an explanatory diagram of the main part configuration of an embodiment of the present invention, Figure 2 is an explanatory diagram of the parts of Figure 1, Figure 3 is a perspective view of Figure 2, and Figures 4 and 5 are FIG. 2 is an explanatory view of parts, and FIG. 6 is an explanatory view of the configuration of a conventional example that has been generally used. DESCRIPTION OF SYMBOLS 10... Differential pressure sensor, 11... Main body, 12... Internal chamber, 13... Measurement diaphragm, 131... Piezo resistance element, 14.15... Measurement chamber, 16.17...
-Measuring pressure introduction path, 161. , 171...pressure receiving chamber, 18
...Communication path, 20...Micro valve, 21...
First silicon leg plate, 211... Opening/closing chamber, 22... Single force hole, 22]... Tube, 23... Second silicon substrate, 231... Tracing hole, 24... recess, 25
...Diaphragm, 251...Small protrusion, 26...
Excitation coil, 27... Communication hole, 28... Magnetic film, 2
9... Third silicon substrate, 31... Pressure chamber, 32
...Output hole, 321...Dube, 33...Subasa, 34...Metal frame. 40...Microvalve control device, 101. , 102... Enclosed liquid. Kasun (VVIr'PI

Claims (1)

【特許請求の範囲】 ブロック状の金属材よりなる本体と 該本体内部に設けられた内部室と 該内部室を測定圧が導入される2個の測定室に分ける測
定ダイアフラムと 前記2個の測定室に測定圧をそれぞれ導入する2個の測
定圧導入路と 該測定圧導入路の途中を連絡する連絡路と を具備する差圧センサ本体と、 シリコン基板と 該シリコン基板に設けられた入力孔と該入力孔に連通す
る出力孔と 前記入力孔に対向して設けられ該入力孔を開閉するシリ
コンダイアフラムと 前記シリコン基板に設けられた励磁コイルと前記シリコ
ンダイアフラムに設けられ前記励磁コイルが励磁された
場合に吸引される磁性膜とを備え前記測定圧導入路と前
記連絡路に設けられ該測定圧導入路と該連絡路とをそれ
ぞれ開閉する3個のマイクロバルブと、 前記本体に設けられ該マイクロバルブに所要の開閉操作
を指示するマイクロバルブ制御装置とを具備してなる差
圧測定装置。
[Scope of Claims] A main body made of a block-shaped metal material, an internal chamber provided inside the main body, a measurement diaphragm that divides the internal chamber into two measurement chambers into which measurement pressure is introduced, and the two measurement chambers. A differential pressure sensor body comprising two measurement pressure introduction paths each introducing measurement pressure into a chamber and a communication path connecting the measurement pressure introduction paths midway, a silicon substrate and an input hole provided in the silicon substrate. an output hole that communicates with the input hole; a silicon diaphragm that is provided opposite to the input hole and opens and closes the input hole; an excitation coil provided on the silicon substrate; and an excitation coil provided on the silicon diaphragm that excites the excitation coil. three microvalves provided in the measuring pressure introducing path and the communicating path and opening and closing the measuring pressure introducing path and the communicating path, respectively; A differential pressure measuring device comprising a microvalve control device that instructs a microvalve to perform required opening/closing operations.
JP23203689A 1989-09-07 1989-09-07 Differential pressure measuring device Pending JPH0394133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23203689A JPH0394133A (en) 1989-09-07 1989-09-07 Differential pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23203689A JPH0394133A (en) 1989-09-07 1989-09-07 Differential pressure measuring device

Publications (1)

Publication Number Publication Date
JPH0394133A true JPH0394133A (en) 1991-04-18

Family

ID=16932962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23203689A Pending JPH0394133A (en) 1989-09-07 1989-09-07 Differential pressure measuring device

Country Status (1)

Country Link
JP (1) JPH0394133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508819A (en) * 2017-12-21 2021-03-11 アリアングループ・エス・ア・エス Differential pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508819A (en) * 2017-12-21 2021-03-11 アリアングループ・エス・ア・エス Differential pressure sensor

Similar Documents

Publication Publication Date Title
JP3147938B2 (en) Liquid outflow control valve, microvalve, and method of controlling liquid outflow control valve
EP1080323B1 (en) Electrically controllable valve
EP0094429B1 (en) Apparatus for conveying fluid pressures to a differential pressure transducer
EP0706004B1 (en) Relief valve
JP4086057B2 (en) Mass flow control device and verification method thereof
JPS6084404A (en) Servo valve
JP2001304440A (en) Microvalve device and manufacturing method of the same
JPH11119835A (en) Mass flow controller and integrated flow rate controller
JPH0394133A (en) Differential pressure measuring device
AU2012219366B2 (en) Pressure transducer arrangement
JP2002099330A (en) Flow controller
JP3467505B2 (en) Control valve for mass flow controller
JPH0238936A (en) Measuring instrument for differential pressure
JPH01267431A (en) Differential pressure measuring apparatus
JPH0450743A (en) Differential pressure transmitter
JP2570615Y2 (en) Etchant gas trace supply equipment for dry etching equipment
JPH02196940A (en) Differential pressure measuring instrument
JPH04105030A (en) Differential pressure transmitter
JPH1113926A (en) Electric-pneumatic converter and valve unit of the same
JPH0875584A (en) Differential pressure measuring instrument
TWM643001U (en) Airflow sensing assembly, airflow controlling assembly, and sensing and controlling module of airflow for an active aerosol suction device
JPH06221885A (en) Eddy flowmeter
JPH01304338A (en) Differential pressure measuring instrument
JP2002023858A (en) Pilot type pressure proportional control valve system
JPH0440001Y2 (en)