JPH04105030A - Differential pressure transmitter - Google Patents

Differential pressure transmitter

Info

Publication number
JPH04105030A
JPH04105030A JP22241690A JP22241690A JPH04105030A JP H04105030 A JPH04105030 A JP H04105030A JP 22241690 A JP22241690 A JP 22241690A JP 22241690 A JP22241690 A JP 22241690A JP H04105030 A JPH04105030 A JP H04105030A
Authority
JP
Japan
Prior art keywords
differential pressure
pressure
valve
zero point
valve mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22241690A
Other languages
Japanese (ja)
Inventor
Taichi Watanabe
太一 渡辺
Akira Ishii
明 石井
Yukio Hoshino
星野 幸男
Satoru Ohata
覚 大畠
Wataru Fukai
亘 深井
Tadahiro Hayashi
林 忠広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22241690A priority Critical patent/JPH04105030A/en
Publication of JPH04105030A publication Critical patent/JPH04105030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make zero point adjustment without provision of a three-way valve external to a differential pressure transmitter by providing a bypass, and furnishing a valve driving mechanism to control No.1-No.3 valve mechanisms, which opens and shuts each diaphragm side from the bypass. CONSTITUTION:When zero point adjustment is to be made, valve operating switches 41-43 and a zero point adjusting switch 44 are turned into the zero point adjust position, and in correspondence thereto current is fed to drive coils in a signal processing circuit 3, and valve mechanisms 8a, 8b are shut while another valve mechanism 12 is opened. Thereby the high pressure side and low pressure side upstream parts 9aa, 9ba of a U-form pressure medium passage 9 are closed while the high pressure side and low pressure side downstream parts 9ab, 9bb are put in communication through a bypass 11, which provides a uniform pressure in the parts 9ab, 9bb, and the same pressure is applied to both sides of a differential pressure sensing element 10. At this time, the sensing element 10 emits a differential pressure sensing signal when the differential pressure is zero, and this signal is passed to the signal processing circuit 3 via a signaling line 14, and thereby zero point adjustment is made. Thus zero point adjustment can be done without provision of any three-way valve mechanism external to a differential pressure transmitter.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は各種のプラント等で使用される差圧伝送器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a differential pressure transmitter used in various plants and the like.

(従来の技術) 各種のプラント等で使用される差圧伝送器の1つとして
、従来、第4図に示すものが知られている。
(Prior Art) As one of the differential pressure transmitters used in various plants, the one shown in FIG. 4 is conventionally known.

この図に示す差圧伝送器は厚板状に形成されるブロック
部10]と、このブロック部101の両側に各々設けら
れる受圧フランジ部102とを備えており、各受圧フラ
ンジ部102に接続された各プロセス配管103a、1
03bの圧力差を検出してこれを外部に伝送する。
The differential pressure transmitter shown in this figure includes a block part 10 formed in a thick plate shape, and pressure receiving flange parts 102 provided on both sides of this block part 101, and connected to each pressure receiving flange part 102. Each process pipe 103a, 1
03b is detected and transmitted to the outside.

ブロック部101は厚板状に形成されるブロック本体1
05と、このブロック本体105の両面に形成された各
四部106を各々覆うように設けられる隔壁ダイヤフラ
ム107と、前記各凹部106を連通させるように前記
ブロック本体105内に形成された圧力媒体通路108
のほぼ中央部分に設けられる差圧検出素子109と、前
記圧力媒体通路108と前記プロ・ツク本体105の上
部とを貫通するように前記ブロック本体105内に形成
された信号線用穴110に挿通され前記差圧検出素子1
09の出力を外部に導く信号線111と、前記ブロック
本体105の前記信号線用穴110を塞ぎながら前記信
号線111を外部に導くハーメチックシール112と、
前記各隔壁ダイヤフラム107によって密閉された前記
圧力媒体通路108内および信号線用穴110に充填さ
れるシリコーンオイル、エチレングリコール等の圧力媒
体113とを備えている。
The block part 101 is a block body 1 formed in a thick plate shape.
05, a partition diaphragm 107 provided to cover each of the four parts 106 formed on both sides of the block body 105, and a pressure medium passage 108 formed in the block body 105 so as to communicate with each of the recesses 106.
A differential pressure detection element 109 provided approximately in the center of the block body 105 is inserted into a signal line hole 110 formed in the block body 105 so as to pass through the pressure medium passage 108 and the upper part of the block body 105. and said differential pressure detection element 1
a signal line 111 that guides the output of 09 to the outside, and a hermetic seal 112 that guides the signal line 111 to the outside while closing the signal line hole 110 of the block body 105;
A pressure medium 113 such as silicone oil or ethylene glycol is provided to fill the pressure medium passage 108 sealed by each partition diaphragm 107 and the signal line hole 110.

また、各受圧フランジ部102は各々前記ブロック本体
105の各面を覆うように設けられる厚板状のフランジ
本体115と、このフランジ本体115の前記隔壁ダイ
ヤフラム107側に形成された周囲溝116内に(1)
入されるパツキン117と、これらの各フランジ本体1
15を前記プロ・ツク本体105の両面に密着させるポ
ルドナ・ント機構118とを備えており、前記プロセス
配管]03a、103bの圧力を前記フランジ本体・1
15の上部に形成された通路穴119を介して前記フラ
ンジ本体115の前記隔壁ダイヤプラム側に形成された
四部120に導く。
Further, each pressure receiving flange portion 102 includes a thick plate-shaped flange body 115 provided so as to cover each surface of the block body 105, and a peripheral groove 116 formed on the partition wall diaphragm 107 side of this flange body 115. (1)
The packing 117 to be inserted and each of these flange bodies 1
15 to both sides of the flange body 105.
It leads to the four parts 120 formed on the partition wall diaphragm side of the flange main body 115 through a passage hole 119 formed in the upper part of the flange body 115 .

そして、各プロセス配管1 (’l 3a、 103b
からの圧力によって各隔壁ダイヤフラム1(]7か歪め
ば、これに応して差圧検出素子109の各面に加えられ
る圧力に差が生して、これか差圧検出素子109によっ
て検出され、この検出結果か信号線111を介して外部
に出力される。
Then, each process pipe 1 ('l 3a, 103b
If each partition diaphragm 1(]7 is distorted by the pressure from This detection result is output to the outside via the signal line 111.

また、このような差圧伝送器以外にも、種々の構造のも
のも知られているが、原理的には同様な測定原理に基づ
いている。
In addition to such differential pressure transmitters, various structures are also known, but they are based on the same measurement principle.

(発明が解決しようとする課題) しかしながらこのような差圧伝送器では、経年変化や過
大圧力等によってごくわずかな永久歪みが生じ、これが
原因で零点ドリフトを起こすことがある。
(Problem to be Solved by the Invention) However, in such a differential pressure transmitter, slight permanent distortion occurs due to aging, excessive pressure, etc., and this may cause zero point drift.

そこで、このような差圧伝送器においては、据付は時に
各プロセス配管103a、103bに予めバイパス管1
21を掛は渡すとともに、これら各プロセス配管103
a、103bおよびバイパス管121にストップ弁12
2a、122b、122cを各々取り付けて三岐弁機横
を構成し、零点調整時にはバイパス管121に設けられ
たストップ弁122Cを開状態にするとともに、各プロ
セス配管103a、103bに設けられたストップ弁1
22a、122bを閉状態にして差圧検出素子109に
加えられる圧力を同一にし、この差圧検出素子109か
ら出力される信号のオフセット量を測定した後、バイパ
ス管121に設けられたストップ弁122Cを閉状態に
するとともに、各プロセス配管103a、103bに設
けられたストップ弁122a、122bを開状態にして
差圧測定を行なうようにしている。
Therefore, when installing such a differential pressure transmitter, a bypass pipe 1 is sometimes installed in each process pipe 103a, 103b in advance.
21, and each of these process piping 103
a, 103b and the stop valve 12 in the bypass pipe 121.
2a, 122b, and 122c are respectively attached to form the side of the three-way valve machine, and when adjusting the zero point, the stop valve 122C provided in the bypass pipe 121 is opened, and the stop valve provided in each process pipe 103a, 103b is opened. 1
22a and 122b are closed to make the pressure applied to the differential pressure detection element 109 the same, and after measuring the offset amount of the signal output from the differential pressure detection element 109, the stop valve 122C provided in the bypass pipe 121 is closed. is closed, and stop valves 122a and 122b provided in each process pipe 103a and 103b are opened to measure the differential pressure.

しかしながら、このような方法では、三岐弁機゛構の開
閉によって零点調整を行なうようにしているので、プロ
セス設計の制約等によってこのような三岐弁機構を設け
ることができない場合には、零点調整を行なうことがで
きなくなるという問題があった。
However, in this method, the zero point adjustment is performed by opening and closing the three-way valve mechanism, so if such a three-way valve mechanism cannot be provided due to process design constraints, the zero point adjustment is performed by opening and closing the three-way valve mechanism. There was a problem that adjustments could not be made.

本発明は上記の事情に鑑み、差圧伝送器外に三岐弁機構
を設けることなく零点調整を行なうことができる差圧伝
送器を提供することを目的としている。
In view of the above circumstances, it is an object of the present invention to provide a differential pressure transmitter that can perform zero point adjustment without providing a three-way valve mechanism outside the differential pressure transmitter.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記の目的を達成するために本発明による差圧伝送器は
、ブロック本体内に形成された圧力媒体通路を2分割す
るよう遮る位置に設けられ、前記2分割した圧力媒体通
路の各々の圧力媒体が各面に接する板状の差圧検出素子
と、前記圧力媒体通路の両端を各々閉じる隔壁ダイヤフ
ラムと、前記2分割された圧力媒体通路の両方をバイパ
スするバイパス路と、このバイパス路を開通/遮断させ
る第1弁機構と、前記圧力媒体通路の前記バイパス路よ
り各隔壁ダイヤフラム側を開通/遮断させる第2、第3
弁機構と、これら第1弁機構ないし第3弁機構の開通/
遮断を制御する弁駆動部とを備えたことを特徴としてい
る。
(Means for Solving the Problems) In order to achieve the above object, a differential pressure transmitter according to the present invention is provided at a position that interrupts a pressure medium passage formed in a block body so as to divide the pressure medium passage into two. a plate-shaped differential pressure detection element in which the pressure medium of each of the pressure medium passages is in contact with each side; a partition diaphragm that closes both ends of the pressure medium passage; and a bypass that bypasses both of the two divided pressure medium passages. a first valve mechanism for opening/blocking the bypass passage, and second and third valve mechanisms for opening/blocking each partition wall diaphragm side of the bypass passage of the pressure medium passage.
Opening of the valve mechanism and these first to third valve mechanisms/
It is characterized by comprising a valve drive unit that controls shutoff.

(作用) 上記の構成において、弁駆動部によって第1弁機構ない
し第3弁機構の開通/遮断を制御して各隔壁ダイヤフラ
ムに加えられた圧力を差圧検出素子の各面に各々導いて
差圧検出を行なわせたり、差圧検出素子の各面に加えら
れる圧力を同一にして零点調整を行なわせたりする。
(Function) In the above configuration, the valve driving section controls the opening/closing of the first to third valve mechanisms to guide the pressure applied to each partition diaphragm to each surface of the differential pressure detection element. Pressure detection is performed, and zero point adjustment is performed by making the pressure applied to each surface of the differential pressure detection element the same.

(実施例) 第1図は本発明による差圧伝送器の一実施例を示す断面
図である。
(Embodiment) FIG. 1 is a sectional view showing an embodiment of a differential pressure transmitter according to the present invention.

この図に示す差圧伝送器は厚板状に形成されるブロック
部1と、このブロック部1の両側に各々設けられる受圧
フランジ部2と、前記ブロック部1の駆動およびこのブ
ロック部1からの信号処理を行なう信号処理回路3とを
備えており、各受圧フランジ部2に接続された各プロセ
ス配管4a。
The differential pressure transmitter shown in this figure includes a block portion 1 formed in the shape of a thick plate, pressure receiving flange portions 2 provided on both sides of the block portion 1, and drive and control of the block portion 1 and the pressure receiving flange portions 2 provided on both sides of the block portion 1. Each process pipe 4a is equipped with a signal processing circuit 3 that performs signal processing, and is connected to each pressure receiving flange portion 2.

4bの圧力差を検出してこれを信号処理回路3を介して
外部に伝送する。また、信号処理回路3から零点調整信
号が供給されたときにはブロック部1を駆動して零点調
整を行なわせる。
4b is detected and transmitted to the outside via the signal processing circuit 3. Further, when a zero point adjustment signal is supplied from the signal processing circuit 3, the block section 1 is driven to perform zero point adjustment.

ブロック部]は厚板状に形成されるプロ、ツク本体5と
、このブロック本体5の両面に形成された各四部6を各
々覆うように設けられる隔壁ダイヤフラム7と、前記各
四部6を連通させるように前記ブロック本体5内に形成
されたU字型圧力媒体通路9の中央部分に設けられる半
導体式の差圧検出素子10と、前記U字型圧力媒体通路
9の高圧側上流部9aaに設けられる弁機構88と、前
記U字型圧力媒体通路9の低圧側上流部9baに設けら
れる弁機構8bと、前記U字型圧力媒体通路(9の高圧
側下流部9abと低圧側下流部9bbとを連通させるバ
イパス路]1の中央部分に設けられる弁機構12とを備
えている。
The block part] is a block body 5 formed in a thick plate shape, and a partition diaphragm 7 provided to cover each of the four parts 6 formed on both sides of the block body 5, and each of the four parts 6 communicate with each other. As shown in FIG. a valve mechanism 88 provided at the low-pressure side upstream section 9ba of the U-shaped pressure medium passage 9; 1, and a valve mechanism 12 provided in the center of the bypass passage]1.

さらに、前記ブロック部]は前記U字型圧力媒体通路9
と前記ブロック本体5の上部とを貫通するように前記ブ
ロック本体5内に形成された各信号線用穴13に挿通さ
れ前記差圧検出素子10の出力を外部の信号処理回路3
に導く信号線14と、前記各信号線用穴13に挿通され
前記信号処理回路3の駆動電圧を前記弁機構8a、8b
、12に導く信号線15と、前記ブロック本体5の前記
信号線用穴13を塞ぎながら前記各信号線14.15を
外部に導くハーメチックシール16と、前記各隔壁ダイ
ヤフラム7によって密閉された前記U字型圧力媒体通路
9内およびバイパス路11内、信号線用穴13内に充填
されるシリコーンオイル、エチレングリコール等の圧力
伝達媒体17とを備えている。
Furthermore, the block portion] is the U-shaped pressure medium passage 9.
The output of the differential pressure detection element 10 is passed through each signal line hole 13 formed in the block body 5 so as to pass through the block body 5 and the upper part of the block body 5.
and a signal line 14 that is inserted into each of the signal line holes 13 to connect the drive voltage of the signal processing circuit 3 to the valve mechanism 8a, 8b.
, 12, a hermetic seal 16 that guides each signal line 14, 15 to the outside while closing the signal line hole 13 of the block body 5, and the U sealed by each partition diaphragm 7. A pressure transmission medium 17 such as silicone oil or ethylene glycol is provided, which is filled in the shape of the pressure medium passage 9, the bypass path 11, and the signal line hole 13.

前記弁機構88.8bは第2図(a)に示す如く各々U
字型圧力媒体通路9の高圧側上流部9aa、低圧側上流
部91)aに各々形成されたチャンバー18内に収納さ
れる弁19と、前記チャンバー18に設けられた穴部2
0にスライド自在に挿通され前記弁19を矢印A、B方
向にスライド自在に支持する駆動軸2]と、前記穴部2
0内に収納され前記駆動軸21を矢印六方向に付勢して
前記弁19に形成されたニードル部19aによって前記
U字型圧力媒体通路9の高圧側上流部分9 aa、低圧
側上流部分9haを各々閉じさせるバネ22とを備えて
いる。
The valve mechanisms 88.8b are each U as shown in FIG.
A valve 19 accommodated in a chamber 18 formed in a high pressure side upstream section 9aa and a low pressure side upstream section 91)a of the letter-shaped pressure medium passage 9, and a hole 2 provided in the chamber 18.
a drive shaft 2 which is slidably inserted into the hole 2 and supports the valve 19 so as to be slidable in the directions of arrows A and B;
The needle portion 19a formed in the valve 19 by urging the drive shaft 21 in the six directions of the arrows causes the high-pressure side upstream portion 9aa and the low-pressure side upstream portion 9ha of the U-shaped pressure medium passage 9 to be connected to each other. and a spring 22 for closing each.

さらに、前記弁機構8a、8bは各々前記穴部20の周
囲に埋設され前記信号線15を介して駆動電圧が供給さ
れたとき、第2図(b)に示す如く前記駆動軸21を矢
印B方向に付勢して前記弁19のニードル部19aによ
る閉止を解除してU字型圧力媒体通路9の高圧側上流部
9aaと高圧側下流部分9abとを、またはU字型圧力
媒体通路9の低圧側上流部9baと低圧側下流部分91
)bとを連通させる駆動コイル23とを備えている。
Further, the valve mechanisms 8a and 8b are each buried around the hole 20, and when a driving voltage is supplied through the signal line 15, the driving shaft 21 is moved along the arrow B as shown in FIG. 2(b). direction to release the closure by the needle portion 19a of the valve 19 and open the high pressure side upstream portion 9aa and the high pressure side downstream portion 9ab of the U-shaped pressure medium passage 9, or the U-shaped pressure medium passage 9. Low pressure side upstream part 9ba and low pressure side downstream part 91
) b.

また、弁機構12は第3図(a)に示す如くバイパス路
11の中央部分に形成されたチャンバー32内に収納さ
れる弁33と、前記チャンバー32に設けられた穴部3
4にスライド自在に挿通され前記弁33を矢印A、B方
向にスライド自在に支持する駆動軸35と、前記穴部3
4内に収納され駆動軸35を矢印六方向に付勢して前記
弁33に形成されたニードル部33aによって前記バイ
パス路11を閉じるバネ36と、前記穴部34の周囲に
埋設され前記信号線15を介して駆動電圧か供給された
とき、第3図(b)に示す如く前記駆動軸35を矢印B
方向に付勢して前記バイパス路11を開く駆動コイル3
7とを備えている。
The valve mechanism 12 also includes a valve 33 housed in a chamber 32 formed in the center of the bypass passage 11, and a hole 3 provided in the chamber 32, as shown in FIG. 3(a).
a drive shaft 35 that is slidably inserted into the hole 3 and supports the valve 33 slidably in the directions of arrows A and B;
4, a spring 36 is housed in the hole 34 and urges the drive shaft 35 in the six directions of arrows to close the bypass passage 11 with the needle portion 33a formed in the valve 33; and the signal line is buried around the hole 34. When a drive voltage is supplied through the drive shaft 15, the drive shaft 35 is moved in the direction indicated by the arrow B as shown in FIG.
A drive coil 3 that opens the bypass path 11 by biasing it in the direction
7.

また、各受圧フランジ部2は各々前記ブロック本体5の
各面を覆うように設けられる厚板状のフランジ本体26
と、このフランジ本体26の前記隔壁ダイヤフラム7側
に形成された周囲溝27内に(1)入されるパツキン2
8と、これらの各フランジ本体26を前記ブロック本体
5の両面に密着させるボルトナツト機構29とを備えて
おり、前記プロセス配管4a、41)の圧力を前記フラ
ンジ本体26の上部に形成された通路穴30を介して前
記フランジ本体26の前記隔壁ダイヤフラム7側に形成
された四部31に導く。
Further, each pressure receiving flange portion 2 has a thick plate-shaped flange body 26 provided so as to cover each surface of the block body 5.
The packing 2 is (1) inserted into the peripheral groove 27 formed on the partition wall diaphragm 7 side of the flange main body 26.
8, and a bolt/nut mechanism 29 that brings each of these flange bodies 26 into close contact with both sides of the block body 5, and the pressure of the process piping 4a, 41) is transferred to a passage hole formed in the upper part of the flange body 26. 30 to the four portions 31 formed on the partition wall diaphragm 7 side of the flange main body 26.

また、信号処理回路3は矩形状に形成される国体40と
、この国体40の前面に設けられる3つの弁操作スイッ
チ41〜43と、零点調整スイッチ44とを備えており
、前記信号線14を介して供給される前記差圧検出素子
]0からの信号に基づいて差圧検出信号を生成してこれ
を4−mAD02線式伝送ライン45を介して外部に伝
送するとともに、各弁操作スイッチ41〜43や零点調
整スイッチ44が操作されて零点調整指示か人力されて
いるとき、駆動電圧を発生して前記弁機構8a、8b、
12の駆動コイル23.37に供給してこれらを閉しさ
せ、差圧検出素子10の零、ψ調整を行なう。
Further, the signal processing circuit 3 includes a national body 40 formed in a rectangular shape, three valve operation switches 41 to 43 provided on the front of this national body 40, and a zero point adjustment switch 44, and the signal line 14 is connected to the signal line 14. Generates a differential pressure detection signal based on the signal from the differential pressure detection element] 0 and transmits it to the outside via the 4-mAD02 wire transmission line 45, and also connects each valve operation switch 41 43 or the zero point adjustment switch 44 is operated and a zero point adjustment instruction is given manually, a driving voltage is generated to control the valve mechanisms 8a, 8b,
The voltage is supplied to the 12 drive coils 23 and 37 to close them, and the zero and ψ adjustment of the differential pressure detection element 10 is performed.

次に、この実施例の差圧検出動作と、零点ff1l整動
作とを順次説明する。
Next, the differential pressure detection operation and zero point ff1l adjustment operation of this embodiment will be sequentially explained.

まず、差圧検出動作においては、各弁機構8a。First, in the differential pressure detection operation, each valve mechanism 8a.

8bの駆動コイル23か非駆動状態にされ、U型圧力媒
体通路9の高圧側上流部分9aaと低圧側上流部分9b
aか開状態にされるとともに、弁機構12の駆動コイル
37か非駆動状態にされ、l<イパス路11が閉状態に
される。
The drive coil 23 of 8b is brought into a non-driven state, and the high-pressure side upstream portion 9aa and the low-pressure side upstream portion 9b of the U-shaped pressure medium passage 9
At the same time, the driving coil 37 of the valve mechanism 12 is brought into a non-driven state, and the path 11 is brought into a closed state.

この状態で、高圧側に加わった圧力Paは隔壁ダイヤフ
ラム7を介して圧力伝達媒体17に伝達された後、この
圧力伝達媒体17が充填されているU字型圧力媒体通路
9の高圧側上流部分9aaの弁機構8aを介してU字型
圧力媒体通路9の高圧側下流部分9abに伝達されて差
圧検出素子〕0の一面側に伝えられる。
In this state, the pressure Pa applied to the high pressure side is transmitted to the pressure transmission medium 17 via the partition diaphragm 7, and then the high pressure side upstream portion of the U-shaped pressure medium passage 9 filled with this pressure transmission medium 17 is It is transmitted to the high-pressure side downstream portion 9ab of the U-shaped pressure medium passage 9 via the valve mechanism 8a of 9aa, and is transmitted to one side of the differential pressure detection element]0.

一方、低圧側に加わった圧力pbは隔壁ダイヤフラム7
を介して圧力伝達媒体17に伝達された後、この圧力伝
達媒体17が充填されているU字型圧力媒体通路9の低
圧側上流部分9baの弁機構8bを介して低圧側下流部
分9bbに伝達されて差圧検出素子10の他面側に伝え
られる。
On the other hand, the pressure pb applied to the low pressure side is
After being transmitted to the pressure transmission medium 17 via the pressure transmission medium 17, the pressure transmission medium 17 is transmitted to the low pressure side downstream portion 9bb via the valve mechanism 8b of the low pressure side upstream portion 9ba of the U-shaped pressure medium passage 9 filled with the pressure transmission medium 17. and is transmitted to the other side of the differential pressure detection element 10.

このとき、弁機構12によってバイパス路11が閉じら
れているので、U字型圧力媒体通路9の低圧側と高圧側
とが分離されている。
At this time, since the bypass passage 11 is closed by the valve mechanism 12, the low pressure side and the high pressure side of the U-shaped pressure medium passage 9 are separated.

したかって、この状態では差圧検出素子10はその両面
に加えられている圧力Pa5Pbの差圧に応した値の差
圧検出信号を発生するとともに、これを信号線14を介
して信号処理回路3に供給し外部に出力させる。
Therefore, in this state, the differential pressure detection element 10 generates a differential pressure detection signal having a value corresponding to the pressure difference Pa5Pb applied to both sides of the element 10, and sends this signal to the signal processing circuit 3 via the signal line 14. and output it to the outside.

また、零点調整動作時には、各弁操作スイッチ41〜4
3および零点調整スイッチ44が零点調整位置にされ、
これに対応して信号処理回路3は各駆動コイル23や駆
動コイル37に通電して弁機構8a、8bを閉状態にす
るとともに、弁機構12を開状態にする。
Also, during the zero point adjustment operation, each valve operation switch 41 to 4
3 and the zero point adjustment switch 44 are set to the zero point adjustment position,
Correspondingly, the signal processing circuit 3 energizes each of the drive coils 23 and 37 to close the valve mechanisms 8a and 8b and open the valve mechanism 12.

これによって、U字型圧力媒体通路9の高圧側上流部分
9aaと低圧側上流部分baとが閉しられるとともに、
バイパス路11を介して高圧側下流部分9abと低圧側
下流部分9bbとか連通して高圧側下流部分9abと低
圧側下流部分9b]]の圧力か均一となり差圧検出素子
10の両面に同し圧力が加わる。
As a result, the high pressure side upstream portion 9aa and the low pressure side upstream portion ba of the U-shaped pressure medium passage 9 are closed, and
The high-pressure side downstream section 9ab and the low-pressure side downstream section 9bb are communicated via the bypass path 11, so that the pressures of the high-pressure side downstream section 9ab and the low-pressure side downstream section 9b are uniform, and the same pressure is applied to both sides of the differential pressure detection element 10. is added.

このとき、差圧検出素子10から差圧が零のときにおけ
る差圧検出信号か出力され、これが信号線14を介して
信号処理回路3に供給されて零点調整が行われる。
At this time, a differential pressure detection signal when the differential pressure is zero is output from the differential pressure detection element 10, and this is supplied to the signal processing circuit 3 via the signal line 14 to perform zero point adjustment.

このようにこの実施例においては、零点調整時に高圧側
上流部分9aaに設けられた弁機構8aと低圧側上流部
分9baに設置すられた弁機構8bを閉じるとともに、
バイパス路11に設けられた弁機構12を開らいて差圧
検出素子10の両面に加えられる圧力を同一にするよう
にしたので、差圧伝送器外に三岐弁機構を設けることな
く零点調整を行なうことかできる。
As described above, in this embodiment, when adjusting the zero point, the valve mechanism 8a installed in the high pressure side upstream section 9aa and the valve mechanism 8b installed in the low pressure side upstream section 9ba are closed, and
Since the valve mechanism 12 provided in the bypass path 11 is opened to equalize the pressure applied to both sides of the differential pressure detection element 10, zero point adjustment can be performed without installing a three-way valve mechanism outside the differential pressure transmitter. It is possible to do this.

さらに、ブロック本体5内部に弁機構12を設けている
ので、外部に弁機構を設けたときのように、プロセス配
管4a、4b内の流体中に含まる異物等による詰まりゃ
腐蝕による誤動作の恐れを完全に無くすことかできる。
Furthermore, since the valve mechanism 12 is provided inside the block body 5, there is a risk of malfunction due to corrosion if the process piping 4a, 4b is clogged with foreign matter contained in the fluid, unlike when the valve mechanism is provided externally. can be completely eliminated.

また、上述した実施例においては、差圧検出素子10と
して半導体感圧素子を使用するようにしているか、静電
容量式の差圧検出素子を使用するようにしても良い。
Further, in the embodiments described above, a semiconductor pressure sensitive element may be used as the differential pressure detecting element 10, or a capacitance type differential pressure detecting element may be used.

また、上述した実施例においては、各プロセス配管4a
、4b中にある流体の差圧を検出するようにしているが
、低圧側を大気に開放するようにして大気との差圧を検
出するようにしても良い。
In addition, in the embodiment described above, each process pipe 4a
, 4b, the pressure difference between the fluid and the atmosphere may be detected by opening the low pressure side to the atmosphere.

また、上述した実施例においては、!−トル式の弁]9
.33を使用するようにしているか、同様の機能を有す
る弁、例えばO−リングシール式の弁などを使用するよ
うにしても良い。
Moreover, in the above-mentioned embodiment,! - Tor type valve] 9
.. 33, or a valve having a similar function, such as an O-ring seal type valve, may be used.

また、上述した実施例においては、各駆動コイル23.
37によって弁19.3Bを駆動するようにしているか
、他の駆動機構、例えば圧電素J゛、感熱素子等を使用
した駆動機構によって弁1≦〕、33を駆動するように
しても良い。
Further, in the embodiment described above, each drive coil 23.
37 to drive the valve 19.3B, or the valves 1≦ and 33 may be driven by another drive mechanism, such as a drive mechanism using a piezoelectric element J', a heat-sensitive element, etc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、差1丁伝送器外に
三岐弁機構を設けることなく零点調整を行なうことがで
きる。
As explained above, according to the present invention, zero point adjustment can be performed without providing a three-way valve mechanism outside the single-difference transmitter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による差圧伝送器の一実施例を示す断面
図、第2図は第1図に示す弁機構の詳細な断面図、第3
図は第1図に示す弁機構の詳細な断面図、第4図は従来
から知られている差圧伝送器の一例を示す断面図である
。 1・・・ブロック部 3・・・弁駆動部(信号処理回路) 2・・・受圧フランジ部 5・・・ブロック本体 7・・隔壁ダイヤフラム 9・・・圧力媒体通路 10・・・差圧検出素子 ]1 バイパス路 8a ・第2弁機構 8b・・・第3弁機構 12・第1弁機構
FIG. 1 is a cross-sectional view showing one embodiment of the differential pressure transmitter according to the present invention, FIG. 2 is a detailed cross-sectional view of the valve mechanism shown in FIG. 1, and FIG.
The figure is a detailed sectional view of the valve mechanism shown in FIG. 1, and FIG. 4 is a sectional view showing an example of a conventionally known differential pressure transmitter. 1...Block part 3...Valve drive part (signal processing circuit) 2...Pressure receiving flange part 5...Block body 7...Bulkhead diaphragm 9...Pressure medium passage 10...Differential pressure detection Element] 1 Bypass path 8a・Second valve mechanism 8b...Third valve mechanism 12・First valve mechanism

Claims (1)

【特許請求の範囲】[Claims] (1)ブロック本体内に形成された圧力媒体通路を2分
割するよう遮る位置に設けられ、前記2分割した圧力媒
体通路の各々の圧力媒体が各面に接する板状の差圧検出
素子と、 前記圧力媒体通路の両端を各々閉じる隔壁ダイヤフラム
と、 前記2分割された圧力媒体通路の両方をバイパスするバ
イパス路と、 このバイパス路を開通/遮断させる第1弁機構と、 前記圧力媒体通路の前記バイパス路より各隔壁ダイヤフ
ラム側を開通/遮断させる第2、第3弁機構と、 これら第1弁機構ないし第3弁機構の開通/遮断を制御
する弁駆動部と、 を備えたことを特徴とする差圧伝送器。
(1) a plate-shaped differential pressure detection element that is provided at a position that blocks a pressure medium passage formed in the block main body so as to divide it into two, and the pressure medium of each of the divided pressure medium passages is in contact with each surface; A partition diaphragm that closes both ends of the pressure medium passage, a bypass passage that bypasses both of the two divided pressure medium passages, a first valve mechanism that opens and closes the bypass passage, and a first valve mechanism that opens and closes the bypass passage. It is characterized by comprising: second and third valve mechanisms for opening/blocking each partition wall diaphragm side from the bypass passage; and a valve drive section for controlling opening/blocking of the first valve mechanism or the third valve mechanism. Differential pressure transmitter.
JP22241690A 1990-08-27 1990-08-27 Differential pressure transmitter Pending JPH04105030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22241690A JPH04105030A (en) 1990-08-27 1990-08-27 Differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22241690A JPH04105030A (en) 1990-08-27 1990-08-27 Differential pressure transmitter

Publications (1)

Publication Number Publication Date
JPH04105030A true JPH04105030A (en) 1992-04-07

Family

ID=16782047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22241690A Pending JPH04105030A (en) 1990-08-27 1990-08-27 Differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPH04105030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2762909A1 (en) * 1997-04-30 1998-11-06 Samson Ag DIFFERENTIAL PRESSURE MEASURING APPARATUS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2762909A1 (en) * 1997-04-30 1998-11-06 Samson Ag DIFFERENTIAL PRESSURE MEASURING APPARATUS

Similar Documents

Publication Publication Date Title
KR101001611B1 (en) Vacuum pressure control system
US4706930A (en) Valve arrangement for use with a hydraulic accumulator
CA2471734A1 (en) Bathroom flushers with novel sensors and controllers
FR2764037B1 (en) REGULATORY APPARATUS
KR20000017623A (en) Suck Back Valve
KR20020081581A (en) Leak detection in a closed vapor handling system using a pressure switch and time counter
JPH04105030A (en) Differential pressure transmitter
AU2012219366B2 (en) Pressure transducer arrangement
JPH0750418B2 (en) Pneumatic Regulator
US5029610A (en) Flow-control type piezoelectric element valve
CA2469189A1 (en) Automatic bathroom flushers
JPH0450743A (en) Differential pressure transmitter
US20190101943A1 (en) Relay Valve and Force Balancing Method
JPH0450742A (en) Differential pressure transmitter
JPH0128329B2 (en)
US3722526A (en) Pneumatic timing means
KR20190051736A (en) Pneumatic servo valve using 2way proportional valve and control method thereof
GB1405472A (en) Fluid operating corporation electrical discharge machining apparatus
JP2001228047A (en) Volume-adjusting method in air leak testing device and air leak testing device having volume adjusting function
CN217440917U (en) Leakage detection device of pneumatic actuator for valve
IL44764A (en) Fluid flow control valve
SU771630A1 (en) Pressure regulator
JP2776578B2 (en) Flow control valve with closing function
JPH0394133A (en) Differential pressure measuring device
GB751031A (en) Improvements in or relating to a system for controlling a fluid actuated device