JPH0393674A - Basic casting execution refractory - Google Patents

Basic casting execution refractory

Info

Publication number
JPH0393674A
JPH0393674A JP1229252A JP22925289A JPH0393674A JP H0393674 A JPH0393674 A JP H0393674A JP 1229252 A JP1229252 A JP 1229252A JP 22925289 A JP22925289 A JP 22925289A JP H0393674 A JPH0393674 A JP H0393674A
Authority
JP
Japan
Prior art keywords
zircon
refractory
magnesia
weight
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1229252A
Other languages
Japanese (ja)
Inventor
Takashi Matsuoka
松岡 尚
Yukihisa Abe
恭久 阿部
Osami Matsumoto
松本 修美
Toshihiro Isobe
利弘 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP1229252A priority Critical patent/JPH0393674A/en
Publication of JPH0393674A publication Critical patent/JPH0393674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide basic casting execution refractory having excellent spalling resistance and slag permeation resistance by blending a refractory aggregate comprising zircon and magnesia in a specific weight ratio with a proper amount of a binder. CONSTITUTION:A refractory aggregate comprising 3-40wt.% zircon and the rest of magnesia is prepared. 100 pts.wt. refractory aggregate is blended with a proper amount of a binder (e.g. alumina cement or phosphate) and preferably further <=7 pts.wt. metallic fiber (e.g. stainless steel fiber) to produce basic casting execution refractory. When finely granulated zircon having <=0.5mm particle diameter is used as the zircon, hydration reaction of magnesia is prevented and corrosion resistance is further effectively improved. The addition of the metallic fiber effectively prevents residual contraction which is formed because liquid phase is produced by dissociation of zircon.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐スポーリング性に優れた塩基性質流し込み
施工用耐火物に関するものである.(従来の技術) 取錫,タンディッシュ,真空脱ガス炉,混銑車などの内
張り材として,マグネシアを主材とした塩基性質の流し
込み施工用耐火物(以下、塩基性質流し込み材)が知ら
れている. 塩基性質流し込み材は、高塩基度のスラグに対して優れ
た耐食性を示すこと、溶鋼を汚染しないためにクリーン
スチール化に好ましいなどの効果がある.しかし,その
反面、熱的スポーリングやスラグ浸透に伴う構造的スポ
ーリングが著しく、塩基性質がもつ前記の効果を十分に
発揮するに至っていない. そこで従来,このスポーリングの問題を解決する手段と
して,種々の提案がなされている.マグネシアを主材と
した塩基性流し込み材に対し,例えばカーボンを含有さ
せること(特開昭57−92581号公報)、アルミナ
を添加すること(特開昭60−60986号公報),S
in,80重量%以上のシリカを配合すること(特開昭
53−26734号公報)、クロム鉱を配合すること(
特開昭52−140429号公報)などである.(発明
が解決しようとする課題) しかし,上記従来の技術はいずれも十分な解決策とはい
えなかった.すなわち、カーボン含有品はカーボンの酸
化で耐食性が低下する.アルミナの添加はマグネシアと
の反応でスピネルを生威し、それに伴う膨張で亀裂ある
いはハク離が発生する.シリカの配合はマグネシアとの
反応でMgO − Sin,系低融点物質を生威し,耐
食性が低下する.クロム鉱はスラグ浸透防止の効果が不
十分であり、構造的スポーリングが大きい. 本発明は、塩基性質流し込み材において、塩基性質がも
つ高耐食性を損うことなく、その欠点であるスポーリン
グの問題を解決したものである.(課題を解決するため
の手段) 本発明は、ジルコン3〜40重量%,残部マグネシアを
主材とした耐火性骨材100重量部と、適量の結合剤と
からなる塩基性質流し込み施工用耐火物である. ジルコン含有の塩基性質流し込み材において、ジルコン
の含有割合に対するスラグ侵食比およびスラグ浸透比の
関係を示したのが第1図のグラフである.ジルコンは、
5〜1mmと0.5 nu以下の粒径のものを使用した
。このグラフの結果から、ジルコンの含有によってスラ
グ浸透が小さくなることが確認される.また、その割合
に比例してスラグ侵食が大きくなるので,ジルコンの割
合は一定の範囲に押さえる必要があることがわかる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a basic refractory for pouring construction that has excellent spalling resistance. (Prior art) Basic pouring refractories (hereinafter referred to as basic pouring materials) based on magnesia are known as lining materials for tin plates, tundishes, vacuum degassing furnaces, pig iron mixers, etc. There is. Basic pouring materials have the advantage of exhibiting excellent corrosion resistance against highly basic slag, and are preferable for producing clean steel because they do not contaminate molten steel. However, on the other hand, thermal spalling and structural spalling due to slag penetration are significant, and the above-mentioned effects of basic properties are not fully demonstrated. Therefore, various proposals have been made to solve this spalling problem. For example, adding carbon to a basic pouring material mainly composed of magnesia (Japanese Unexamined Patent Publication No. 57-92581), adding alumina (Japanese Unexamined Patent Publication No. 60-60986), S
In, blending 80% by weight or more of silica (Japanese Unexamined Patent Publication No. 53-26734), blending chromite (
JP-A No. 52-140429). (Problem to be solved by the invention) However, none of the above conventional techniques can be said to be a sufficient solution. In other words, the corrosion resistance of carbon-containing products decreases due to carbon oxidation. Addition of alumina damages spinel due to its reaction with magnesia, and the accompanying expansion causes cracking or flaking. When silica is added, it reacts with magnesia to produce MgO-Sin, a low melting point substance, which reduces corrosion resistance. Chromite has insufficient effect in preventing slag penetration and causes large structural spalling. The present invention solves the problem of spalling in basic casting materials without impairing the high corrosion resistance inherent to basic properties. (Means for Solving the Problems) The present invention provides a refractory for basic pouring construction, which is composed of 100 parts by weight of a refractory aggregate mainly consisting of 3 to 40% by weight of zircon and the balance being magnesia, and an appropriate amount of a binder. It is. The graph in Figure 1 shows the relationship between the slag erosion ratio and the slag penetration ratio with respect to the zircon content in basic casting materials containing zircon. Zircon is
Particles with a particle size of 5 to 1 mm and 0.5 nu or less were used. The results in this graph confirm that slag penetration is reduced by the inclusion of zircon. Furthermore, since slag erosion increases in proportion to the proportion, it is clear that the proportion of zircon must be kept within a certain range.

ジルコンは高温でジルコニアとシリカガラスとに解離す
る.前″記したスラグ浸透防止は,この解離によって生
じた高粘性のシリカガラスが耐火物組織のマトリックス
部を充填することで生じるものと思われる.ジルコンが
微粒であると前記の解離がしやすく,又解離したシリカ
ガラスがマトリックスに存在しているためか、第1図の
グラフのとおり,5〜1■より0.5 rm以下の粒径
の方が効果的である.そして、スラグ浸透の防止がスラ
グとマグネシアとの反応による過焼結を阻止し、構造的
スポーリングが解消される. 第2図のグラフは、塩基性質流し込み材において,ジル
コン無添加品と,ジルコン20重量%含有品との熱膨張
曲線を示したものである.このグラフの結果から,ジル
コンの含有で熱膨張が小さくなることがわかる.熱膨張
が小さい耐火物は、熱的スポーリングが生じ難い. 第31iIは、塩基性質流し込み材において、片面加熱
スポール試験により、ジルコンの添加量と耐スポーリン
グ性との関係を求めたグラフであ.ジルコンの添加で耐
スポーリング性が向上することがわかる.また、同じジ
ルコンでも,粒径0.5m以下の微粒ジルコンの方がよ
り効果的であることがわかる. また、以上のマグネシアージルコン系は、ジルコンの解
離で液相が生威し残存収縮が生じる.この残存収縮は、
ハク離の原因となる. 本発明は、さらに金属ファイバーを添加すると、この残
存収縮を防止することができる.第4図は、ジルコン2
0重量%含有の塩基性質流し込み材において,金属ファ
イバー(例としてステンレス鋼アアイバーを使用)の添
加量と残存線変化率との関係をグラフに示したものであ
る.金属ファイバーの添加が残存収縮を防止するのは、
金属ファイバーがジルコンの解離によって生成した液相
間に存在することにより,液相同志の接触が妨げられ、
液相焼結による収縮が防止されるためと思われる. 流し込み材は、水分を多量に添加して施工するため,塩
基性質流し込み材は、マグネシア原料中のMgO或分が
水和反応し、耐火物組織をぜい弱化する問題がある.こ
れは、同じ不定形耐火物でも、施工時にほとんど水分を
添加しないスタンプ材などでは見られない現象である.
本発明は、ジルコンを微粒主体の粒度で配合すると、水
和反応防止にも効果があり、耐食性をさらに向上させる
ことができる. 流し込み材は、密充填組織を得るためと、施工時の流動
性付与のために、粗粒、中粒、微粒に粒度を調整される
が、ジルコンを微粒主体の粒度で配合すると粒度構威上
、その分、マグネシアの微粒を減らすことができる.水
和反応は,マグネシアの中でも比表面積の大きなものに
おいて生じやすいので,マグネシアの微粒が減ると水和
反応を防止することができる。第5図は、塩基性質流し
込み材において、0.5 m以下の微粒ジルコンの割合
と水和反応の関係をグラフで示したものである.この場
合、耐火性骨材全体の0.5 一以下の微粒の割合を4
0重量%に統一し、微粒ジルコンの増加にともなって微
粒マグネシアを減らした.なお、以上の第1〜5図で示
した試験の具体的方法は、後述の実施例の欄で示したも
のと同様にした。
Zircon dissociates into zirconia and silica glass at high temperatures. The above-mentioned prevention of slag penetration is thought to be caused by the highly viscous silica glass produced by this dissociation filling the matrix of the refractory structure.If the zircon particles are fine, the above-mentioned dissociation is likely to occur; Also, perhaps because dissociated silica glass exists in the matrix, as shown in the graph in Figure 1, a particle size of 0.5 rm or less is more effective than a particle size of 5-1. prevents oversintering due to the reaction between slag and magnesia, eliminating structural spalling.The graph in Figure 2 shows the basic casting materials for a product without zircon additives and a product containing 20% by weight of zircon. The results of this graph show that the inclusion of zircon reduces thermal expansion. Refractories with small thermal expansion are less likely to cause thermal spalling. This is a graph showing the relationship between the amount of zircon added and the spalling resistance of a basic cast material using a single-sided heating spall test.It can be seen that the addition of zircon improves the spalling resistance. However, it can be seen that fine zircon particles with a particle size of 0.5 m or less are more effective.In addition, in the above magnesia zircon system, the liquid phase grows due to the dissociation of zircon, resulting in residual shrinkage. The contraction is
It causes peeling. In the present invention, this residual shrinkage can be prevented by further adding metal fibers. Figure 4 shows zircon 2
This is a graph showing the relationship between the amount of metal fiber (stainless steel fiber is used as an example) and the rate of residual line change in a basic pourable material containing 0% by weight. The addition of metal fibers prevents residual shrinkage because
The presence of metal fibers between the liquid phases generated by the dissociation of zircon prevents contact between the liquid phases.
This seems to be because shrinkage due to liquid phase sintering is prevented. Since pouring materials are constructed by adding a large amount of moisture, basic pouring materials have the problem that some of the MgO in the magnesia raw material undergoes a hydration reaction, weakening the refractory structure. This is a phenomenon that cannot be observed in stamped materials, which require almost no water addition during construction, even though they are monolithic refractories.
In the present invention, when zircon is blended with a particle size of mainly fine particles, it is effective in preventing hydration reactions, and corrosion resistance can be further improved. The particle size of pouring materials is adjusted to coarse, medium, and fine particles in order to obtain a densely packed structure and to provide fluidity during construction, but when zircon is blended with a particle size that is mainly fine particles, the particle size structure increases. , the number of fine particles of magnesia can be reduced accordingly. Hydration reactions are more likely to occur in magnesia that has a large specific surface area, so reducing the number of fine magnesia particles can prevent hydration reactions. Figure 5 is a graph showing the relationship between the proportion of fine zircon particles with a diameter of 0.5 m or less and the hydration reaction in basic pouring materials. In this case, the proportion of fine particles of 0.5 or less in the total refractory aggregate is 4
It was standardized to 0% by weight, and fine magnesia was reduced as fine zircon increased. The specific methods of the tests shown in FIGS. 1 to 5 above were the same as those shown in the Examples section below.

本発明で使用するジルコンは、例えばジルコンサンド、
ジルコンサンドを造粒したジルコングロッグ、ジルコン
サンドを微粉砕したジルコンフラワー、さらにこれを微
粉砕したジルコン超微粉のいずれでもよい. 耐火骨材中に占めるジルコンの割合は、3〜40重量%
とする.3重量%未満では本発明の効果がない.40重
量%を超えると解離で生じたシリカガラスが過多となっ
て,耐食性を低下させる.ジルコンの粒度は,第5図の
結果が示すように、微粒主体で配合すると水和反応防止
に効果がある.この効果を得るには、粒径0.5 m以
下のものを使用する. マグネシアは、高融点であることによって耐スラグ侵食
性に優れている.  MgO純度が80重量%以上であ
れば天然品,合成品を問わない.また、焼結品,電融品
のいず・れでもよい.粒度は従来材質と同様、流し込み
施工時の流動性、施工後の充填性などを考慮して、粗粒
,中粒、微粒に調整する.微粒のジルコンと組み合わせ
る場合は、粒度構成上,その分,マグネシアの微粒を少
なくするように調整するのが好ましい. ジルコン以外の耐火性骨材の割合は、前記のようにマグ
ネシアを主材とするが,本発明の効果を阻害しない範囲
であれば、耐火性骨材の一部として他の耐火性原料を配
合してもよい. 結合剤の具体的種類および添加割合は、従来材質と特に
変わりない.例えばアルミナセメント、りん酸塩、けい
酸塩などであり、その好ましい割合は耐火性骨材100
重量部に対し、1〜20重量部である. 金属ファイバーを添加する場合は,その材質は耐熱性の
面からはステンレス鋼が最も好ましいが、これに限らず
、例えば鉄、炭素鋼,Ni−Cr鋼、Cr−No鋼、C
r鋼.Cr−V鋼、Ai AQ合金、Cu%Cu合金な
どでもよい.形状はストレート形、曲線、山形、波形な
どのいず′れでもよい.寸法は、直径0.1〜2園、長
さは直径の5〜50倍程度(例えば5〜40■)が好ま
しい. 金属ファイバーの添加割合は7重量部以下の範囲で、各
ファイバーの比重などに合せて適宜決定する.ごく少な
い割合でも効果が認められるが,金属アアイバーは低融
点物質でもあるから、7重量部をこえるとキャスタブル
耐火物の耐食性を低下させる.さらに好ましくは、1〜
5重量部である. 従来の流し込み材と同様、適量の解こう剤を添加しても
よい.その割合は1.0重量部以下、好ましくは0.0
1〜0.5重量部とする.解こう剤の種類としては、例
えばトリポリりん酸ソーダ,ヘキサメタりん酸ソーダ、
ウルトラポリりん酸ソ一ダ、酸性へキサメタりん酸ソー
ダ、ホウ酸ソーダ、炭酸ソーダ、などの無機塩、並びに
クエン酸ソーダ,酒石酸ソーダ、ポリアクリル酸ソーダ
、スルホン酸ソーダなどの有機塩から選ばれる一種また
は二種以上とする. 結合剤としてりん酸塩ミけい酸塩などを用いた場合、結
合剤自身が解こう作用を持つので、解こう剤として新た
に添加する必要がない。
Zircon used in the present invention is, for example, zircon sand,
Any of zircon grog, which is made by granulating zircon sand, zircon flour, which is made by pulverizing zircon sand, and ultrafine zircon powder, which is further finely pulverized. The proportion of zircon in the refractory aggregate is 3 to 40% by weight.
Suppose that If it is less than 3% by weight, the present invention will not be effective. If it exceeds 40% by weight, too much silica glass will be produced due to dissociation, which will reduce corrosion resistance. As shown in the results shown in Figure 5, when the particle size of zircon is mainly fine, it is effective in preventing the hydration reaction. To obtain this effect, use particles with a particle size of 0.5 m or less. Magnesia has excellent slag erosion resistance due to its high melting point. As long as the MgO purity is 80% by weight or more, it does not matter whether it is a natural product or a synthetic product. Also, either sintered or electrofused products are acceptable. As with conventional materials, the particle size is adjusted to coarse, medium, or fine, taking into consideration fluidity during pouring, filling properties after construction, etc. When combining fine grains of zircon, it is preferable to reduce the number of fine magnesia grains due to the particle size structure. The proportion of refractory aggregate other than zircon is mainly magnesia as mentioned above, but other refractory raw materials may be mixed as part of the refractory aggregate as long as it does not impede the effects of the present invention. You may do so. The specific type and addition ratio of the binder are not particularly different from conventional materials. For example, alumina cement, phosphate, silicate, etc., and the preferable ratio is 100% refractory aggregate.
It is 1 to 20 parts by weight. When adding metal fibers, the material is most preferably stainless steel from the viewpoint of heat resistance, but is not limited to this, for example, iron, carbon steel, Ni-Cr steel, Cr-No steel, C
r steel. Cr-V steel, Ai AQ alloy, Cu%Cu alloy, etc. may also be used. The shape can be straight, curved, chevron-shaped, wavy, etc. The dimensions are preferably 0.1 to 2 inches in diameter, and the length is about 5 to 50 times the diameter (for example, 5 to 40 cm). The proportion of metal fibers to be added is within the range of 7 parts by weight or less, and is determined as appropriate depending on the specific gravity of each fiber. Although the effect can be seen even with a very small proportion, since metal aivar is also a low melting point substance, if it exceeds 7 parts by weight, the corrosion resistance of the castable refractory will decrease. More preferably, 1 to
It is 5 parts by weight. As with conventional pouring materials, an appropriate amount of peptizer may be added. The proportion is 1.0 parts by weight or less, preferably 0.0 parts by weight.
The amount should be 1 to 0.5 parts by weight. Examples of peptizers include sodium tripolyphosphate, sodium hexametaphosphate,
Selected from inorganic salts such as ultra-sodium polyphosphate, acidic sodium hexametaphosphate, sodium borate, and sodium carbonate, and organic salts such as sodium citrate, sodium tartrate, sodium polyacrylate, and sodium sulfonate. One or more types. When a phosphate misilicate or the like is used as a binder, the binder itself has a peptizing effect, so there is no need to add a peptizer.

本発明の流し込み材は,この他にも金属粉、ガラス粉、
粘土、有機質ファイバー,セラミックファイバー、炭素
粉、炭化物,窒化物,ほう化物、ジルコニア、スビネル
などから選ばれる一種または二種以上を、本発明の効果
を阻害しない範囲で添加してもよい。
In addition to this, the pouring material of the present invention can also include metal powder, glass powder,
One or more selected from clay, organic fibers, ceramic fibers, carbon powder, carbides, nitrides, borides, zirconia, subinel, etc. may be added within a range that does not impede the effects of the present invention.

そして、使用においては、流し込み材全体に対して水分
を外掛けで3〜10重量%程度添加し、混練後,施工さ
れる. (実施例) 以下、本発明実施例とその比較例を示す.第1表は,各
例の配合組威と試験結果である。
In use, approximately 3 to 10% by weight of water is added to the entire pouring material, mixed, and then applied. (Example) Examples of the present invention and comparative examples thereof are shown below. Table 1 shows the combination strength and test results for each example.

各例は、いずれも施工水分を外掛けで7.0重量%添加
し、振動を付与して流し込み成形した.[試験方法] 見 掛 比 重 ;或形体を110℃×24時間で乾燥
後,JIS − R2205に準じて測定した. 回 転 侵 食 ;鋼片:溶鋼取鍋スラグ=1=1を溶
媒とし、1650℃× 4時間行った後、溶損寸法 とスラグ浸透寸法を測定し た. 曲 げ 強 さ : JIS − R2553に準じた
.線 変 化 率 : JIS − R2554に準じ
た.片面加熱スポール; 1400℃X3G分加熱→強
制空冷を繰返しハク落に至るま での繰返し回数を測定した. 耐 水 和 性 ;成形体を110℃×24時間加熱乾
燥した後,加熱乾燥後 の重量から成形直後の重量 を差し引いて永和による重 量増加率を求めた.なお、 この場合、添加水分量は差 し引いて計算した. 実機試験における耐用性■;250トン溶鋼鍋のスラグ
ライン部に180mm 厚みで流し込み施工し、ハ ク離の有無と耐用使用回数 を調べた. ■;250トンRH式 真空脱ガス炉の下部槽の内 張りに200■厚みで流し込 み施工し耐用使用回数を調 べた. (発明の効果) 本発明により得られる塩基性質流し込み材は、耐スラグ
浸透性に優れ,しかも熱膨張が小さいことから,構造的
スポーリングおよび熱的スポーリングのいずれにおいて
も抵抗性が大きい.耐スポーリング性に劣ることは塩基
性質流し込み材の最大の欠点である.本発明はこの欠点
を解消したことで、高塩基度のスラグに対して高耐食性
を示すこと、クリーンスチール化に好ましいなど,塩基
性質流し込み材が本来有している優れた効果をいかんな
く発揮できる. 以上の塩基性質流し込み材は熱膨張が小さいが、反面、
残存収縮を示す.本発明では、さらに金属ファイバーを
添加すると、残存収縮を解消することができる. また、本発明はジルコンを0.5 −以下の微粒で含有
させると,マグネシアの水和反応を防止し、耐食性向上
にさらに効果的である.
In each example, 7.0% by weight of construction moisture was added on the outside, and the molding was performed by applying vibration. [Test method] Apparent specific gravity: After drying a certain shape at 110°C for 24 hours, it was measured according to JIS-R2205. Rotational erosion; Steel billet: Molten steel ladle slag = 1 = 1 was used as a solvent, and after 4 hours at 1650°C, the dimensions of erosion and slag penetration were measured. Bending strength: According to JIS-R2553. Line rate of change: According to JIS-R2554. Single-sided heated spall: heating at 1400°C for 3G → forced air cooling was repeated, and the number of repetitions until flaking occurred was measured. Hydration resistance: After heating and drying the molded article at 110°C for 24 hours, the weight increase rate due to permanent hydration was determined by subtracting the weight immediately after molding from the weight after heating and drying. In this case, the amount of added water was subtracted from the calculation. Durability in actual equipment test ■: The product was poured into the slag line of a 250-ton molten steel ladle to a thickness of 180 mm, and the presence or absence of flaking and the number of durable uses were investigated. ■: The lining of the lower tank of a 250-ton RH vacuum degassing furnace was poured to a thickness of 200 mm, and the number of durable uses was investigated. (Effects of the Invention) The basic pouring material obtained by the present invention has excellent slag penetration resistance and low thermal expansion, so it has high resistance to both structural spalling and thermal spalling. Poor spalling resistance is the biggest drawback of basic pouring materials. By eliminating this drawback, the present invention can fully demonstrate the excellent effects inherent to basic pouring materials, such as exhibiting high corrosion resistance against high basicity slag and being suitable for making clean steel. .. The above basic pouring materials have small thermal expansion, but on the other hand,
Indicates residual contraction. In the present invention, residual shrinkage can be eliminated by further adding metal fibers. Further, in the present invention, when zircon is contained in fine particles of 0.5 - or less, the hydration reaction of magnesia is prevented and corrosion resistance is further effectively improved.

【図面の簡単な説明】[Brief explanation of drawings]

図は、塩基性質流し込み材の各種物性の測定結果をグラ
フ化したものである. 第1図はジルコンの添加量と耐スラブ侵食性および耐ス
ラグ浸透性との関係を示したもの、第2図はジルコン無
添加品・ジルコン20%含有品のそれぞれについて熱膨
張曲線を示したもの,第3図はジルコンの添加量と耐ス
ポーリング性との関係を示したもの、第4図はジルコン
20%含有品について金属ファイバーの添加量と残存線
変化率との関係を示したもの,第5図は微粒ジルコンの
添加量と耐水和性との関係を示したものである.第 1 図 0 10 20 30 40  50 60 70ジルコン含有置
(Im:/:) 第 2 図 温度C℃) 第 3 図 第 4 図
The figure is a graph of the measurement results of various physical properties of basic pouring materials. Figure 1 shows the relationship between the amount of zircon added and slab erosion resistance and slag penetration resistance, and Figure 2 shows the thermal expansion curves for products with no zircon added and products containing 20% zircon. , Figure 3 shows the relationship between the amount of zircon added and spalling resistance, and Figure 4 shows the relationship between the amount of metal fiber added and the residual linear change rate for a product containing 20% zircon. Figure 5 shows the relationship between the amount of fine zircon added and hydration resistance. Fig. 1 0 10 20 30 40 50 60 70 Zircon containing location (Im:/:) Fig. 2 Temperature C℃) Fig. 3 Fig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)ジルコン3〜40重量%、残部マグネシアを主材
とした耐火性骨材100重量部と、適量の結合剤とから
なる塩基性質流し込み施工用耐火物。
(1) A basic refractory for pouring construction consisting of 100 parts by weight of a refractory aggregate mainly consisting of 3 to 40% by weight of zircon and the balance being magnesia, and an appropriate amount of a binder.
(2)ジルコン3〜40重量%、残部マグネシアを主材
とした耐火性骨材100重量部と、金属ファイバー7重
量部以下と、適量の結合剤とからなる塩基性質流し込み
施工用耐火物。
(2) A basic refractory for pouring construction consisting of 100 parts by weight of a refractory aggregate mainly composed of 3 to 40% by weight of zircon and the remainder magnesia, 7 parts by weight or less of metal fibers, and an appropriate amount of a binder.
(3)ジルコンの粒径が0.5mm以下である請求項1
または2記載の塩基性質流し込み施工用耐火物。
(3) Claim 1, wherein the particle size of the zircon is 0.5 mm or less.
or the basic refractory for pouring construction described in 2.
JP1229252A 1989-09-06 1989-09-06 Basic casting execution refractory Pending JPH0393674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229252A JPH0393674A (en) 1989-09-06 1989-09-06 Basic casting execution refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229252A JPH0393674A (en) 1989-09-06 1989-09-06 Basic casting execution refractory

Publications (1)

Publication Number Publication Date
JPH0393674A true JPH0393674A (en) 1991-04-18

Family

ID=16889199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229252A Pending JPH0393674A (en) 1989-09-06 1989-09-06 Basic casting execution refractory

Country Status (1)

Country Link
JP (1) JPH0393674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037669A (en) * 2006-08-02 2008-02-21 Saint-Gobain Kk Ramming material for induction furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515952A (en) * 1978-07-18 1980-02-04 Sumitomo Metal Ind Castable refractory
JPS59232973A (en) * 1983-06-13 1984-12-27 ハリマセラミック株式会社 Castable refractories for molten metal treating lance
JPS6114176A (en) * 1984-06-28 1986-01-22 ハリマセラミック株式会社 Formless refractories for cast construction
JPS6395168A (en) * 1986-10-13 1988-04-26 ハリマセラミック株式会社 Spray material for repairing industrial furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515952A (en) * 1978-07-18 1980-02-04 Sumitomo Metal Ind Castable refractory
JPS59232973A (en) * 1983-06-13 1984-12-27 ハリマセラミック株式会社 Castable refractories for molten metal treating lance
JPS6114176A (en) * 1984-06-28 1986-01-22 ハリマセラミック株式会社 Formless refractories for cast construction
JPS6395168A (en) * 1986-10-13 1988-04-26 ハリマセラミック株式会社 Spray material for repairing industrial furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037669A (en) * 2006-08-02 2008-02-21 Saint-Gobain Kk Ramming material for induction furnace

Similar Documents

Publication Publication Date Title
US5286685A (en) Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production
JPS5919067B2 (en) High durability casting nozzle
US6548435B1 (en) Basic free-flowing casting material and preforms produced thereform
JP2000219575A (en) Castable refractory
WO2009062074A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JP2874831B2 (en) Refractory for pouring
US5888586A (en) Use of a water-containing fire-resistant ceramic casting material
US5104833A (en) Refractory for casting a basic substance
EP0583466A1 (en) Vibratable refractory composition.
JPH0393674A (en) Basic casting execution refractory
JP2604310B2 (en) Pouring refractories
JP2747734B2 (en) Carbon containing refractories
JPH08175877A (en) Castable refractory
JP3212856B2 (en) Irregular cast refractories and their moldings
US5318277A (en) Lined ladles, linings therefor, and method of forming the same
JPH0952169A (en) Refractory for tuyere of molten steel container
JP3426024B2 (en) Construction method of refractory construction body
JPH04193770A (en) Basic refractory for pouring
JP3588406B2 (en) Castable refractories and their construction
JPH04182362A (en) Basic refractory for casting
JP2620858B2 (en) Amorphous refractories containing zirconium carbide
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this
KR100473111B1 (en) Amorphous refractory materials for casting and molten steel containers
JPS6096579A (en) Dilatant flowable castable
JPS59137367A (en) Magnesia alumina castable refractories