JPH0393417A - Insulation structure of gas insulated electric machine - Google Patents

Insulation structure of gas insulated electric machine

Info

Publication number
JPH0393417A
JPH0393417A JP1227516A JP22751689A JPH0393417A JP H0393417 A JPH0393417 A JP H0393417A JP 1227516 A JP1227516 A JP 1227516A JP 22751689 A JP22751689 A JP 22751689A JP H0393417 A JPH0393417 A JP H0393417A
Authority
JP
Japan
Prior art keywords
insulating layer
epoxy resin
insulating
hemispheric
electric equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227516A
Other languages
Japanese (ja)
Inventor
Tetsuo Yoshida
哲雄 吉田
Masaru Miyagawa
勝 宮川
Nobuo Masaki
信男 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1227516A priority Critical patent/JPH0393417A/en
Publication of JPH0393417A publication Critical patent/JPH0393417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Installation Of Bus-Bars (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To reduce the size of electric equipment or container to be placed in insulating gas by arranging a rod type charging section having hemispheric end section in the insulating gas and forming an epoxy resin insulating layer, mixed with material having high dielectric constant, on the hemispheric surface. CONSTITUTION:A hemispheric surface 4ao is formed at the end of a rod type charging section projecting outward from an electric equipment. A hemispheric surface 4ao having curvature approximately same as the radius of a movable contactor 4a is formed at the rear end of the movable contactor 4a. An epoxy resin insulating layer 9 is formed on the outer circumference of the hemispherical surface 4ao, and the thickness of the insulating layer 9 is increased around the hemispheric surface 4ao. The insulating layer 9 is composed of epoxy resin mixed with substance having high dielectric constant, e.g. barium titanate. and applied tightly onto thr hemispheric surface 4ao. By such arrangement, strength of electric field at the charged section can be suppressed end insulating characteristic at the end of rod type charging section of an electric equipment can be improved without enlarging the profile or the installation area of the electric equipment.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ガス絶縁開閉装置などに収納された電気機器
の絶縁構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an insulation structure for electrical equipment housed in a gas-insulated switchgear or the like.

(従来の技術) 従来のガス絶縁開閉装置の一例を示す第3図において、
左側に前面扉1aが取付られ、内部に六ふっ化硫黄ガス
(以下、絶縁ガスという)が封入された気密構造の箱体
1の前部には、高圧の真空遮断器2が収納され、天井部
と床面には、操作アーム4bで棒状の可動接触子4aを
動かして開閉する新路器4が取付けられ、この前端は導
体3で遮断器2に接続されている。又、箱体1の後壁に
は、かいし7に取付けられた母線5が箱体1の左右の図
示しない側面板を図示しない絶縁プッシングで気密に貫
通し、この母線5からは、それぞれ導体3が天井部の新
路器4の後部端子に接続されている。更に、箱体1の床
面後部にはケーブルヘッド6が取付けられ、床面中央に
取付けられた断路器4の後部端子に導体3で接続されて
いる。
(Prior Art) In FIG. 3 showing an example of a conventional gas insulated switchgear,
A high-pressure vacuum circuit breaker 2 is housed in the front part of the box body 1, which has a front door 1a on the left side and has an airtight structure filled with sulfur hexafluoride gas (hereinafter referred to as insulating gas). A new circuit switch 4, which opens and closes by moving a rod-shaped movable contactor 4a with an operating arm 4b, is attached to the section and the floor, and the front end of the switch 4 is connected to the circuit breaker 2 through a conductor 3. Further, on the rear wall of the box body 1, a bus bar 5 attached to the paddle 7 airtightly penetrates the left and right side plates (not shown) of the box body 1 with insulating pushers (not shown), and from this bus bar 5, conductors are respectively connected. 3 is connected to the rear terminal of the new circuit device 4 on the ceiling. Furthermore, a cable head 6 is attached to the rear of the floor of the box 1, and is connected by a conductor 3 to a rear terminal of a disconnector 4 attached to the center of the floor.

ところで、このように電気機器が収納され、その間が導
体で接続されたガス絶縁閉鎖配電盤では、電界集中によ
る放電を防ぐために、充電部の端部は大きな曲率にされ
ているが、例えば断路器4の可動接触子4aの後端のよ
うな棒状の端部ではそれができないので、第4図のよう
に大きな球状のシールドリング8が取付けられている(
例えば特開昭60−128807号公報)。これは絶縁
ガスが強い電気的負性を示し、絶縁破壊が最大電界強度
で決まるからである。
By the way, in gas-insulated closed switchboards in which electrical equipment is housed and electrical equipment is connected between them by conductors, the ends of live parts are made with a large curvature in order to prevent discharge due to electric field concentration. Since this is not possible with a rod-shaped end such as the rear end of the movable contact 4a, a large spherical shield ring 8 is attached as shown in FIG.
For example, Japanese Patent Laid-Open No. 60-128807). This is because the insulating gas exhibits strong electrical negativity, and dielectric breakdown is determined by the maximum electric field strength.

(発明が解決しようとする課題) ところが、このシールドリング8は、製作に時間がかか
るだけでなく、隣接機器の配置が物理的に制約される。
(Problems to be Solved by the Invention) However, this shield ring 8 not only takes time to manufacture, but also physically restricts the arrangement of adjacent devices.

例えば第3図において、新路器4の後部端子に接続され
る操作アーム4bや導体3は、シールドリング8を避け
て配置されなければならない。又、断路器4の相間寸法
が増えると外形が大きくなるだけでなく、シールドリン
グ8の重量増加で操作アーム4bの操作力も増える。す
ると、箱体1も大きくなり、ガス絶縁閉鎖配電盤の特徴
がなくなる。
For example, in FIG. 3, the operating arm 4b and conductor 3 connected to the rear terminal of the new circuit device 4 must be placed avoiding the shield ring 8. Furthermore, as the interphase dimension of the disconnector 4 increases, not only does the external size become larger, but also the increased weight of the shield ring 8 increases the operating force of the operating arm 4b. As a result, the box body 1 also becomes larger, and the characteristics of a gas-insulated closed switchboard are lost.

そこで、本発明の目的は絶縁ガス中で使われる機器の端
部の径を大きくすることなく、適用機器の外形や設置面
積も増やすことのない電気機器の絶縁構造を得ることで
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain an insulating structure for electrical equipment that does not increase the diameter of the end of the equipment used in an insulating gas, and does not increase the external size or installation area of the equipment to which it is applied.

[発明の構成] (課題を解決するための手段と作用) 本発明は、絶縁ガス中で使われる電気機器の絶縁構造に
おいて、電気機器から外側に突き出た棒状充電部の端部
を半球面とし、この半球面を例えばチタン酸バリウム(
BaTiO3)のような高誘電率の物質を混合したエポ
キシ樹脂でなる絶縁物で密着して覆うことで、上記充電
部の電界強度を抑制して、適用機器の外形と設置面積を
増やすことなく電気機器の棒状充電部の端部の絶縁特性
を上げた電気機器の絶縁構造である。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention provides an insulating structure for an electrical device used in an insulating gas, in which the end of a rod-shaped live part protruding outward from the electrical device is made into a hemispherical surface. , this hemisphere is made of, for example, barium titanate (
By closely covering the electrical field with an insulating material made of epoxy resin mixed with a material with a high dielectric constant such as BaTiO3), the electric field strength of the above-mentioned live parts can be suppressed, and electricity can be transmitted without increasing the external size and installation area of the applicable equipment. This is an insulation structure for electrical equipment that improves the insulation properties of the end of the rod-shaped live part of the equipment.

(実施例) 以下、本発明の電気機器の絶縁構造の一実施例を第1図
で説明する。
(Example) Hereinafter, an example of the insulating structure for an electrical device of the present invention will be described with reference to FIG.

第1図は、本発明の電気機器の絶縁構造を第3図の断路
器4の可動接触子4aの後端に適用した一例を示し、鋼
材で作られた可動接触子4aの後端には、可動接触子4
aの略半径の曲率の半球面4aoが形成され、この半球
面4aoの外周にはエポキシ樹脂でなる絶縁層9が形威
され、この絶縁層9は半球面4aoの周りが厚くなって
いる。
FIG. 1 shows an example in which the insulating structure of the electrical equipment of the present invention is applied to the rear end of the movable contact 4a of the disconnector 4 shown in FIG. , movable contact 4
A hemispherical surface 4ao having a radius of curvature approximately equal to a is formed, and an insulating layer 9 made of epoxy resin is formed on the outer periphery of this hemispherical surface 4ao, and this insulating layer 9 is thicker around the hemispherical surface 4ao.

尚、操作アーム4bは従来方法と同様の構成である。Note that the operating arm 4b has the same configuration as the conventional method.

ここで、絶縁層9には、エポキシ樹脂を主成分として、
例えばチタン酸バリウム(BaTiOi)やチタン酸ス
トロンチウムおよびpb系複合ペロブス力イト化合物の
ような比誘電率の大きい材料の粉末10が混合されて注
形されている。この場合、半球面4aoを下側にして注
形することで、比誘電率の大きい粉末10は沈殿して、
絶縁層9の表面に集まる。
Here, the insulating layer 9 contains epoxy resin as a main component,
For example, powder 10 of a material having a high dielectric constant, such as barium titanate (BaTiOi), strontium titanate, and a pb-based composite perovskite compound, is mixed and cast. In this case, by casting with the hemispherical surface 4ao facing downward, the powder 10 with a large dielectric constant will precipitate,
It collects on the surface of the insulating layer 9.

これは、エポキシ樹脂の比重が1.2に対して、例えば
チタン酸バリウムは5.4と大きいので、これらを混合
して液状にして注形すると、比重の大きいチタン酸バリ
ウムは沈殿して硬化するためである。従って、可動接触
子4aの金属と接する領域の絶縁層9には、比誘電率の
大きい粉末1oは少ない。このように絶縁層9の成分の
構成を作るためには、エポキシ樹脂と粉末10との割合
を体積比で粉末lGの方を半分以下にすればよい。つま
り、絶縁層9の表面近くは、粉末10が多くエポキシ樹
脂で硬化しており、可動接触子4aの近くは殆どがエポ
キシ樹脂となる。
This is because, while the specific gravity of epoxy resin is 1.2, for example barium titanate has a higher specific gravity of 5.4, so when these are mixed and poured into a liquid form, the barium titanate, which has a higher specific gravity, precipitates and hardens. This is to do so. Therefore, in the insulating layer 9 in the region in contact with the metal of the movable contactor 4a, there is less powder 1o having a large dielectric constant. In order to create the composition of the components of the insulating layer 9 in this manner, the volume ratio of the epoxy resin to the powder 10 may be reduced to half or less of the powder 1G. That is, near the surface of the insulating layer 9, a large amount of powder 10 is hardened with epoxy resin, and near the movable contact 4a, most of the powder 10 is made of epoxy resin.

このように構成された電気機器の絶縁構造において、絶
縁層9の表面近くの比誘電率は、エポキシ樹脂の比誘電
率(一般に4〜6)に比べて約2倍と大きくなり、単位
面積当りの静電容量が増える。
In the insulation structure of electrical equipment configured in this way, the relative permittivity near the surface of the insulating layer 9 is approximately twice as large as the relative permittivity of the epoxy resin (generally 4 to 6), and The capacitance of increases.

これにより、絶縁層9の表面は帯電しやすくなり、可動
接触子4aに印加される電圧の極性と同極性の電荷が帯
電することになる。
Thereby, the surface of the insulating layer 9 becomes easily charged, and the surface of the insulating layer 9 is charged with an electric charge having the same polarity as the polarity of the voltage applied to the movable contact 4a.

一般に、電極に絶縁層を被覆すると、電極からの電子放
出の抑制、絶縁層による電界強度の抑制および絶縁層で
見かけ上の電極の曲率半径が増える効果があり、耐電圧
が上がる。このため、絶縁層が印加極性と同極性に帯電
しやすくなることは、見かけ上の曲率半径の増大効果が
働きやすくなることである。つまり、比誘電率の大きい
エポキシ樹脂は、耐電圧の向上が図れる。(注;もちろ
ん第1図において絶縁層9のエポキシ樹脂厚さは、所要
の厚さ、例えば、定格電圧77h1耐電圧値インパルス
電圧400kvでは400k▼/40kv/mm=10
mm程度は必要) また、この絶縁構造において、フラッシオーバ経路は可
動接触子4aの露出面と絶縁層9との境界、即ち第2図
に示すA点から絶縁層9沿面を介してガス空間を経て接
地の金属面Eとなる。このため、上述したように絶縁ガ
ス中での絶縁破壊は、最大電界強度で決まるので、A点
の電界強度を抑制しておかなければならない。なぜなら
ば、絶縁層9の比誘電率は、絶縁ガスの比誘電率1より
大きいので、この部分で金属の充電部と固体絶縁層と気
体絶縁層の三重合結合ができ、電界強度が大きくなる電
界特異性をもっためである。ところがA点での電界強度
は、絶縁層9の比誘電率を粉末lOが混入しないように
最小限に押さえているので、半球面4aoの底部のよう
に比誘電率が大きくならず、電界強度の上昇を防ぐこと
ができる。
Generally, when an electrode is coated with an insulating layer, it has the effect of suppressing electron emission from the electrode, suppressing electric field strength by the insulating layer, and increasing the apparent radius of curvature of the electrode by the insulating layer, thereby increasing the withstand voltage. Therefore, the fact that the insulating layer is more likely to be charged to the same polarity as the applied polarity means that the effect of increasing the apparent radius of curvature is more likely to occur. In other words, an epoxy resin with a high dielectric constant can improve the withstand voltage. (Note: Of course, in Fig. 1, the epoxy resin thickness of the insulating layer 9 is the required thickness, for example, for rated voltage 77h1 withstand voltage value impulse voltage 400kv, 400k▼/40kv/mm = 10
Furthermore, in this insulation structure, the flashover path runs from the boundary between the exposed surface of the movable contact 4a and the insulation layer 9, that is, from point A shown in FIG. After that, it becomes the grounded metal surface E. For this reason, as described above, dielectric breakdown in the insulating gas is determined by the maximum electric field strength, so the electric field strength at point A must be suppressed. This is because the relative permittivity of the insulating layer 9 is greater than the relative permittivity of the insulating gas (1), so a triple bond between the metal live part, the solid insulating layer, and the gas insulating layer is formed in this part, increasing the electric field strength. This is because it has electric field specificity. However, the electric field strength at point A is suppressed to a minimum because the dielectric constant of the insulating layer 9 is kept to a minimum to prevent powder lO from being mixed in, so the dielectric constant does not become as large as at the bottom of the hemispherical surface 4ao, and the electric field strength decreases. can prevent a rise in

この結果、接地金属板Eに近くて最大電界強度をもつ半
球面4aoは、比誘電率の大きい絶縁層9で見かけ上電
極の曲率半径が大きくなり電界強度を抑制し、また、A
点においては比誘電率の増加を防いでいるので、電界強
度が上昇する電界特異性が起りにくい。そして、接地金
属板Eとの耐電圧特性を上げることができる。
As a result, the hemispherical surface 4ao, which is close to the ground metal plate E and has the maximum electric field strength, has an apparently large radius of curvature of the electrode due to the insulating layer 9 having a large dielectric constant, suppressing the electric field strength, and
Since the specific dielectric constant is prevented from increasing at the point, electric field singularity in which the electric field strength increases is less likely to occur. In addition, the withstand voltage characteristics with respect to the ground metal plate E can be improved.

従って、絶縁ガス中で使われる電気機器の端部を従来の
ように大きくすることなく、収納機器の外形を減らし、
小形化を狙ったガス絶縁開閉装置の特徴を生かし、接地
面積を減らすことのできる電気機器の絶縁構造を得るこ
とができる。
Therefore, without increasing the size of the end of electrical equipment used in insulating gas as in the past, the external size of the equipment can be reduced.
By taking advantage of the characteristics of gas-insulated switchgear aimed at miniaturization, it is possible to obtain an insulation structure for electrical equipment that can reduce the ground area.

尚、第2図のA点が接地金属板Eと充分に離れて、電界
強度が小さい場合には、絶縁層9に混合する粉末10を
増やし、絶縁層9全体の比誘電率を大きくしても電界強
度を抑制する効果がでる。
If point A in FIG. 2 is sufficiently far away from the ground metal plate E and the electric field strength is small, increase the amount of powder 10 mixed into the insulating layer 9 to increase the dielectric constant of the entire insulating layer 9. It also has the effect of suppressing the electric field strength.

又、第1図、第2図において、設備の運転・停止などに
よる可動接触子4aの膨張・収縮で、半球面4aoと絶
縁層9との境界が剥がれるおそれのあるときには、例え
ば、境界面にシリコーン樹脂系の接着剤などの応力緩和
層を設けてもよい。
In addition, in FIGS. 1 and 2, when there is a risk that the boundary between the hemispherical surface 4ao and the insulating layer 9 may peel off due to expansion or contraction of the movable contact 4a due to operation or stoppage of equipment, for example, A stress relaxation layer such as a silicone resin adhesive may also be provided.

又、可動接触子4aは、左側の通電部だけを銅棒にして
、絶縁層9を施す部分は別に(注;材料も鉄・AIでも
可)作って左側とねじ結合してもよい。この場合には可
動接触子4aの製作がより容易になる利点がある。
Alternatively, the movable contact 4a may be made of a copper rod for only the current-carrying part on the left side, and the part to which the insulating layer 9 is applied may be made separately (note: the material may also be iron or AI) and connected to the left side with screws. In this case, there is an advantage that the movable contactor 4a can be manufactured more easily.

[発明の効果] 以上1本発明によれば、絶縁ガス中に設けられた棒状充
電部の端部を半球面とし、この半球面に比誘電率の大き
い材料を混合しエポキシ樹脂でなる絶縁層を形成して最
大電界強度を抑え、耐電圧特性を上げたので、絶縁ガス
中に使われる電気機器や収納装置を小形化することので
きる電気機器の絶縁構造を得ることができる。
[Effects of the Invention] According to the above-mentioned first aspect of the present invention, the end of the rod-shaped charged part provided in an insulating gas is made into a hemispherical surface, and a material having a large relative permittivity is mixed into this hemispherical surface to form an insulating layer made of an epoxy resin. Since the maximum electric field strength is suppressed and the withstand voltage characteristics are increased by forming an insulating gas, it is possible to obtain an insulating structure for electrical equipment that can downsize electrical equipment and storage devices used in insulating gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電気機器の絶縁構造の一実施例を示す
部分断面図、第2図は第1図の部分拡大断面図、第3図
は従来の電気機器の絶縁構造の適用例を示すガス絶縁開
閉装置の側面図、第4図は第3図の要部拡大図である。
Fig. 1 is a partial sectional view showing an embodiment of the insulating structure for electrical equipment of the present invention, Fig. 2 is a partially enlarged sectional view of Fig. 1, and Fig. 3 is an example of application of the conventional insulating structure for electrical equipment. FIG. 4 is an enlarged view of the main part of FIG. 3.

Claims (1)

【特許請求の範囲】[Claims] 絶縁ガスが封入された箱体に収納され、外側に棒状充電
部の端部が突き出た電気機器において、前記棒状充電部
の端部を半球面とし、この半球面を比誘電率の大きい材
料の粉末を混合したエポキシ樹脂で注型成形したことを
特徴とするガス絶縁電気機器の絶縁構造。
In an electrical device that is housed in a box filled with insulating gas and in which the end of a rod-shaped live part protrudes outward, the end of the rod-like live part is made into a hemispherical surface, and this hemispherical surface is made of a material with a high dielectric constant. An insulation structure for gas-insulated electrical equipment characterized by being cast-molded using epoxy resin mixed with powder.
JP1227516A 1989-09-04 1989-09-04 Insulation structure of gas insulated electric machine Pending JPH0393417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227516A JPH0393417A (en) 1989-09-04 1989-09-04 Insulation structure of gas insulated electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227516A JPH0393417A (en) 1989-09-04 1989-09-04 Insulation structure of gas insulated electric machine

Publications (1)

Publication Number Publication Date
JPH0393417A true JPH0393417A (en) 1991-04-18

Family

ID=16862126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227516A Pending JPH0393417A (en) 1989-09-04 1989-09-04 Insulation structure of gas insulated electric machine

Country Status (1)

Country Link
JP (1) JPH0393417A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273367A (en) * 2005-03-29 2006-10-12 Dainippon Printing Co Ltd Assembly paper lid with inner wall step
EP1724802A3 (en) * 2005-05-16 2007-12-26 Mitsubishi Denki Kabushiki Kaisha Gas-insulated equipment
JP2008162644A (en) * 2006-12-28 2008-07-17 Package Nakazawa:Kk Folding-back piece engaging structures at peripheral wall ends for foldable packaging box
JP2010057246A (en) * 2008-08-27 2010-03-11 Toshiba Corp Resin casted item with grounding layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273367A (en) * 2005-03-29 2006-10-12 Dainippon Printing Co Ltd Assembly paper lid with inner wall step
EP1724802A3 (en) * 2005-05-16 2007-12-26 Mitsubishi Denki Kabushiki Kaisha Gas-insulated equipment
US7742283B2 (en) 2005-05-16 2010-06-22 Mitsubishi Denki Kabushiki Kaisha Gas-insulated equipment
EP2214191A2 (en) * 2005-05-16 2010-08-04 Mitsubishi Denki K.K. Gas-insulated equipment
EP2214191A3 (en) * 2005-05-16 2010-09-22 Mitsubishi Denki K.K. Gas-insulated equipment
US7848084B2 (en) 2005-05-16 2010-12-07 Mitsubishi Denki Kabushiki Kaisha Gas-insulated equipment
JP2008162644A (en) * 2006-12-28 2008-07-17 Package Nakazawa:Kk Folding-back piece engaging structures at peripheral wall ends for foldable packaging box
JP2010057246A (en) * 2008-08-27 2010-03-11 Toshiba Corp Resin casted item with grounding layer

Similar Documents

Publication Publication Date Title
US7742283B2 (en) Gas-insulated equipment
RU2543984C2 (en) Compact vacuum interrupter with selective encapsulation
JP3860553B2 (en) Gas insulated switchgear
JP2002159109A (en) Gas isolation switching device
JPH0393417A (en) Insulation structure of gas insulated electric machine
JPH1023620A (en) Electric field relief device
JP6071209B2 (en) Gas insulated switchgear and gas insulated bus
JPH11164429A (en) Disconnector with grounding device
EP0046303B1 (en) Disconnect contact assembly
JPH10210615A (en) Power-receiving and transforming facility device
US6506067B2 (en) Disconnector
JP2897878B2 (en) Electrical equipment insulation structure
JP2642469B2 (en) Electrical equipment insulation structure
JPH08242513A (en) Switch gear and electric apparatus
JP2772094B2 (en) Barrier in insulating gas
JPH07220586A (en) High-voltage equipment
JPH0562572A (en) Vacuum circuit breaker
JPH1075519A (en) Gas insulated apparatus
JP2672675B2 (en) Gas insulated switchgear
JPH0622420A (en) Switchgear
US3519774A (en) Static shield for oil circuit breaker interrupters
JPH02101909A (en) Disconnector of compressed gas insulation switchgear
JP3597685B2 (en) Gas insulated switchgear
JPS5939395Y2 (en) Insulated operating rod
SU1561108A1 (en) High-voltage gas-insulated lead-in