JPH0393165A - Manufacture of electrode catalytic layer for fuel cell - Google Patents

Manufacture of electrode catalytic layer for fuel cell

Info

Publication number
JPH0393165A
JPH0393165A JP1228656A JP22865689A JPH0393165A JP H0393165 A JPH0393165 A JP H0393165A JP 1228656 A JP1228656 A JP 1228656A JP 22865689 A JP22865689 A JP 22865689A JP H0393165 A JPH0393165 A JP H0393165A
Authority
JP
Japan
Prior art keywords
base metal
electrode
reaction gas
empty
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1228656A
Other languages
Japanese (ja)
Inventor
Shigeki Takahashi
茂樹 高橋
Hirobumi Enomoto
博文 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1228656A priority Critical patent/JPH0393165A/en
Publication of JPH0393165A publication Critical patent/JPH0393165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain an excellent gas diffusing property by enlarging an empty hole diameter so that reaction gas may easily diffuse through empty holes of an empty catalytic layer. CONSTITUTION:An electrolyte 7, in which a carbon carrier carries a noble metal, fluorine-contained polymers 8 and fine grains of a base metal are mixed to form an application liquid, and the application liquid is applied on an electrode substrate 5. Later, base metal corpuscules are electrolytic-liquated in an electrolyte for being shaved out. That is, base metal corpuscules mixed with electrolytic grains, fluorine-contained polymers are shaved out and removed after electrode manufacture so as to be able to manufacture empty holes having the same size with the base metal grains on the spots occupied before by the base metal grains. Accordingly, these empty holes smooth reaction gas supply to the empty holes existing from before. A sufficient amount of reaction gas can be supplied in a high electric wave density region 4 requiring a large amount of reaction gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池用電極触媒層の製造方法に係り、特
に反応ガスの拡散しやすい電極触媒層の製造方法に関す
る. 〔従来の技術〕 燃料電池の電Stm造が第3図に示される.電極は多孔
賞で電気伝導性に優れるカーボン材からなる電極基板5
の上に白金などの貴金属を担持させた触媒7とはう木材
としてのフッ素樹脂8を均一に混合した電極触媒層4・
を積層して形威され、電極には電気絶縁性に優れるシリ
コンカーバイド6と結合材としてのフッ素樹脂8を混合
したマトリックス3が積層される.マトリックス3は電
解液であるリン酸が含浸されており、電極触媒層4には
、マトリンクス3から電解液が、電極基板5より反応ガ
スが供給される.電極触媒層の内部では触媒(固体)と
電解液(液体〉と反応ガス(気体)の3相界面が形威さ
れ電気化学的反応がおこって系外に電気エネルギをとり
出すことができる.〔発明が解決しようとする課題〕 しかしながら従来の燃料電池にあっては、電流密度を高
めたときに、燃料電池の単セル電圧が急激に低下すると
いう問題があった. 第2図は単セル電圧の電流密度依存性を示す線図である
.曲繍9は従来の電池の特性を示している.これは電池
の電流密度を増加させたときに、電極触媒層内部への反
応ガス供給が反応を維持するのに充分な量であくなるた
めにおこる.第1図は電極触媒層の空孔径分布を示す線
図である.曲線2は従来の電池の空孔径分布であり、0
.OIIrmとIIs付近にピークがある.このうち0
.01μの空孔は触媒粒子自体の空孔であり、1μの空
孔はフッ素樹脂と触媒粒子の塊の間に存在する空孔であ
る.ガス供給路の役割はこの1μの空孔が果たしている
. 電極触媒層内部へ反応ガスを円滑に供給するためには、
電極触媒層の空孔を反応ガスが容易に拡散出来るように
空孔径を大きくする必要がある.前述の電極触媒層にお
いて、触媒粒子とフッ素樹脂粒子の塊が混ざり合うこと
で形威される孔径では、空孔径が小さすぎる.即ち上述
の空孔径はクヌーセン拡散のWl域であり、空孔径がガ
ス拡散性を大きく支配している. この発明は上述の点に鑑みてなされ、その目的は空孔径
を従来のものより大きくして、ガス拡散性に優れる電極
触媒層の製造方法を提供することにある. 〔課題を解決するための手段〕 上述の目的はこの発明によれば、第1工程と、第2工程
と、第3工程とを有し、前記第1工程は、カーボン担体
に貴金属を担持した触媒7と、フッ素樹1118と、卑
金属の微粒子、を混合して塗布液を形成する工程であり
、ここで前記卑金属の徽粒子は粒径が5〜50Bであり
、前記第2工程は前記塗布液を電極基板5上に塗布する
工程であり、前記第3工程は前記第2工程のあとで電解
液中で卑金II微粒子を電解溶出,除去する工程とする
 ことにまり達威される. 卑金属として触媒毒とならないニッケル,鉄,コバルト
等を用いることができる. 〔作用〕 触媒粒子,フッ素樹脂粒子とともに混合された卑金属粒
子を電極作威後に溶出.除去することで、卑金属粒子の
存在していた場所に卑金属粒子と同じ大きさの空孔を作
成できる. 〔実施例〕 次にこの発明の実施例を図面に基いて説明する.まず貴
金属を担持させた触媒に対して、38から57重量%の
フッ素樹脂(PTFB)を添加した分散溶液を調製する
.さらにこの分散系に粒子径が5から50μのニッケル
粒子を触媒重量に対して1から10倍添加する. 次にこの分散系を電極基板上に塗布、吸引して電極触媒
層を形威し、摂氏110℃の温度、および3から20賭
/一の圧力で威型及び水分除去を行う.このようにして
得られた触媒層に含まれるニッケル粒子の除去は、希硝
酸や希硫酸のような酸あるいはHa@So@のような塩
の水:a液中でポテンシ舊スタントを用いて+100m
Vから+1000mV (vs.sflE)の電位でニ
ッケル粒子を電解除去する.電解の終了は、電解電流の
減少により知ることが出来る.電解電位は低い方が触媒
に対する悪影響が少ないので望ましいが、電解時間は電
位が高い方が短くてすむので+500mV(vs.sH
E)程度が望ましい.ニッケル粒子を電解溶出させた電
極を純水中に浸漬して、ニッケル威分を溶出させる.そ
の後水分を乾燥除去させることにより電極が作威される
.得られた電極中の残留ニッケル量は、0.1%程度で
ある. この電極の空孔径分布が第1図の曲&lI1に示される
.ガス通路として5から50nの空孔が形威される.得
られた電極触媒層のガス透過量は10〜200cc /
 hr − csa 810 ・一で従来の触媒層1〜
lOOcc/ hr−cs LO−一より大きい.この
ようにして作威された電極は高電流密度領域において、
従来構造の電極に比べてガス拡散に基づく特性低下が小
さい.本発明による電極の電流一電圧特性が第2図の曲
線10に示される.高電流密度領域での特性低下が小さ
くなっていることがわかる. 〔発明の効果〕 この発明によれば第1工程と、第2工程と、第3工程と
を有し、前記第1工程は、カーボン担体に貴金属を阻持
した触媒と、フッ素樹脂と、卑金馬の微粒子、を混合し
て塗布液を形成する工程であり、ここで前記卑金属の微
粒子は粒径が5〜50一であり、前記第2工程は前記塗
布液を電極基板上に塗布する工程であり、前記第3工程
は前記第2工程のあとで電解液中で卑金属徽粒子を電解
溶出.除去する工程であるので卑金属電解溶出後に卑金
属粒子と同じ大きさの空孔が残され、この空孔ガ従来よ
り存在する0.1μ程度の空孔への反応ガス供給を円滑
にして、多量の反応ガスを必要とする高電流密度領域に
おいて充分な量の反応ガスを3相界面に供給することと
なり高電流密度領域において特性に優れる燃料電池が得
られる.卑金属の粒子径や添加量を調節して空孔径やそ
の分布を自由に制御できる利点もある.
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an electrode catalyst layer for a fuel cell, and more particularly to a method for manufacturing an electrode catalyst layer in which reactive gases can easily diffuse. [Prior art] Figure 3 shows the electrical system for fuel cells. The electrode is a porous electrode substrate 5 made of carbon material with excellent electrical conductivity.
An electrode catalyst layer 4 is made of a uniform mixture of a catalyst 7 on which precious metals such as platinum are supported and a fluororesin 8 as a floating wood.
A matrix 3 made of a mixture of silicon carbide 6, which has excellent electrical insulation properties, and fluororesin 8 as a binder, is laminated on the electrode. The matrix 3 is impregnated with phosphoric acid as an electrolytic solution, and the electrolytic solution is supplied to the electrode catalyst layer 4 from the matrix 3 and the reaction gas is supplied from the electrode substrate 5. Inside the electrode catalyst layer, a three-phase interface of the catalyst (solid), electrolyte (liquid), and reaction gas (gas) is formed, and an electrochemical reaction occurs, allowing electrical energy to be taken out of the system. [Problems to be Solved by the Invention] However, in conventional fuel cells, there was a problem in which the single cell voltage of the fuel cell suddenly decreased when the current density was increased. Figure 2 shows the single cell voltage. Fig. 9 is a diagram showing the current density dependence of .Curve 9 shows the characteristics of a conventional battery.This shows that when the current density of the battery is increased, the reaction gas supply to the inside of the electrode catalyst layer This occurs because the amount becomes insufficient to maintain 0. Figure 1 is a diagram showing the pore size distribution of the electrode catalyst layer. Curve 2 is the pore size distribution of the conventional battery
.. There are peaks near OIIrm and IIs. Of these, 0
.. The 01μ pores are pores in the catalyst particles themselves, and the 1μ pores are pores existing between the fluororesin and the mass of the catalyst particles. These 1μ holes play the role of gas supply channels. In order to smoothly supply the reaction gas inside the electrode catalyst layer,
It is necessary to increase the pore diameter so that the reactant gas can easily diffuse through the pores in the electrode catalyst layer. In the electrode catalyst layer mentioned above, the pore size formed by the mixing of catalyst particles and fluororesin particles is too small. That is, the above-mentioned pore diameter is in the Wl region of Knudsen diffusion, and the pore diameter largely controls gas diffusivity. This invention has been made in view of the above-mentioned points, and its purpose is to provide a method for manufacturing an electrode catalyst layer that has a larger pore diameter than conventional ones and has excellent gas diffusivity. [Means for Solving the Problems] According to the present invention, the above-mentioned object has a first step, a second step, and a third step, and the first step includes supporting a precious metal on a carbon carrier. This is a step of mixing the catalyst 7, the fluorine tree 1118, and fine particles of a base metal to form a coating liquid, in which the base metal particles have a particle size of 5 to 50B, and the second step This is a step of applying a liquid onto the electrode substrate 5, and the third step is achieved by electrolytically eluting and removing base gold II fine particles in the electrolytic solution after the second step. Nickel, iron, cobalt, etc., which do not poison the catalyst, can be used as base metals. [Operation] Base metal particles mixed with catalyst particles and fluororesin particles are eluted after electrode activation. By removing it, pores with the same size as the base metal particles can be created in the locations where the base metal particles existed. [Example] Next, an example of this invention will be explained based on the drawings. First, a dispersion solution is prepared by adding 38 to 57% by weight of fluororesin (PTFB) to a catalyst supporting a noble metal. Furthermore, nickel particles with a particle size of 5 to 50 μm are added to this dispersion system in a ratio of 1 to 10 times the weight of the catalyst. Next, this dispersion system is applied onto the electrode substrate, and the electrode catalyst layer is shaped by suction, and the shaping and moisture removal are carried out at a temperature of 110 degrees Celsius and a pressure of 3 to 20 degrees Celsius. The nickel particles contained in the catalyst layer thus obtained are removed by using a potentiometer in a solution of acid such as dilute nitric acid or dilute sulfuric acid or salt such as Ha@So@ using a potentiometer.
Nickel particles are electrolytically removed at a potential of +1000 mV (vs.sflE) from V. The end of electrolysis can be determined by the decrease in electrolytic current. A lower electrolytic potential is preferable because it has less negative effect on the catalyst, but a higher potential requires a shorter electrolysis time, so it is +500 mV (vs. sH
E) degree is desirable. The electrode with nickel particles electrolytically eluted is immersed in pure water to elute the nickel particles. The electrode is then made by drying and removing the moisture. The amount of residual nickel in the obtained electrode was about 0.1%. The pore size distribution of this electrode is shown in curve &lI1 of Figure 1. Pores of 5 to 50 nm are used as gas passages. The gas permeation amount of the obtained electrode catalyst layer was 10 to 200 cc/
hr-csa 810 ・Conventional catalyst layer 1~
lOOcc/hr-cs greater than LO-1. In the high current density region, the electrode created in this way can
Compared to electrodes with conventional structure, there is less deterioration in characteristics due to gas diffusion. The current-voltage characteristic of the electrode according to the invention is shown by curve 10 in FIG. It can be seen that the deterioration of characteristics in the high current density region is smaller. [Effects of the Invention] According to the present invention, there are a first step, a second step, and a third step, and the first step includes a catalyst in which a noble metal is supported on a carbon carrier, a fluororesin, and a base metal. The step is to form a coating solution by mixing fine particles of the base metal, wherein the fine particles of the base metal have a particle size of 5 to 50 mm, and the second step is a step of coating the coating solution on the electrode substrate. In the third step, after the second step, base metal particles are electrolytically eluted in an electrolytic solution. Since this is a removal process, pores of the same size as the base metal particles are left after the base metal electrolytic elution, and these pores facilitate the supply of reaction gas to the conventionally existing pores of about 0.1 μm, allowing a large amount of In the high current density region where reactive gas is required, a sufficient amount of reactive gas is supplied to the three-phase interface, resulting in a fuel cell with excellent characteristics in the high current density region. Another advantage is that the pore size and its distribution can be freely controlled by adjusting the particle size and amount of base metal added.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る電極触媒層の空孔径分
布を従来の空孔径分布と比較して示す線図、第2図はこ
の発明の実施例に係る電極触媒層を有する電池の分極特
性を従来の分極特性と比較して示す線図、第3図は燃料
電池の電極とマトリックスを示す断面図である. l:本発明の実施例に係る電極触媒層の空孔径分布、2
:従来の電極触媒層の空孔径分布、5;隻凡径沿m 才AID 亀流念友,4v/c浦 ″A−2凪 第 3 図
FIG. 1 is a diagram showing the pore size distribution of the electrode catalyst layer according to the embodiment of the present invention in comparison with the conventional pore diameter distribution, and FIG. 2 is a diagram showing the pore size distribution of the electrode catalyst layer according to the embodiment of the present invention. A diagram showing a comparison of polarization characteristics with conventional polarization characteristics, and Figure 3 is a cross-sectional view showing the electrodes and matrix of a fuel cell. l: pore size distribution of the electrode catalyst layer according to the example of the present invention, 2
: Pore size distribution of conventional electrode catalyst layer, 5;

Claims (1)

【特許請求の範囲】 1)第1工程と、第2工程と、第3工程とを有し、前記
第1工程は、カーボン担体に貴金属を担持した触媒と、
フッ素樹脂と、卑金属の微粒子、を混合して塗布液を形
成する工程であり、 ここで前記卑金属の微粒子は粒径が5〜50μmであり
、 前記第2工程は前記塗布液を電極基板上に塗布する工程
であり、 前記第3工程は前記第2工程のあとで電解液中で卑金属
微粒子を電解溶出、除去する工程であることを特徴とす
る燃料電池用電極触媒層の製造方法。
[Claims] 1) It has a first step, a second step, and a third step, and the first step includes a catalyst in which a precious metal is supported on a carbon carrier;
This is a step of mixing a fluororesin and fine particles of a base metal to form a coating solution, wherein the fine particles of the base metal have a particle size of 5 to 50 μm, and the second step is to mix the coating solution on an electrode substrate. A method for manufacturing an electrode catalyst layer for a fuel cell, characterized in that the third step is a step of electrolytically eluting and removing base metal fine particles in an electrolytic solution after the second step.
JP1228656A 1989-09-04 1989-09-04 Manufacture of electrode catalytic layer for fuel cell Pending JPH0393165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228656A JPH0393165A (en) 1989-09-04 1989-09-04 Manufacture of electrode catalytic layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228656A JPH0393165A (en) 1989-09-04 1989-09-04 Manufacture of electrode catalytic layer for fuel cell

Publications (1)

Publication Number Publication Date
JPH0393165A true JPH0393165A (en) 1991-04-18

Family

ID=16879753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228656A Pending JPH0393165A (en) 1989-09-04 1989-09-04 Manufacture of electrode catalytic layer for fuel cell

Country Status (1)

Country Link
JP (1) JPH0393165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326038A (en) * 1992-02-21 1993-12-10 Hughes Aircraft Co Gas discharging electrode having double holes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326038A (en) * 1992-02-21 1993-12-10 Hughes Aircraft Co Gas discharging electrode having double holes

Similar Documents

Publication Publication Date Title
JPH06196171A (en) Solid high polymer type fuel cell
JPS59219861A (en) Porous electrode
JP3648988B2 (en) Fuel cell electrode and method of manufacturing the same
JPH0393165A (en) Manufacture of electrode catalytic layer for fuel cell
Mosdale et al. New electrodes for hydrogen/oxygen solid polymer electrolyte fuel cell
JPH0636771A (en) Gas diffusion electrode and its manufacture
JPS60133662A (en) Method for manufacturing gas diffusion electrode of fuel cell
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP3649013B2 (en) Method for producing electrode for fuel cell
JPH0218861A (en) Electrode catalyzer layer for fuel cell
JPS63299057A (en) Manufacture of fuel cell electrode
JPH08115727A (en) Preparation of electrode for high-molecular solid electrolytic type electrochemistry cell
JPS59169069A (en) Electrode for fuel cell
JPH0218862A (en) Manufacture of electrode catalyzer layer for fuel cell
JPH0368452A (en) Production of platinum alloy catalyst
JP2005071851A (en) Manufacturing method of gas diffusion electrode
JPH0227661A (en) Electrode catalyst layer for fuel cell
JPH04274167A (en) Electrode catalyst layer for fuel cell
JPS62249360A (en) Manufacture of gas diffusion electrode
JP2000012040A (en) Fuel cell electrode and its manufacture
JPH0896814A (en) Electrode catalyst of phosphoric acid fuel cell
JPS60133660A (en) Manufacture of electrode substrate of fuel cell
JPH03252058A (en) Electrode catalyst layer for fuel cell
JPH0520868B2 (en)
JPH03297060A (en) Electrode catalyst layer for fuel cell